
1	
	

Hand-On-Lab	 	 	 	 	 	 	 	 	 	 	 November	24,	2015	

Oracle	Database	12c	-	Upgrade,	Migration	&	Consolidation	

Roy	Swonger	
Senior	Director	and	Product	Manager	
ST	–	Database	Utilities	
ORACLE	Corporation	

Mike	Dietrich	
Senior	Principal	Technologist	
ST	–	Upgrade	Development	Group	
ORACLE	Corporation	
	

	

The	4	parts	of	the	Lab:	

	

1. Upgrade	an	Oracle	11.2.0.4	database	(SID:	UPGR)	to	Oracle	12.1.0.2	
2. Plug	in	the	upgrade	UPGR	database	into	an	existing	Oracle	12.1.0.2	container	database	(SID:	CDB2)	
3. Migrate	an	Oracle	11.2.0.4	database	(SID:	FTEX)	to	Oracle	12.1.0.2	using	Full	Transportable	Export/Import	into	a	

new	pluggable	database	PDB2		

[optional]:	

4. Work	with	Multitenant	databases	and	implement	new	Oracle	Database	12c	features	
	

Before	you	can	start	you	may	have	to	setup	a	few	things	and	make	yourself	familiar	with	the	environment	

2	
	

	

Setup	Tasks	
	
	
Keyboard	Layout	
	
The	default	keyboard	layout	may	be	German	or	US	English.	If	you	would	like	a	
different	layout,	then	you	can	add	another	keyboard	as	follows:	
	

1. Login	to	the	Linux	desktop	(user/password	are	both	“oracle”)	
2. If	you	want	to	change	the	keyboard's	layout	(default	is:	US)	to	German	

please	just	CLICK	ONCE	on	the	tiny	"US"	symbol	next	to	the	clock:	
	

	
	

3. If	you'd	like	to	do	more	general	changes	please	enter	the	KDE	
CONTROL	CENTER	by	CLICKing	on	the	penguin	in	the	left	bottom	
corner:	
	

	
	

	

	 	

3	
	

!!!	IMPORTANT	!!!	THINGS	TO	KNOW	AND	UNDERSTAND	!!!	
	
All	passwords	are	set	to:	 	 	 	 	 oracle	
	
Switch	environments	for	instance:	 	 	 . cdb2	(type	in	on	shell	prompt:	<dot>	<blank>	cdb2)	
	
There	is	an	environment	variable	$OH12	defined	for	convenience.	This	points	to	the	12.1.0.2	Oracle	Home,	and	is	
used	several	times	in	part	1	of	the	lab.	
	
Dark	gray	background,	white	characters	mean:	 Execute	on	the	command	prompt	(OS	shell)	
	
Light	gray	background,	black	characters	mean:	 Execute	in	SQL*Plus	
	

	 	

4	
	

	

HOW	TO	COPY/PASTE	WITH	THE	OKULAR	PDF	VIEWER	
	 	

This	VM	includes	the	okular	PDF	reader,	which	is	available	in	the	Linux	distribution.	In	order	to	copy/paste	with	
okular,	you	need	to	use	the	“Select	Tool.”	If	you	have	these	instructions	open	within	the	VM,	then	you	can	see	the	
select	tool	at	the	top	of	the	window.	It	is	the	box	with	the	dashed	outline	as	shown	here:	

	

Once	you	choose	the	Select	Tool,	this	will	be	the	default	unless	you	change	it.	Then	you	can	select	an	area	and	copy	
the	selection	as	text.	Choose	the	Text	->	“Copy	to	Clipboard”	option	as	in	this	example	from	the	first	steps	in	the	lab:	

	 	

5	
	

IMPORTANT	!!!	System	Overview	-	The	numbers	on	the	picture	describe	part	1-4	of	the	Hands-On-Lab	!!!		
	

	 	

6	
	

�	

HOL	–	Part	1–	Upgrade	the	Oracle	11.2.0.4	database	UPGR	to	Oracle	Database	12.1.0.2	

Database	files	location:	 	 	 	 	 	 /oradata/UPGR	
Initialization	parameter	and	password	file	location:	 /u01/app/oracle/product/11.2.0/dbs	
Listener	configuration:	 	 	 	 	 	 /u01/app/oracle/product/12.1.0.2/network/admin	

Tasks	HOL	Part	1	

Your	task	in	HOL	Part	1	will	be	a	simple	and	straightforward	database	upgrade	to	Oracle	Database	12c.	Everything	is	installed	already.	
Your	Oracle	Database	11g	Release	2	(11.2.0.4)	database	(SID:	UPGR)	is	startup	already	and	ready	to	go.	Now	follow	all	steps	and	
upgrade	it.	

