
Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SQL	Analytics	for	 
Analysis,	Reporting	and	Modeling
Key	SQL	Functionality	for	ANALYTICS	in	the	cloud	and	on-premise	with	Oracle	Database:		

	 18c	
	 12c	Release	2

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Free	Service	–	livesql.oracle.com	

• Features	include:	
– Access	to	very	latest	18c	features	
– Ability	to	save	collections	of	statements	as	a	script	
– Access	to	growing	library	of	tutorials	
– Share	saved	scripts	with	others	
– Embedded	educational	tutorials	
– Data	access	examples	for	popular	languages	
including	Java	

– Comes	complete	with	sample	schemas	
• Human	Resources	schema.	
• Sales	History	schema		
• SCOTT	schema		
• World	Population	data	
• DinoDate	demo	data	
• Olympic	data

2

LiveSQL	–	The	Easiest	Way	to	Explore,	Learn	and	Try	SQL

http://livesql.oracle.com

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement

The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

3

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Overview	of	new	SQL	Features	
– SAFE	HARBOR	STATEMENT	

• What’s	new	in	18	Release	1	(SAFE	HARBOR	STATEMENT)	

– ROUND()	
– Polymorphic	Table	Functions	
– Approximate	Query	Processing	

• Approx.	Top/Bottom-N	

– Analytic	Views	
• MDX	Support

– Private	temporary	tables	
– Inline	External	Tables	
– Column-Based	Collation

Oracle	Database	18	Release	1	–	New	SQL	Features

4

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Overview	of	new	SQL	Features	

What’s	new	in	12c	Release	2	

• LISTAGG	
– Support	for	larger	VARCHAR2	objects	

• CAST/VALIDATE	

• Approximate	statistics	
– APPROX_PERCENTILE	
– APPROX_MEDIAN	

• Approximate	aggregations	
– APPROX_xxxx_DETAIL,	APPROX_xxxx_AGG	
– TO_APPROX_xxxx

• External	tables	
– External	table	-	MODIFY	clause	
– Partitioned	external	table	
– Accessing	data	in	Hive,	HDFS	etc	

• Analytic	Views

Oracle	Database	12c	Release	2	–	New	SQL	Features

5

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Overview	of	core	SQL	Features	

• Schema	modeling	enhancements	
– Invisible	columns	
– Default	value	enhancements	
– Identity	columns	

• Storage	optimizations	
– Attribute	Clustering	
– Zone	Maps	
– Zone	Maps	and	attribute	clustering	
– Zone	Maps	and	partitioning	
– Zone	Maps	and	storage	indexes

• SQL	for	advanced	analysis	
– TOP-N	
– MATCH_RECOGNIZE	
– APPROX_COUNT_DISTINCT	

• Query	rewrites	
– Materialized	views	
– In-place/out-of-place	refresh	
– Synchronous	refresh	

• Multilingual	support	
– Data	bound	collations

Oracle	Database	12c	Release	2	-	Core	SQL	Features

6

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Analytic	SQL	@	#oow17

• Link	to	Complete	Data	Warehouse	and	Big	Data	Guide	to	#oow17	

• Link	to	#oow17	web	app	for	data	warehousing	and	big	data	

• List	of	SQL	sessions	

• List	of	data	warehouse	sessions	

• List	of	hands-on	labs

Key	sessions	and	Labs

7

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What’s new in 18 Release 1
…even	more	Approximate	query	processing	features	to	self-
describing	Table	Functions

8

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	ROUND_TIES_TO_EVEN()	Function	in	18.1
• This	enhancement	will	provide	new	rounding	function		

ROUND_TIES_TO_EVEN(n [, integer])

• ROUND_TIES_TO_EVEN	and	ROUND	have	the	same	behavior	except	when	the	
rounding	digit	is	at	the	mid	point.		
– ROUND_TIES_TO_EVEN	will	return	the	nearest	value	with	an	even	(zero)	least	significant	
digit.		

– ROUND	will	return	nearest	value	above	(for	positive	numbers)	or	below	(for	negative	
numbers).		

