

An Oracle Technical White Paper
September 2012

Detecting and Resolving Oracle Solaris LUN
Alignment Problems

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

Overview ... 1	

LUN Alignment Challenges with Advanced Storage Devices 2	

Detecting and Resolving LUN Alignment Problems............................ 4	

Summary... 8	

Appendix ... 9	

DTrace Analytics Code to Detect LUN Alignment Problems 9	

References.. 11	

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

 1

Overview

The Sun ZFS Storage Appliance offers block type volume access (LUNs) to client systems.
These volumes can be configured using a block size that is optimized for a client's application
I/O profile. It is critical that the start of the client partitions aligns with the blocks on the ZFSSA
volumes. Often clients' partitioning configuration and formatting tools are still based on the old
SCSI 512 bytes sector addressing model, which may cause partition misalignment, resulting in
increased I/O response times and reduced I/O throughput.

This paper describes how to use the Oracle Solaris format utility to correctly set up partitions

for a Oracle Solaris EFI-based partitioning schema for Sun ZFS Storage Appliance volumes
using an 8K block size. Oracle Solaris provides system administrators with advanced DTrace
Analytics monitoring to detect LUN alignment problems that can be alleviated with the Oracle
Solaris VTOC or EFI format disk label utility. This paper shows how to use DTrace Analytics on
an active system and resolve those LUN alignment problems by tuning the EFI disk label.

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

 2

LUN Alignment Challenges with Advanced Storage Devices

Legacy disk drives accessed with the SCSI protocol present a logical block architecture (LBA) to the
operating system that has historically relied on a 512B sector size for data storage, and the default
behavior of operating system tools for formatting and accessing disk drives uses 512B aligned records
to store metadata about the drive geometry as well as end-user data. Although this process works well
for simple disk drives, it can produce suboptimal results for integrated storage systems that internally
process data in larger allocation units.

For example, as shown in Figure 1, the default Oracle Solaris EFI disk label creates a slice that starts at
sector 34. So if the OS does an 8kB access on the start of the file system, this translates to an access to
the virtual sectors 34 through sector 49 and requires the storage system to read two 8kB allocation
units, virtual sectors 32-47 and sectors 48-63, to process the requested data.

Figure 1. Default Oracle Solaris EFI disk label structure

 Such misaligned I/O conditions reduce the efficiency with which the storage system can process I/O
and consequently may increase response time at a fixed throughput or reduce throughput at a fixed
response time.

Figures 2 and 3 show examples of the I/O response time and throughput characteristics associated
with misaligned and aligned I/O on the same storage system. Resolving I/O alignment challenges
presented by storage devices with allocation unit sizes greater than 512B requires that the system
administrator begin storing user data on the first storage device allocation unit available after the disk
label or volume table of contents (VTOC). Configuring the operating system to leave enough empty
space between the end of the disk label and the first byte of user data ensures that the first byte of user
data is written to the first byte of an allocation unit on the storage device.

For example, the Oracle Solaris EFI disk label is stored on the first 33 sectors of the LUN presented
by the storage device, and the default partition table layout stores user data starting at sector 34 or
17kB into the LUN. To align I/O on an 8kB allocation unit, the starting sector of the data partition
may be advanced to sector 48 (24kB), sector 64 (32kB), or any multiple of 16 sectors beyond sector 48.
To accommodate larger allocation unit sizes, choose an appropriately larger starting sector: 128 for

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

 3

64kB or 256 for 128kB. Figure 3 shows an example of how to use the Oracle Solaris format -e
command to perform this alignment.

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

 4

Detecting and Resolving LUN Alignment Problems

Detecting LUN alignment problems challenges the system administrator because of the complexity of
the I/O processing stack between the application executing the I/O system call and the LUN
processing the I/O. Complications include the presence of file systems and volume managers that may
change the physical characteristics of the application-initiated I/O as well as knowledge of the partition
table on the LUN.