You	will	use	the	new	pre-upgrade	check	script	preupgrd.sql	which	will	examine	your	UPGR	database.	This	script	is	shipped	with	the	
new	Oracle	12c	home	in	/u01/app/oracle/product/12.1.0.2/rdbms/admin	

You	will	then	prepare	your	UPGR	database	for	the	upgrade	to	Oracle	Database	12c	and	upgrade	it.	The	database	will	stay	in	place	and	
doesn’t	get	moved	to	another	location.	

Remarks:	
For	this	hands-on	lab	we	have	provided	easy	commands	to	switch	environments!	You	can	switch	between	environments	on	the	bash	
shell	prompt	typing	((don’t	type	“$>“!!!)	in	every	Terminal/xterm:	

	

7	
	

SID:	UPGR	–	Oracle	11.2.0.4	home	 SID:	UPGR	–	Oracle	12.1.0.2	home	
$> . upgr

<dot> <space> upgr 	for	the	Oracle	11.2.0.4	environment	with	
your	database	to	be	upgraded	(SID:	UPGR)	

$> . upgr12

<dot> <space> upgr12		for	the	Oracle	12c	environment	with	
your	database	to	be	upgraded	(SID:	UPGR)	

	

***	START	HERE	***	Command	Line	Upgrade	from	Oracle	11.2.0.4	to	Oracle	12.1.0.2	***	

In	this	section	you’ll	execute	the	new	preupgrd.sql	check	script,	verify	the	output,	execute	some	commands	and	a	fixup	script	and	
prepare	a	new	spfile	for	the	upgrade.	Then	you’ll	copy	the	spfile	and	the	password	file	to	the	new	Oracle	Database	12c	home.	

SID:	UPGR	
Oracle	11.2.0.4	home	

SID:	UPGR	
Oracle	12.1.0.2	home	

	
Execute	pre-upgrade	preparation	steps	
	

1. Open	an	xterm	(Terminal	icon)	-		
(right	mouse	click è Konsole ...)
	
. upgr
sqlplus / as sysdba

2. Run	the	new	preupgrade	check	script	preupgrd.sql,	in	your	11.2.0.4	environment	–	it	will	generate	
3	files:	
	
@$OH12/rdbms/admin/preupgrd.sql
	

3. Verify	the	preupgrade.log	and	make	necessary	changes	
	Open	a	2nd	xterm	(right	mouse	click è Konsole ...):	
	
less /u01/app/oracle/cfgtoollogs/UPGR/preupgrade/preupgrade.log	

	

8	
	

	
The	11.2.0.4	database	has	the	OLAP	Catalog	(AMD)	component	installed,	and	this	component	is	no	
longer	included	in	Oracle	Database		starting	with	Oracle	Database	12c.	
Remove	the	OLAP	Catalog	(AMD)	component	using	the	script	from	the	12.1.0.2	Oracle	Home	($OH12):	
	
@$OH12/olap/admin/catnoamd.sql
commit;
	
The	preupgrade	log	includes	a	message	about	moving	audit	data	from	system.aud$	to	sys.aud$	because	
Oracle	Label	Security	is	installed.	
Move	the	AUD$	table	now	using	the olspreupgrade.sql	script	from	the	Oracle	Database	12c	
home	from	SYSTEM	to	SYS:		
	
@$OH12/rdbms/admin/olspreupgrade.sql		
	
Prepare	your	spfile	for	the	12c	upgrade	according	to	the	output	from	preupgrade.log:	
(Please	note:	Best	Practice	would	be	to	edit	the	init.ora	for	the	upgrade	manually.	You	could	do	so	–	the	
way	we	propose	here	is	just	a	shortcut	avoiding	manual	edit	steps)	
	
create pfile from spfile;
alter system set processes=300 scope=spfile;

Raise	COMPATIBILE	for	the	upgrade,	so	that	we	can	use	this	database	later	in	part	2	of	the	lab.	

alter system set COMPATIBLE='12.1.0' scope=spfile;
	

4. Gather	dictionary	stats	prior	to	the	upgrade:	
	
EXECUTE dbms_stats.gather_dictionary_stats;
	

5. Execute	the	preupgrade_fixups.sql –	it	was	created	by	preupgrd.sql	in	directory	
/u01/app/oracle/cfgtoollogs/UPGR/preupgrade	
	
	

9	
	

	
	
Be	aware	that	the	preupgrade_fixups.sql	will	display	warnings	about	things	you	may	have	fixed	already.	
Please	ignore	this	as	it	is	static	information	which	got	created	during	the	run	of	preupgrd.sql	and	does	
not	get	updated	when	you	fix	issues	being	signaled.	This	is	a	known	issue	and	will	be	changed	in	a	future	
release	of	Oracle.	
	