• Will	not	support	BINARY_FLOAT	and	BINARY_DOUBLE	

9

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Comparing	ROUND()	and	ROUND_TIES_TO_EVEN()

10

Value	 ROUND	
(Value,	0)	

ROUND_TIES_TO_EVEN	
(Value,	0)	

1.6	 2	 2	

-1.6	 -2	 -2	

0.5	 1	 0	

-0.5	 -1	 0	

2.5	 3	 2	

-2.5	 -3	 -2	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Top-N	approximate	aggregation
• Approximate	results	for	common	top	n	queries	

– How	many	approximate	page	views	did	the	top	five	blog	posts	get	last	week?		
– What	were	the	top	50	customers	in	each	region	and	their	approximate	spending?	

• Orders	of	magnitude	faster	processing	with	high	accuracy	(error	rate	<	0.5%)	

• New	approximate	functions	APPROX_COUNT(),	APPROX_SUM(),	APPROX_RANK()

11

SELECT blog_post, APPROX_COUNT(*)
FROM weblog
GROUP BY blog_post
HAVING
 APPROX_RANK(order by  
 APPROX_COUNT(*) DESC) <= 5;

SELECT region, customer_name,
 APPROX_RANK(PARTITION BY region
 ORDER BY APPROX_SUM(sales) DESC) appr_rank,
 APPROX_SUM(sales) appr_sales
FROM sales_transactions
GROUP BY region, customer_name
HAVING APPROX_RANK(...) <=50;

Top	5	blogs	with	approximate	hits Top	50	customers	per	region	with	approximate	spending

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polymorphic	Tables:		Self-Describing,	Fully	Dynamic	SQL
• Part	of	ANSI	2016	
• Embed	sophisticated	algorithms	in	SQL	

– Hides	implementation	of	algorithm	
– Leverage	powerful,	dynamic	capabilities	of	SQL	
– Pass	in	any	table-columns	for	processing	
– Returns	rowset	(table,	JSON,	XML	doc,	etc.)	

• Applies	built-in	algorithms	and/or	custom	algorithms	

• Returns	an	enhanced	set	of	rows-columns	as	output	
(table)	

• E.g.	return	credit	score	and	associated	risk	level

12

SQL
SQL

MODEL

INPUTS

SQL

H
H
H
H

STATE_ID RISKA_SCOREPOP LOANS A_LOAN

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

PTFs:	Use	Cases	For	Fully	Dynamic	SQL
• Embed	credit	risk	evaluation	model	

– Hides	implementation	of	credit	risk	model	
– Pass	in	key	columns	to	evaluate	credit	risk	
– PTF	returns	credit	score	and	associated	risk	
level	

• Simplify	access	to	external	data	sets	
– Pass	in	any	server	connection	details	and	
any	source	file	

– Returns	row-column	based	formatted	
results

13

SELECT
 state,
 AVG(credit_score)
FROM CREDIT_RISK(
 tab => table(CUSTOMERS),
 cols => columns(DOB, ZIP, LoanDefault),
 outs => columns(credit_score, risk_level))
WHERE risk_level = ‘High’
GROUP BY STATE;

SELECT *
FROM HDFS_READER(
 host_port => ‘http://<host>:<port>’,
 path => ‘customer_reviews_2013.json’,
 outs => columns(“cust_id” varchar(20),
 “prod.id” integer,
 “prod.desc” varchar(500)
));

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Enhancements	to	Analytic	Views	
• More	calculations	within	Analytic	Views:	

– Ranking	and	statistical	functions	
– Hierarchical	expressions	

• Broader	schema	support	for	Analytic	Views:	
– Snowflake	schemas;	flat/denormalized	fact	tables	(in	addition	to	star	schemas)	

• Dynamic	definition	of	calculations	within	SQL	queries	
• Support	for	MDX

14

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Private	Temporary	Tables
Global	temporary	tables	
• Persistent,	shared	(global)	table	definition	
• Temporary,	private	(session-based)	data	content	

– Data	physically	exists	for	a	transaction	or	session	
– Session-private	statistics

15

ACC_TMP

ACC_TMPACC_TMP

Private	temporary	tables	(18.1)	
• Temporary,	private	(session-based)	table	definition	

– Private	table	name	and	shape	

• Temporary,	private	(session-based)	data	content	
– Session	or	transaction	duration