To simplify detection of LUN alignment problems in these complex environments, Oracle Solaris
DTrace Analytics provides the function boundary testing (fbt) provider to track I/O operations at the
SCSI driver layer (sd). The code listed in the Appendix shows an example of how to monitor a running
system to verify 8kB alignment of I/O at the LUN level. To illustrate the benefit of maintaining I/O
alignment between the host-side data access and the allocation unit size of the storage device, this
section shows a real example of client-reported I/O performance measurements and correlated
DTrace Analytics output from misaligned and aligned cases, and an example of how to control data
alignment using the Oracle Solaris format utility to tune an EFI disk label.

Figure 2 shows storage system performance for 8kB random read operations using a default EFI disk
label that leads to client-side I/O being executed on 9kB boundaries. The workload shown in the test
case is 64 outstanding 8kB read requests, and performance is quantified by a 3.9 ms I/O response time
at a throughput of 15,900 IOPS. In practice, there is no obvious indication from this report that an
I/O alignment problem is occurring except that I/O response time is longer and I/O throughput is
lower than expected for the given workload running on the specific storage system.

Figure 2. I/O using misaligned EFI label

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

 5

Figure 3 shows the output of the supplied DTrace Analytics script that lists the root-cause of the
performance problem. The example shows that, although the host is performing 8kB I/O operations
consistent with the known allocation unit size of the LUN, the operations are executed on 9kB
boundaries. Consequently, for each host-initiated I/O against the LUN, the storage target needs to
access two adjacent 8kB blocks: the first block for the first 7kB of the I/O and a second block for the
remaining 1kB. This leads to inefficient processing of data, increases in response time, and degradation
in throughput.

Figure 3. DTrace Analytics output using misaligned EFI label

Proper configuration of the starting location for data storage on the LUN can resolve the I/O
alignment issue. On the Oracle Solaris operating system, the format command tool displays, creates
and modifies partitions and labels disks. Figure 4 shows that the format output of the first available
sector of an EFI disk label in Oracle Solaris is at 34, which is two blocks beyond 32kb being used for
this example. Figure 4 also shows the steps to correct the 32kb block offset of the EFI label using
format in expert mode with the -e option.

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

 6

Figure 4. Using the format -e command

The DTrace Analytics ouptut shown in Figure 5 verifies that correct I/O alignment is preserved
between the application and the storage device. In this example, all 8kB read I/O operations are
conducted on multiples of 8kB on the LUN presented by the storage system.

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

 7

Figure 5. DTrace Analytics output using aligned EFI label

As a result of maintaining I/O alignment, system performance improves, as shown in Figure 6. In this
example, I/O response time drops to 3.3 ms and throughput increases to 20,200 IOPS. This shows a
20% gain in system performance for the tested workload. In practice, performance gains may be
greater or less, depending on the specific workload and the hardware configuration supporting the
workload.

Figure 6. Verifying with the iostat command

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

 8

Summary

Detecting LUN alignment issues with advanced storage devices like the Sun ZFS Storage Appliance
can be achieved fairly quickly and easily using the built-in Oracle Solaris-tools to monitor I/O with
iostat and DTrace Analytics, and once detected can quickly be corrected by calculating the correct
beginning block sector based on the I/O block size and using the format command to write a proper
EFI label. The result of this tuning is more efficient data processing by the underlying storage system,
a reduction in I/O response time, and an increase in I/O throughput compared to untuned systems.
Administrators seeking the most efficient use of storage resources should follow this best practice.