@/u01/app/oracle/cfgtoollogs/UPGR/preupgrade/preupgrade_fixups.sql
	
Please	note	that	the	preupgrade_fixups.sql	script	will	still	complain	about	PROCESSES	being	set	
too	low.	This	is	because	we	have	used	the	ALTER	SYSTEM	command	to	adjust	the	parameter,	but	that	
adjustment	will	not	take	effect	until	the	database	is	shutdown	and	restarted.	Because	we	specified	
SCOPE=SPFILE,	this	parameter	will	be	set	correctly	for	the	upgrade.	
	

6. Shutdown	the	UPGR	database:	
	
shutdown immediate
exit
	

7. Copy	your	new	spfile	and	your	password	file	into	the	Oracle	12c	home’s	dbs	($OH12/dbs)	directory:
cp $ORACLE_HOME/dbs/spfileUPGR.ora $OH12/dbs/

cp $ORACLE_HOME/dbs/orapwUPGR $OH12/dbs/
	

	

	

	

	

	
	

10	
	

SID:	UPGR	
Oracle	11.2.0.4	home	

SID:	UPGR	
Oracle	12.1.0.2	home	

	
	
Execute	all	parallel	upgrade	steps	
	
Now	you’ll	upgrade	your	UPGR	database	to	Oracle	Database	12c	using	the	new	parallel	upgrade	scripts.	
Furthermore	you’ll	recompile	and	check	for	invalid	objects	before/after	the	upgrade.	
	

1. Open	an	xterm	(Terminal	icon)	-		
(right	mouse	click è Konsole ...)
	
. upgr12
sqlplus / as sysdba
	

2. Bring	the	UPGR	database	into	UPGRADE	mode	
	
startup upgrade
exit
	

3. Upgrade	the	UPGR	database	with	the	parallel	upgrade	script	
Start	the	new	parallel	upgrade	–	it	will	be	driven	by	a	PERL	script	catctl.pl	outside	of	SQL*Plus	and	execute	
in	4	parallel	threads	–	in	maximum	you	could	run	with	8	parallel	threads	by	specifying	the	parameter	
option	-n 8
	
cd $ORACLE_HOME/rdbms/admin
$ORACLE_HOME/perl/bin/perl catctl.pl catupgrd.sql
	
You	will	now	see	that	as	many	as	73	phases	will	be	listed	–	some	can	act	in	parallel,	other	require	serial	
execution.	This	will	now	take	up	to	15-30	minutes	depending	on	your	system.	If	you	wonder	about	the	
RESTART	phases:	those	happen	if	timing	dependencies	make	it	necessary	to	rerun	a	certain	action.	The	
logfiles	will	be	written	by	default	into	the	directory	from	which	you	started	catctl.pl,	
$ORACLE_HOME/rdbms/admin		
	

11	
	

Once	the	upgrade	is	finished	it	will	shutdown	the	database	and	in	the	next	phase	you’ll	restart	it	in	normal	
mode.	

	
	

 	
IF	YOUR	MACHINE	IS	WELL	EQUIPPED	WITH	RAM/CPU	YOU	MAY	DO	TASKS	
IN	PARALLEL	AND	START	WITH	PART	3	(FULL	TRANSPORTABLE	EXPORT).	