ACC_PTMPACC_PTMP

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Inline	External	Tables
• External	table	definition	provided	at	runtime	

– Similar	to	inline	view	

• No	need	to	pre-create	external	tables	that	are	used	one	time	only	
– Increased	developer	productivity

16

INSERT INTO sales
SELECT sales_xt.*
FROM EXTERNAL(
 (prod_id number, …)
 TYPE ORACLE_LOADER  
 …  
 LOCATION ’new_sales_kw13')  
 REJECT LIMIT UNLIMITED);

CREATE TABLE sales_xt  
 (prod_id number, …)
 TYPE ORACLE_LOADER  
 …  
 LOCATION ’new_sales_kw13')  
 REJECT LIMIT UNLIMITED);

INSERT INTO sales SELECT * FROM sales_xt;

DROP TABLE sales_xt;

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Column-Based	Collation
• Precise	and	consistent	application	of	linguistic	comparison	in	queries	

– Adds	COLLATE	clause	to	declare	column’s	collation	to	be	used	in	all	queries	
– COLLATE	operator	precisely	controls	collation	in	expressions	

• Case-	and	accent-sensitive	collations	(e.g.	BINARY_CI)	simplify	
implementation	of	case-insensitive	queries	

• Feature	is	based	on	ISO/IEC	SQL	Standard	and	simplifies	application	
migration	from	other	databases	supporting	the	COLLATE	clause	

CREATE TABLE products
(product_code VARCHAR2(20 BYTE) COLLATE BINARY
, product_name VARCHAR2(100 BYTE) COLLATE GENERIC_M_CI

17

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What’s new in 12c Release 2
From	Approximate	query	processing	to	new	VALIDATE	
Functionality	to	new	dimensional	modeling	with	analytic	views

18

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Pre-12.2	LISTAGG	

•Pre	12.2	syntax	to	manage	lists	was	relatively	simple:	
LISTAGG(c.cust_first_name||' '||c.cust_last_name, ',’)
 WITHIN GROUP (ORDER BY c.country_id) AS Customer

• Issue….key	issue	is	overflow	error:	
–ORA-01489: result of string concatenation is too
long

• Solutions	in	12.2	
– Increasing	the	VARCHAR2	size	-	support	VARCHAR2	up	to	32k	
– Handle	overflow	errors	-	New	syntax	support	to	truncate	string,	optionally	display	
count	of	truncated	items	count,	and	set	truncation	indication

19

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	Keywords	For	Use	With	LISTAGG
• With	12.2	we	have	made	it	easier	to	manage	lists:	

LISTAGG(<measure_column>[, <delimiter>]. . .
– ON OVERFLOW ERROR (default)
– ON OVERFLOW TRUNCATE
– ON OVERFLOW TRUNCATE “. . .”
– WITH COUNT
– WITHOUT COUNT (default)

20

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Detecting	Data	Conversion	Errors	-	VALIDATE_CONVERSION

• Useful	to	detect	if	input	value	can	be	converted	to	destination	type.	Returns	
1	if	conversion	is	successful,	otherwise	returns	0	

• VALIDATE_CONVERSION	('123a'	as	NUMBER)	-->	returns	0	
• VALIDATE_CONVERSION	('123'	as	NUMBER)		-->	returns	1	

• Can	be	efficiently	used	as	filter	to	avoid	bad	data	while	importing	foreign	
data	sources,	ETL	processing	

21

Identifying	invalid	data	in	the	input	streams

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Handling	data	conversion	errors	-	TO_xxxx(),	CAST()

• Pre	12.2:	TO_NUMBER('123a')	-->	returns	invalid	number	error	(ora-01722)	

New	12.2	Features	
• New	syntax	DEFAULT	<default_value>	ON	CONVERSION	ERROR		

– Replace	conversion	failure	with	user	defined	default	value	
– TO_NUMBER('123a'	DEFAULT	'123'	ON	CONVERSION	ERROR)	-->	returns	123	

• This	new	syntax	can	be	used	for	TO_NUMBER,	TO_DATE,	TO_TIMESTAMP,	
TO_TIMESTAMP_TZ,	TO_DMINTERVAL,	TO_YMINTERVAL	and	CAST