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

9

Appendix

DTrace Analytics Code to Detect LUN Alignment Problems
#!/sbin/dtrace –qs
Script to detect IO misalignment for 8K based LUN volumes
BEGIN
{
 start = timestamp;
}
int issued;
int misaligned;
int misalignedBy;
int nonmult;
int tot_issued;
int tot_misaligned;
int tot_misalignedBy;
int tot_nonmult;
int tot_elapsed;
struct buf *bp;
struct sd_xbuf *xp;
fbt:sd:sd_core_iostart:entry
{
 issued++;
 bp = (struct buf *) arg2;
 xp = (struct sd_xbuf *)((bp)->b_private);
 misaligned += (xp->xb_blkno % 8) ? 1 : 0;
 misalignedBy += (xp->xb_blkno % 8);
 @misalignedByHist = quantize(xp->xb_blkno % 8);
 nonmult += (bp->b_bcount % 8192) ? 1 : 0;
 @a[bp->b_bcount] = count();
}
END
{
 elapsed = timestamp - start;
 tot_elapsed += elapsed;
 tot_issued += issued;
 tot_misaligned += misaligned;
 tot_nonmult += nonmult;
 tot_misalignedBy += misalignedBy;
 printf("==\n");
 printf("Totals\n");
 printf("==\n");
 printf("\n IO size Count\n");
 printa(@a);
 printf("\n IO misalignment Count\n");
 printa(@misalignedByHist);
 printf("%d.%09d seconds elapsed\n\n", tot_elapsed /
1000000000, tot_elapsed % 1000000000);

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

10

 printf("%8d IOs issued\n%8d IOs misaligned, %8d block
offset %8d byte offset\n",
 tot_issued,
 tot_misaligned,
 (tot_issued==0 ? 0 : tot_misalignedBy /
tot_issued),
 (tot_issued==0 ? 0 : 512 * tot_misalignedBy /
tot_issued)
);
 printf("%8d IOs non-multiple of 8KB\n", tot_nonmult);
 printf("%8d Percent non-8k IOs\n", (tot_issued==0 ? 0 :
(tot_nonmult * 100 / tot_issued)));
}

tick-5sec
{
 elapsed = timestamp - start;
 printf("%d.%09d seconds elapsed\n\n", elapsed/1000000000,
elapsed%1000000000);
 printf("%8d IOs issued\n%8d IOs misaligned, %8d block
offset %8d byte offset\n",
 issued,
 misaligned,
 (issued==0? 0: misalignedBy / issued),
 (issued==0? 0: 512 * misalignedBy / issued)
);
 printf("%8d IOs non-multiple of 8KB\n", nonmult);
 printf("%8d Percent non-8k IOs\n\n", (issued==0 ? 0 :(
nonmult * 100 / issued)));
 printa(@misalignedByHist);
 tot_elapsed += elapsed;
 tot_issued += issued;
 tot_misaligned += misaligned;
 tot_nonmult += nonmult;
 tot_misalignedBy += misalignedBy;
 start = timestamp;
 issued = 0;
 misaligned = 0;
 misalignedBy = 0;
 nonmult = 0;
}

Detecting and Resolving Oracle Solaris LUN Alignment Problems

`

11

References

For further information on the following topics, see the following resources:

• LUN-Partition Alignment

• Partition Alignment Guidelines for Unified Storage blog, by David Lutz:
https://blogs.oracle.com/dlutz/entry/partition_alignment_guidelines_for_unified

• Oracle Solaris Product Information

• Oracle Solaris 11
http://www.oracle.com/uk/products/servers-storage/solaris/solaris11/overview/index.html

• How to obtain a copy of Oracle Solaris
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html

• Oracle Solaris 11 Documentation
http://www.oracle.com/technetwork/documentation/solaris-11-192991.html

• Oracle Solaris Disk Management
http://docs.oracle.com/cd/E23824_01/html/821-1459/disksconcepts-29477.html#scrolltoc

• Sun ZFS Appliances Product Information

• Sun ZFS Storage Appliances
http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html

• Sun ZFS Storage Appliance Documentation
https://wikis.oracle.com/display/FishWorks/Documentation

• Oracle Unified Storage Systems Documentation
http://www.oracle.com/technetwork/documentation/oracle-unified-ss-193371.html

Detecting and Resolving Oracle Solaris LUN
Alignment Problems
April 2010, v1.0; September 2012, v2.0
Author: Art Larkin, Application Integration
Engineering
Contributing Authors: Jeff Wright, Peter
Brouwer, Application Integration Engineering

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.like
Fax: +1.650.506.7200
oracle.com

Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved.
This document is provided for information purposes only and the contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed
orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose.
We specifically disclaim any liability with respect to this document and no contractual obligations are formed either
directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered
trademark licensed through X/Open Company, Ltd. 0110