GOTO	PAGE	15	–	HOL	PART	3	
	
	

	
	

SID:	UPGR	
Oracle	11.2.0.4	home	

SID:	UPGR	
Oracle	12.1.0.2	home	

	
	
Finalize	the	upgrade	with	all	required	post	upgrade	steps	
	
During	this	part	you’ll	finalize	the	upgrade	with	recompilation,	postupgrade_fixups.sql	and	the	time	zone	
adjustment	to	TZ	V18.	Startup	the	database	–	post	upgrade	it	is	shutdown:	
	

1. Open	an	xterm	(Terminal	icon)	-		
(right	mouse	click è Konsole ...)
	
. upgr12
sqlplus / as sysdba

2. Startup	the	UPGR	database	and	recompile	everything:	
	
startup
@?/rdbms/admin/utlrp.sql

12	
	

3. Execute	the	postupgrade_fixups.sql:	
	
@/u01/app/oracle/cfgtoollogs/UPGR/preupgrade/postupgrade_fixups.sql

4. Adjust	Time	Zone	settings	–	you	may	look	into	the	scripts	taken	from	MOS	Note:	1509653.1	before	
executing	them:	
	
@/home/oracle/DST/DST_prepare.sql
@/home/oracle/DST/DST_adjust.sql
exit
	

	

***	COMPLETED	***	Tasks	HOL	Part	1	***	

	 	

13	
	

�	

HOL	–	Part	2	–	Plug	in	UPGR	into	CDB2,	an	Oracle	Database	12.1.0.2	container	database	

Database	files	location:	 	 	 	 	 	 /oradata/UPGR	
Initialization	parameter	and	password	file	location:	 /u01/app/oracle/product/12.1.0.2/dbs	
Listener	configuration:	 	 	 	 	 	 /u01/app/oracle/product/12.1.0.2/network/admin	

Tasks	HOL	Part	2	

Oracle	Multitenant	Option	is	a	way	to	consolidate	several	independent	databases	into	one	large	Container	Database.	The	CDB$ROOT	
is	the	administrative	layer	and	contains	absolutely	no	user	or	application	data.	The	PDBs	that	are	plugged	into	the	CDB	contain	the	user	
and	application	data.	With	Oracle	Database	12c	Release	1	you	can	have	up	to	252	PDBs	within	one	CDB.		

Applications	and	clients	will	connect	to	the	PDB	just	as	they	would	connect	to	a	non-CDB.	The	entire	CDB/PDB	shares	one	SGA,	one	set	
of	background	processes,	one	redo	log	stream.		

In	HOL	Part	2	you	will	plug	in	the	already	upgraded	UPGR	database	as	a	new	pluggable	database	PDB1	into	the	already	existing	
Container	Database	CDB2.	The	data	files	of	UPGR	will	stay	in	place.	

SID:	UPGR	–	Oracle	12.1.0.2	home	 SID:	CDB2	–	Oracle	12.1.0.2	home	
$> . upgr12
<dot> <space> upgr12 	for	the	Oracle	12.1.0.2	environment	
with	your	database	to	be	plugged	in	later	(SID:	UPGR)	

$> . cdb2
<dot> <space> cdb2		for	the	Oracle	12c	environment	connecting	
to	the	Container	Database		(SID:	CDB2)	

14	
	

	
***	START	HERE	***	Plug	in	UPGR	into	CDB2	***	

In	this	section	an	XML	description	file	for	UPGR	will	be	created	and	used	to	plug	UPGR	into	CDB2	as	new	PDB1.	Finally	sanity	operations	
will	have	to	be	done	to	assimilate	UPGR	finally	as	PDB2.	

Please	note:	There's	no	ALTER	PLUGGABLE	DATABASE	…	RECONVERT	command	available.	To	migrate	a	database	back	into	a	stand-
alone	database	either	Data	Pump,	Transportable	Tablespaces	or	similar	techniques	will	need	to	be	used.	

SID:	UPGR	
Oracle	12.1.0.2	home	

SID:	CDB2	
Oracle	12.1.0.2	home	

	
Prepare	the	UPGR	database	for	plug	in	
	

1. Switch	to	the	UPGR	Oracle	12.1.0.2	environment:		
	

. upgr12
sqlplus / as sysdba

2. Start	the	UPGR	database	in	read-only	mode:	
	

shutdown immediate
startup open read only;

	
3. 	Generate	the	XML	description	file	–	this	file	will	contain	the	information	describing	the	database	

structure.	To	create	it	the	database	UPGR	has	to	be	in	read	only	mode:	
	

exec DBMS_PDB.DESCRIBE('/tmp/pdb1.xml');

4. Shutdown	the	database	
	
shutdown immediate
exit 	

	

15	
	

	