22

-Replacing	incorrect	or	missing	data	with	default	values

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Review:	Analytic	Views	in	12.2
Enhanced	Analysis	and	Simplified	Access

• Organizes	data	into	a	user	and	application	friendly	business	model	
– Intuitive	for	the	end	user	

• Defined	with	SQL	DDL	
– Includes	hierarchical	expressions	and	calculated	measures	
– Easy	to	define,	supported	by	SQL	Developer	

• Easily	queried	with	simple	SQL	SELECT	
– Smart	Analytic	View	(containing	hierarchies	and	calculations)	=	Simple	Query

23

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Review:	Analytic	Views	in	12.2
Embedded	Calculations

• Define	centrally	in	the	Database	
and	access	with	any	application	
– Single	version	of	the	truth	

• Easily	create	new	measures	
– Simplified	syntax	based	on	
business	model	

– Includes	dimensional	and	
hierarchical	functions

24

Sales	Year	to	Date	
sales_ytd AS
 (SUM(sales)
 OVER(HIERARCHY time_hierarchy
 BETWEEN UNBOUNDED PROCEEDING
 AND 0 FOLLOWING
 WITHIN ANCESTOR AT LEVEL year)

Product	Share	of	Parent	
share_product_parent_sales AS
 (SHARE_OF (sales
 HIERARCHY product_hierachy PARENT))

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Approximate	Statistics

• Issue:	PERCENTILE_CONT, PERCENTILE_DISC, MEDIAN
functions	require	sorting	and	can	consume	large	amounts	of	resources	

• Solution:	New	approximate	SQL	functions	use	fewer	resources:
APPROX_PERCENTILE
APPROX_MEDIAN

– Use	less	memory,	no	sorting,	no	use	of	temp

25

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	to	get	more	information	about	result	set

• Each	function	can	use	different	algorithms	and		report	error	rates	and	
confidence	levels:	

1. DETERMINISTIC/NONDETERMINISTIC [default]
– Non-deterministic	is	faster	but	results	may	vary,	good	for	personal	data	discoveries	
– Deterministic,	slightly	slower;	better	where	results	are	shared	with	other	users	

2. ERROR_RATE
– Returns	the	margin	of	error	associated	with	result	

3. CONFIDENCE
– Returned	as	a	percentage	that	indicates	the	level	of	confidence

Additional	keywords

26

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	Functions	For	Building	Approximate	Aggregates	
1. APPROX_xxxxxx_DETAIL(expr	[DETERMINISTIC])	

– builds summary table containing results for all dimensions in GROUP BY clause
– Data stored within MV as a BLOB object

2. APPROX_xxxxxx_AGG	(expr)	
– Builds higher level summary table based on results from table derived from _DETAIL function
– Does not re-query base fact table, derives new aggregates from _DETAIL table
– Data stored within MV as a BLOB object

3. TO_APPROX_xxxxxx(detail,	percentage,	order)	
– Returns results from the specified aggregated results table

select ... to_approx_percentile(approx_percentile_agg(detail),0.5)

27

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

External Tables
• Key	issues:	

– Definition	of	external	table	is	fixed	at	creation	time	
– Need	ability	to	define	table	once	and	use	it	multiple	times,	to	access	different	external	files	
– Apply	same	table	definition	to	different	inputs	

• Solution:	
– Added	EXTERNAL	MODIFY	clause		
– Ease	of	use	enhancement	for	using	external	tables	
– Clause	allows	external	table	to	be	overridden	at	query	time	
– Properties:	DEFAULT_DIRECTORY,	certain	ACCESS	PARAMETERS,	LOCATION	and	REJECT	
LIMIT

28

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Core SQL in 12c Release 2
From	storage	optimizations	to	SQL	pattern	matching	to	data	bound	collations	to	support	
multi-lingual	systems

29

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Overview	of	Schema	Modeling	Enhancements
• Invisible Columns
• DEFAULT VALUE enhancements

– Metadata-Only Default column values for NULL’able columns
– Default values for columns on explicit NULL insertion
– Default values for columns based on sequences

• Multiple Indexes on the same columns
• IDENTITY columns

30

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Attribute	Clustering

• Orders	data	so	that	it	is	in	close	proximity	based	on	selected	columns	values:	
“attributes”	

• Attributes	can	be	from	a	single	table	or	multiple	tables	
– e.g.	from	fact	and	dimension	tables	

• Significant	IO	pruning	when	used	with	zone	maps	

• Reduced	block	IO	for	table	lookups	in	index	range	scans	

• Queries	that	sort	and	aggregate	can	benefit	from	pre-ordered	data	

• Enable	improved	compression	ratios	
– Ordered	data	is	likely	to	compress	more	than	unordered	data

Concepts	and	Benefits

31

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Basics	of	Zone	Maps
• Independent	access	structure	built	for	a	table	

– Implemented	using	a	type	of	materialized	view	
– For	partitioned	and	non-partitioned	tables	

• One	zone	map	per	table	
– Zone	map	on	partitioned	table	includes	aggregate	entry	per	[sub]partition	

• Used	transparently	
– No	need	to	change	or	hint	queries	

• Implicit	or	explicit	creation	and	column	selection	
– Through	Attribute	Clustering:	CREATE	TABLE	…	CLUSTERING	
– CREATE	MATERIALIZED	ZONEMAP	…	AS	SELECT	…

32

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Pattern	Recognition	In	Sequences	of	Rows

• Recognize	patterns	in	sequences	of	events	using	SQL	
– Sequence	is	a	stream	of	rows	
– Event	equals	a	row	in	a	stream	
– New	SQL	construct	MATCH_RECOGNIZE	
– Logically	partition	and	order	the	data		
– ORDER	BY	and	PARTITION	BY	are	optional	–	but	be	careful	

• Pattern	defined	using	regular	expression	using	variables	
– Regular	expression	is	matched	against	a	sequence	of	rows	
– Each	pattern	variable	is	defined	using	conditions	on	rows	and	aggregate

33

SQL	Pattern	Matching	-	Concepts 

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Distinct	Counts	to	support		“How	Many	Unique…”
Businesses	need	to	answers	lots	of	different		“How	many…”	type	questions	

– How	many	unique	sessions	today	
– How	many	unique	customers	logged	on	
– How	many	unique	events	occurred	

Most	queries	don’t	need	precise	answers,	approximate	answer	good	enough	
– Approximate	answers	can	be	returned	significantly	faster	
– Approximate	answers	consume	fewer	resources,	leaving	resources	for	other	queries

34

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Overview	of	Materialized	Views	in	Oracle	Database	12c
• Objectives	

– Improve	performance	of	refresh	operation	
–Minimize	staleness	time	of	materialized	views	

• Two	fundamental	new	concepts	for	refresh	
–Out-of-place	refresh	

• Refresh	“shadow	MV”	and	swap	with	original	MV	after	refresh	

– Synchronous	refresh	
• Refresh	base	tables	and	MVs	synchronously,	leveraging	equi-partitioning	of	the	objects

35

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Enhancements to External Tables
• Issues:

– Definition of external table is fixed at creation time
– Need ability to define table once and use it multiple times, to access different

external files
– Need better integration with big data source files

• Solutions:
– Added EXTERNAL MODIFY clause to allow overriding properties
– Partitioned external tables for source files stored on file system, Apache Hive

storage, or HDFS

36

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Data-Bound	Collations

“…	a	named	set	of	rules	describing	how	to	compare	and	match	character	strings	to	put	
them	in	a	specified	order…”	
• Based	on	the	ISO/IEC/ANSI	SQL	standard	9075:1999	
• Character	set	is	always	declared	at	the	database	level	
• Collation	declared	for	a	column		

– Does	not	determine	the	character	set	of	data	in	the	column	

• Why	is	it	important?	
– it	simplifies	application	migration	to	the	Oracle	Database	from	a	number	of	non-Oracle	databases	
implementing	collation	in	a	similar	way

37

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 38

ROUND()	Function
New	financial	rounding	features

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	ROUND_TIES_TO_EVEN()	Function	in	18.1
• Formal	definition	for	ROUND_TIES_TO_EVEN	functionality	

RoundTiesToEven:	the	floating-point	number	nearest	to	
the	infinitely	precise	result	shall	be	delivered;	if	the	two	
nearest	floating-point	numbers	bracketing	an	
unrepresentable	infinitely	precise	result	are	equally	near,	
the	one	with	an	even	least	significant	digit	shall	be	
delivered	

39

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	ROUND_TIES_TO_EVEN()	Function	in	18.1
• This	enhancement	will	provide	new	rounding	function		

ROUND_TIES_TO_EVEN(n [, integer])

• ROUND_TIES_TO_EVEN	and	ROUND	have	the	same	behavior	except	when	the	
rounding	digit	is	at	the	mid	point.		
– ROUND_TIES_TO_EVEN	will	return	the	nearest	value	with	an	even	(zero)	least	significant	
digit.		