SID:	UPGR	
Oracle	12.1.0.2	home	

SID:	CDB2	
Oracle	12.1.0.2	home	

	 Prepare	the	UPGR	database	for	plug	in	
	

1. Switch	to	the	CDB2	Oracle	12.1.0.2	environment:		
	

. cdb2
sqlplus / as sysdba

2. Startup	the	CDB2,	a	precreated	Oracle	12c	(12.1.0.2)	Container	Database:	
	
startup

	
3. Check	plug	in	compatibility	first:

SET SERVEROUTPUT ON

DECLARE
compatible CONSTANT VARCHAR2(3) := CASE
DBMS_PDB.CHECK_PLUG_COMPATIBILITY(pdb_descr_file => '/tmp/pdb1.xml',
pdb_name => 'PDB1') WHEN TRUE THEN 'YES' ELSE 'NO'
END;
BEGIN
DBMS_OUTPUT.PUT_LINE(compatible);
END;
/	
	

4. Now	plug	in	the	database	with	its	new	name	PDB1	–	from	this	point	there’s	no	UPGR	database	anymore.	
In	a	real	world	environment	you	would	have	a	backup	or	use	a	backup/copy	to	plug	in.	In	our	lab	the	
database	UPGR	will	stay	in	place	and	become	PDB1	as	part	of	CDB2.	
Please	use	the	proposed	naming	as	the	TNS	setup	has	been	done	already.	
Use	the	NOCOPY	option	for	this	lab	to	avoid	additional	2-3	minutes	copy	time	

16	
	

	

create pluggable database PDB1 using '/tmp/pdb1.xml' nocopy tempfile
reuse;	
	

5. Connect	to	this	new	PDB1	and	perform	sanity	operations:	
	
alter session set container=PDB1;
@?/rdbms/admin/noncdb_to_pdb.sql
	
Sanity	operations	required	inside	the	PDB	to	connect	the	PDB	with	the	CDB	correctly.	Therefore	run	the	
script	noncdb_to_pdb.sql	–	this	may	take	a	approx		10-20	minutes	to	complete	due	to	
recompilations.	If	the	script	didn't	get	executed	the	PDB1	would	open	in	restricted	mode	only.	
	

5. Now	the	database	UPGR	is	plugged	in	–	but	not	open	yet.	It	will	need	to	be	started.	
	
startup
show pdbs
exit
	

6. To	connect	to	the	consolidated	PDB1	from	the	command	prompt	the	following	command	syntax	needs	
to	be	used:	
	
sqlplus "sys/oracle@pdb1 as sysdba"
As	an	alternative	you	could	use	the	EZconnect	syntax:
sqlplus "sys/oracle@//localhost:1521/pdb1 as sysdba"	

	
	

***	COMPLETED	***	Tasks	HOL	Part	2	***	 	

17	
	

�	

HOL	–	Part	3	–	Migrate	FTEX	database	with	Full	Transportable	Export/Import	into	PDB2	

Database	files	location:	 	 	 	 	 	 /oradata/FTEX	
Pluggable	database	files	location:	 	 	 	 /oradata/CDB2/pdb2	
Initialization	parameter	and	password	file	location:	 /u01/app/oracle/product/11.2.0.4/dbs	
Listener	configuration:	 	 	 	 	 	 /u01/app/oracle/product/12.1.0.2/network/admin	

Tasks	HOL	Part	3	

Full	Transportable	Export/Import	is	a	new	Oracle	Database	12c	upgrade	and	migration	feature	combining	the	speed	of	Transportable	
Tablespaces	with	the	ease-of-use	of	Data	Pump	taking	care	of	all	metadata	and	non-transportable	data.	

Your	task	in	HOL	Part	3	will	be	to	use	Full	Transportable	Export/Import	to	migrate	the	existing	Oracle	11.2.0.4	database	FTEX	into	a	
new	PDB2	which	will	belong	to	the	container	database	CDB2.	Please	stay	with	the	proposed	names	(PDB2)	as	the	TNS	setup	has	been	
set	up	already	to	allow	connections	etc.	

This	feature	works	independent	of	Oracle	Multitenant	and	platform	and	can	be	used	to	migrate	cross	Endianness	as	well.	Source	
database	version	has	to	be	at	least	Oracle	11.2.0.3,	target	version	needs	to	be	at	least	Oracle	12.1.0.1.	For	cross-platform	migrations	
RMAN	backups	with	CONVERT	operations	will	be	necessary.		