– ROUND	will	return	nearest	value	above	(for	positive	numbers)	or	below	(for	negative	
numbers).		

• Will	not	support	BINARY_FLOAT	and	BINARY_DOUBLE	

40

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Comparing	ROUND()	and	ROUND_TIES_TO_EVEN()

41

Value	 ROUND	
(Value,	0)	

ROUND_TIES_TO_EVEN	
(Value,	0)	

1.6	 2	 2	

-1.6	 -2	 -2	

0.5	 1	 0	

-0.5	 -1	 0	

2.5	 3	 2	

-2.5	 -3	 -2	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 42

Polymorphic	Table	Functions

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	is	a	Self-Describing/Polymorphic	Table	Function?	

• Polymorphic	Table	Functions	(PTF)	are	user-defined	functions	that	can	be	
invoked	in	the	FROM	clause.	

• Capable	of	processing	any	table	
– row	type	is	not	declared	at	definition	time	
– produces	a	result	table	whose	row	type	may/may	not	be	declared	at	definition	time.	

• Allows	application	developers	to	leverage	the	long-defined	dynamic	SQL	
– Simple	SQL	access	to	powerful	and	complex	custom	functions.	

43

ANSI	SQL	2016:	Definition

CREDIT
RISK

MODEL

BLACK-BOX

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

PTF	Taxonomy

44

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

PTF	Taxonomy	-	Explained
• Non-Leaf	PTF:	Transforms	an	arbitrary	input	row	stream	
into	an	output	row	stream.	

• Row	Semantics	–	The	PTF	acts	on	a	single	row	at	a	time,	to	
produce	its	zero,	one,	or	many	output	rows.	

• Table	Semantics	–	The	PTF	acts	on	a	set	of	rows.	Where	the	
input	table	is	optionally	partitioned	into	disjoint	sets	and	
each	set	is	optionally	ordered.	

• Leaf	PTF:	Doesn’t	have	input	parameters	of	table	or	
query	type.	Typically	used	for	accessing	“foreign”	data	
sources.

On	the		
Roadmap

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Top	5	PTF	Optimizations

✓ Pass	through	columns	
✓ Projection	and	predicate	push-down/push-through	
✓ PTF	execution	in-lined	with	SQL	execution	
✓ Bulk	data	transfer	into	and	out	of	PTF	
✓ Parallel	Execution

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Part	1	-	Define	Implementation	Package
CREATE OR REPLACE PACKAGE echo_package AS
 -- @Required
 procedure Describe(-- Generic Arguments:
 newcols OUT DBMS_TF.columns_new_t,
 -- Specific Arguments:
 tab IN OUT DBMS_TF.table_t,
 cols IN DBMS_TF.columns_t);
 -- @Optional
 procedure Open;

 -- @Required
 procedure Fetch_Rows;

 -- @Optional
 procedure Close;
 end;

47

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Part	2	-	Define	Polymorphic	Table	Function

CREATE OR REPLACE FUNCTION
 echo(tab table, cols columns)
RETURN TABLE PIPELINED ROW
POLYMORPHIC USING echo_package;

48

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Part	3a	-		Implementation	of	Package	Body
CREATE OR REPLACE PACKAGE BODY echo_package AS
PROCEDURE Describe(
-- Generic Arguments:
 newcols OUT DBMS_TF.columns_new_t,

-- Specific Arguments:
 tab IN OUT DBMS_TF.table_t,
 cols IN DBMS_TF.columns_t)
as
 read_count pls_integer := 0;
begin
. . .

end;

49

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Part	3b	-		Implementation	of	Package	Body
PROCEDURE Open
as
 env DBMS_TF.env_t := DBMS_TF.Get_Env();

begin
 DBMS_TF.Trace('Open()');
 DBMS_TF.Trace('Get_Col.Count = '||
 env.get_columns.count, prefix => '....');
 DBMS_TF.Trace('Put_Col.Count = '||
 env.put_columns.count, prefix => '....');
end;

50

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Part	3c	-		Implementation	of	Package	Body

PROCEDURE Fetch_Rows
as
 Col DBMS_TF.tab_varchar2_t;
 col_count pls_integer :=
 DBMS_TF.Get_Env().get_columns.count;
begin
. . .

end;

51

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Part	3d	-		Implementation	of	Package	Body
 PROCEDURE Close
 as

 begin
 DBMS_TF.Trace('Close()', separator=>'*');
 end;

52

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Using	A	Polymorphic	Table
SELECT *
FROM ECHO(emp, COLUMNS(ename, job))
WHERE deptno = 20;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO ECHO_ENAME ECHO_JOB
---------- ---------- --------- ---------- --------- ---------- ---------- ---------- --------------- ---------------
 7369 SMITH CLERK 7902 17-DEC-80 800 20 ECHO-SMITH ECHO-CLER
 7566 JONES MANAGER 7839 02-APR-81 2975 20 ECHO-JONES ECHO-MANA
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20 ECHO-SCOTT ECHO-ANAL
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20 ECHO-ADAMS ECHO-CLER
 7902 FORD ANALYST 7566 03-DEC-81 3000 20 ECHO-FORD ECHO-ANAL

53

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Explain	Plan	for	Polymorphic	Table
EXPLAIN PLAN FOR
SELECT *
FROM ECHO(emp, COLUMNS(ename, job))
WHERE deptno = 20;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		5	500	2 (0)	00:00:01
1	VIEW		5	500	2 (0)	00:00:01
2	POLYMORPHIC TABLE FUNCTION	ECHO				
3	VIEW		5	435	2 (0)	00:00:01
* 4	TABLE ACCESS FULL	EMP	5	435	2 (0)	00:00:01

Predicate Information (identified by operation id):

 4 - filter("EMP"."DEPTNO"=20)

Note

 - dynamic statistics used: dynamic sampling (level=2)

54

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Explain	Plan	for	Parallel	Execution	of	Polymorphic	Table
ALTER TABLE emp PARALLEL 2;
EXPLAIN PLAN FOR
SELECT *
FROM ECHO(emp, COLUMNS(ename, job))
WHERE deptno = 20;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		5	500	2 (0)	00:00:01
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10000	5	500	2 (0)	00:00:01
3	VIEW		5	500	2 (0)	00:00:01
4	POLYMORPHIC TABLE FUNCTION	ECHO				
5	VIEW		5	435	2 (0)	00:00:01
6	PX BLOCK ITERATOR		5	435	2 (0)	00:00:01
* 7	TABLE ACCESS FULL	EMP	5	435	2 (0)	00:00:01

Predicate Information (identified by operation id):

 7 - filter("EMP"."DEPTNO"=20)
Note

 - dynamic statistics used: dynamic sampling (level=2)

55

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Explain	Plan	for	Polymorphic	Table	-	using	IMCDTs

EXPLAIN PLAN FOR
 WITH e AS (SELECT /*+ MATERIALIZE */ * FROM emp)
 SELECT * FROM ECHO(e, COLUMNS(ename, job)) WHERE deptno = 20;

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		14	1400	4 (0)	00:00:01
1	TEMP TABLE TRANSFORMATION					
2	LOAD AS SELECT (CURSOR DURATION MEMORY)	SYS_TEMP_0FD9D6612_276EFC				
3	TABLE ACCESS FULL	EMP	14	1218	2 (0)	00:00:01
4	VIEW		14	1400	2 (0)	00:00:01
5	POLYMORPHIC TABLE FUNCTION	ECHO				
6	VIEW		14	1218	2 (0)	00:00:01
* 7	VIEW		14	1218	2 (0)	00:00:01
8	TABLE ACCESS FULL	SYS_TEMP_0FD9D6612_276EFC	14	1218	2 (0)	00:00:01
--

56

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Explain	Plan	for	Polymorphic	Table	–	Using	Results	Cache