SID:	FTEX	–	Oracle	11.2.0.4	home	 SID:	CDB2	–	Oracle	12.1.0.2	home	
$> . ftex
<dot> <space> ftex 	for	the	Oracle	11.2.0.4	environment	with	
your	database	to	be	plugged	in	later	(SID:	FTEX)	

$> . cdb2
<dot> <space> cdb2		for	the	Oracle	12c	environment	connecting	
to	the	Container	Database		(SID:	CDB2)	

	

18	
	

***	START	HERE	***	Migrate	FTEX	with	Full	Transportable	Export/Import	into	PDB2	***	

The	first	task	in	the	lab	will	be	to	provide	an	empty	database	–	something	we	would	do	for	a	full	import	or	for	transportable	
tablespaces	as	well.	But	in	this	specific	case	we	want	to	consolidate,	and	therefore	pre-create	an	empty	PDB2	(a	Pluggable	Database)	
inside	the	already	existing	CDB2	(the	Container	Database).	

SID:	FTEX	
Oracle	11.2.0.4	home	

SID:	CDB2	
Oracle	12.1.0.2	home	

	
	

	
Provision	PDB2	from	PDB$SEED:	
	

1. Switch	to	the	Oracle	12c	CDB2	environment:		
	

. cdb2
sqlplus / as sysdba

startup [ONLY ISSUE THIS COMMAND IF YOU ARE STILL RUNNING HOL PART1]

2. Create	a	new	pluggable	database	PDB2:	
	
The	easiest	way	to	create	an	empty	PDB	is	to	clone	it	from	the	template	PDB	called	PDB$SEED	which	
exists	in	every	container	database.	The	location	to	create	it	is	defined	by	the	init	parameter	
PDB_FILE_NAME_CONVERT.	It	is	already	set	in	CDB2	to	have	the	new	and	empty	PDB2	created	in	
/oradata/CDB2/pdb2	directory.	

	
Create	an	empty	PDB	by	cloning	the	PDB$SEED:	
	
create pluggable database PDB2 admin user adm identified by adm
file_name_convert=('/oradata/CDB2/pdbseed', '/oradata/CDB2/pdb2');
	
This	will	take	1-2	minutes.	

	

19	
	

	
Start	the	new	pluggable	database	PDB2:	
	
alter session set container=pdb2;
startup

3. Create	a	directory	object	and	a	database	link	inside	the	PDB2	–	you	will	need	this	for	the	full	
transport	operation	-	the	directory	/oradata/CDB2/mydir	has	been	precreated	as	well	for	Data	
Pump	
	
create directory mydir as '/oradata/CDB2/mydir';
grant read, write on directory mydir to system;
create public database link SOURCEDB connect to system identified by
oracle using 'FTEX';
exit	

	
	

	

SID:	FTEX	
Oracle	11.2.0.4	home	

SID:	CDB2	
Oracle	12.1.0.2	home	

	
Prepare	the	FTEX	database	for	the	Full	Transportable	Export/Import	
	

In	order	to	run	the	Full	Transportable	operation	we	must	set	all	data	tablespaces	into	read-only	mode.	
This	is	the	same	procedure	we	would	follow	for	a	regular	transportable	tablespace	operation.	Once	the	
tablespace	is	in	read-only	mode	we	can	copy	the	file(s)	to	the	target	location	
	

1. Switch	to	the	Oracle	12c	UPGR	environment:		
	

. ftex
sqlplus / as sysdba

	

20	
	

2. Start	the	FTEX	database	and	switch	data	tablespaces	(here:	USERS)	into	read-only	mode:	
	
startup
alter tablespace users read only;
exit

	
3. Copy	the	files	to	the	target	location	

	
cp /oradata/FTEX/users01.dbf /oradata/CDB2/pdb2	

	
	

SID:	FTEX	
Oracle	11.2.0.4	home	

SID:	CDB2	
Oracle	12.1.0.2	home	

	
	

	
Data	migration	via	Full	Transportable	Export/Import	from	FTEX	into	PDB2	
	

The	Data	Pump	import	will	be	run	through	the	database	link	you	created	earlier	–	thus	no	need	for	an	
export	or	a	dumpfile.	Data	Pump	will	take	care	of	everything	(currently	except	XDB	and	AWR)	you	
need	from	the	system	tablepaces	and	move	views,	synonyms,	trigger	etc	over	to	the	target	database	
(in	our	case:	PDB2).		
	

1. Switch	to	the	Oracle	12c	CDB2	environment:		
	

. cdb2

2. Execute	the	Full	Transportable	Export/Import	with	Data	Pump

impdp system/oracle@pdb2 network_link=sourcedb version=12 full=y \
transportable=always metrics=y exclude=statistics directory=mydir \
logfile=pdb2.log \
transport_datafiles='/oradata/CDB2/pdb2/users01.dbf'
	

	
	

21	
	

In	case	copy&paste	does	not	work	we	have	prepared	a	par	file	in	/home/oracle/IMP.	
The	PDB2	is	open	and	ready	to	use	after	the	Transport	migration	has	completed:	
	
sqlplus "system/oracle@PDB2"	

	
	

***	COMPLETED	***	Tasks	HOL	Part	3	***	

	 	

22	
	

�	[optional]	
HOL	–	Part	4	–	Create	PDB3	in	Oracle	12.1.0.1	and	upgrade	via	plug	out/in	to	Oracle	12.1.0.2	

Database	files	location:	 	 	 	 	 	 /oradata/CDB1/pdb3	
Pluggable	database	files	location:	 	 	 	 /oradata/CDB2/pdb3	
Initialization	parameter	and	password	file	location:	 /u01/app/oracle/product/12.1.0.1/dbs	
Listener	configuration:	 	 	 	 	 	 /u01/app/oracle/product/12.1.0.2/network/admin	

Tasks	HOL	Part	4	

One	technique	to	upgrade	pluggable	databases	in	a	Multitenant	environment	is	unplug-plugin.	This	approach	gives	a	lot	of	control	over	
a	pluggable	database	upgrade	but	requires	manual	steps,	similar	to	the	command	line	upgrade.	

In	this	part	of	the	HOL	a	new	PDB	will	be	created	in	an	Oracle	12.1.0.1	CDB1	and	upgraded	via	unplug/plugin	into	the	Oracle	12.1.0.2	
CDB2.	

SID:	CDB1	–	Oracle	12.1.0.1	home	 SID:	CDB2	–	Oracle	12.1.0.2	home	
$> . cdb1
<dot> <space> cdb1 	for	the	Oracle	12.1.0.1	environment	with	
your	database	to	be	plugged	in	later	(SID:	CDB1)	

$> . cdb2
<dot> <space> cdb2		for	the	Oracle	12c	environment	connecting	
to	the	Container	Database		(SID:	CDB2)	

	

	 	

23	
	

***	START	HERE	***	Create	PDB3,	upgrade	it	to	Oracle	12.1.0.2	via	plug	out/in	***	

The	first	task	in	the	lab	will	be	to	provide	an	empty	database	–	something	we	would	do	for	a	full	import	or	for	transportable	
tablespaces	as	well.	But	in	this	specific	case	we	want	to	consolidate,	and	therefore	pre-create	an	empty	PDB2	(a	Pluggable	Database)	
inside	the	already	existing	CDB2	(the	Container	Database).	

SID:	CDB1	è	PDB3	
Oracle	12.1.0.1	home	

SID:	CDB2	è	PDB3	
Oracle	12.1.0.2	home	

	
Create	a	new	pluggable	database	PDB3:	
	

1. Switch	to	the	Oracle	12.1.0.1	CDB1	environment:		
	
. cdb1
sqlplus / as sysdba

2. Start	the	CDB1	container	database	–	it	has	no	PDBs	yet	(except	for	PDB$SEED):	
	

startup		
	

3. Create	a	new	pluggable	database	PDB3	and	start	it:	
	
create pluggable database PDB3 admin user adm identified by adm
file_name_convert=('/oradata/CDB1/pdbseed', '/oradata/CDB1/pdb3');
This	will	take	1-2	minutes.	
	
alter session set container=pdb3;
startup

4. Execute	the	preupgrade	check	script	
	
@/u01/app/oracle/product/12.1.0.2/rdbms/admin/preupgrd.sql
	

	
	
	

24	
	

4. Verify	the	preupgrade.log	and	make	necessary	changes	
	Open	a	2nd	xterm	(right	mouse	click è Konsole ...):	
	
less /u01/app/oracle/cfgtoollogs/CDB1/preupgrade/preupgrade.log
	

5. Gather	dictionary	stats	prior	to	the	upgrade:	
	
EXECUTE dbms_stats.gather_dictionary_stats;	
	

6. Execute	the	preupgrade_fixups.sql –	it	got	created	by	preupgrd.sql	run	in	directory	
/u01/app/oracle/cfgtoollogs/CDB1/preupgrade	
	
@/u01/app/oracle/cfgtoollogs/CDB1/preupgrade/preupgrade_fixups.sql
	

7. Switch	to	the	CDB$ROOT	layer,	close	the	pluggable	database	PDB3	and	unplug	it	
	
alter session set container=CDB$ROOT;
alter pluggable database PDB3 close;
alter pluggable database PDB3 unplug into '/tmp/pdb3.xml';	
drop pluggable database PDB3 keep datafiles;

shutdown immediate
exit
	

	

SID:	CDB1	è	PDB3	
Oracle	12.1.0.1	home	

SID:	CDB2	è	PDB3	
Oracle	12.1.0.2	home	

	
	

	
Plug	in	the	PDB3	into	CDB2	and	upgrade	it	to	Oracle	12.1.0.2:	
	

1. Switch	to	the	Oracle	12.1.0.2	CDB2	environment:		
	

. cdb2

25	
	

sqlplus / as sysdba

2. Execute	the	Plug	In	Check	and	check	PDB_PLUG_IN_VIOLATIONS	when	the	result	of	the	plug	in	check	is	
"NO":	
	
SET SERVEROUTPUT ON

	
DECLARE
 compatible CONSTANT VARCHAR2(3) := CASE
DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => '/tmp/pdb3.xml',
 pdb_name => 'PDB3')
 WHEN TRUE THEN 'YES' ELSE 'NO'
END;
BEGIN
DBMS_OUTPUT.PUT_LINE(compatible);
END;
/

select message, status from pdb_plug_in_violations where type like
'%ERR%';

3. Plug	in	the	PDB3	into	CDB2	
	
create pluggable database pdb3 using '/tmp/pdb3.xml' file_name_convert=(
'/oradata/CDB1/pdb3', '/oradata/CDB2/pdb3');
	

4. Open	PDB3	in	UPGRADE	mode	and	upgrade	it	
	
alter pluggable database PDB3 open upgrade;
exit

cd $ORACLE_HOME/rdbms/admin
$ORACLE_HOME/perl/bin/perl catctl.pl -c 'PDB3' catupgrd.sql
	

26	
	

	
	

5. Recompile	after	upgrade	
	
sqlplus / as sysdba

alter session set container=PDB3;
startup
@?/rdbms/admin/utlrp.sql
show pdbs

exit
	

	

NN	 SID:	CDB2	è	PDB3	
Oracle	12.1.0.2	home	

	
	

	
Finally	a	few	CDB/PDB	exercises	
First	test	will	introduce	you	to	the	new	CDB	views.	Therefore	we	create	a	simple	table	and	check	its	visibility	within	the	dictionary	views	
	

1. Connect	directly	to	PDB1	in	the	Oracle	12.1.0.2	environment:		
	

. cdb2
sqlplus "sys/oracle@//localhost:1521/pdb1 as sysdba"

2. Create	a	table	and	insert	data:	
	
create table HOL (col1 number);
insert into HOL values (1);
commit;
	

3. Connect	directly	to	PDB2:		
	

27	
	

alter session set container=PDB2;	
	
	
	
4. Create	a	table	and	insert	data:	

	
create table HOL (col1 number);
insert into HOL values (2);
commit;	
	

5. Connect	directly	to	PDB3:		
	
alter session set container=PDB3;	

	
6. Create	a	table	and	insert	data:	

	
create table HOL (col1 number);
insert into HOL values (2);
commit;
	

7. Connect	directly	to	CDB$ROOT:		
	
alter session set container=cdb$root;	

	
8. Query	the	data	from	the	CDB_Views:	

	
select CON_ID, SUBSTR(TABLE_NAME,1,10) TNAME from CDB_TABLES WHERE TABLE_NAME='HOL';

You'll	see	that	each	table	HOL	within	a	certain	PDB	is	visible	to	the	CDB$ROOT.	But	if	you'd	repeat	the	exercise	within	each	of	the	
PDBs	you'll	see	just	the	contents	on	a	PDB	level.	Recognize	the	CON_ID	which	represents	where	an	object	exists.	
	

	

***	COMPLETED	***	Tasks	HOL	Part	4	***	

28	
	

	
Thank	your	for	completing	our	Upgrade,	Migrate	&	Consolidate	to	Oracle	Database	12c	Hands-On-Lab.	

If	you	have	further	questions	you	may	please	download	the	+500	slide	deck	containing	almost	everything	about	
upgrades	and	migrations.	And	always	feel	free	to	contact	us	directly.	

http://blogs.oracle.com/UPGRADE	

	
Thanks	and	successful	upgrades!	

Roy	Swonger	&	Mike	Dietrich	&	The	Database	Upgrade	Team	