EXPLAIN PLAN FOR
 WITH e AS (SELECT /*+ result_cache */ *
 FROM echo(emp, COLUMNS(ename, job)))
 SELECT * FROM e WHERE deptno = 20;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		14	1400	2 (0)	00:00:01
* 1	VIEW		14	1400	2 (0)	00:00:01
2	RESULT CACHE	df9wucm9ak4br4mdpt7t2z1xv8				
3	VIEW		14	1400	2 (0)	00:00:01
4	POLYMORPHIC TABLE FUNCTION	ECHO				
5	VIEW		14	1218	2 (0)	00:00:01
6	TABLE ACCESS FULL	EMP	14	1218	2 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - filter("DEPTNO"=20)

Result Cache Information (identified by operation id):
--
 2 - column-count=10; dependencies=(SCOTT.EMP, SCOTT.ECHO_PACKAGE, SCOTT.ECHO_PACKAGE, SCOTT.ECHO);
attributes=(dynamic); name="select /*+ result_cache */ * from ECHO(emp, columns(ename, job))"

57

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Explain	Plan	for	Polymorphic	Table	–	Temporal	Queries

EXPLAIN PLAN FOR
 WITH e AS (SELECT * FROM emp
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' MINUTE))
 SELECT * FROM echo(e, COLUMNS(ename,job));

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		82	8200	2 (0)	00:00:01
1	VIEW		82	8200	2 (0)	00:00:01
2	POLYMORPHIC TABLE FUNCTION	ECHO				
3	VIEW		82	7134	2 (0)	00:00:01
4	TABLE ACCESS FULL	EMP	82	7134	2 (0)	00:00:01

58

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Simpler	to	design	and	build	
• Provides	complete	reusability	
• Simpler	to	make	parallel	enabled	
• Simpler	to	deploy	
• Moves	more	processing	back	inside	
DB

59

Summary
Key	Benefits	of	Polymorphic	Tables

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 60

Approximate	Top-N	Filtering

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Top-N	Queries
• What	are	the	top	five	products	sold	by	week	for	the	past	year?	
• Who	are	the	top	five	earners	by	region?	
• How	many	page	views	did	the	top	five	blog	posts	get	last	week?	
• How	much	did	my	top	fifty	customers	each	spend	last	year?	
• What	components	are	failing	most	often	by	vehicle	model?

61

Read

Sort

Top-NWeblog 
Data

Sorting	is	time-consuming

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Top-N	approximate	aggregation
• Approximate	results	for	common	top	n	queries	

– How	many	approximate	page	views	did	the	top	five	blog	posts	get	last	week?		
– What	were	the	top	50	customers	in	each	region	and	their	approximate	spending?	

• Orders	of	magnitude	faster	processing	with	high	accuracy	(error	rate	<	0.5%)	

• New	approximate	functions	APPROX_COUNT(),	APPROX_SUM(),	APPROX_RANK()

62

SELECT blog_post, APPROX_COUNT(*)
FROM weblog
GROUP BY blog_post
HAVING
 APPROX_RANK(order by  
 APPROX_COUNT(*) DESC) <= 5;

SELECT region, customer_name,
 APPROX_RANK(PARTITION BY region
 ORDER BY APPROX_SUM(sales) DESC) appr_rank,
 APPROX_SUM(sales) appr_sales
FROM sales_transactions
GROUP BY region, customer_name
HAVING APPROX_RANK(...) <=50;

Top	5	blogs	with	approximate	hits Top	50	customers	per	region	with	approximate	spending

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Approximate	Top-N	Queries
• Approx.	functions:	

– APPROX_COUNT	and		APPROX_RANK	

• High	performance	
– The	benefit	is	most	significant	for	large	datasets	

• High	accuracy	
–Maximum	error	reporting	

• "Top-N	Structure"	is	small	and	memory-resident	
– No	disk	sorts

63

Read Top-NWeblog 
Data

Top-N 
Structure

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 64

Analytic	View	Enhancements

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Enhancements	to	Analytic	Views	
• More	calculations	within	Analytic	Views:	

– Ranking	and	statistical	functions	
• RANK_*,	PERCENTILE_*,	STATS_*,	COVAR_*	

– Hierarchical	expressions	
• HIER_DEPTH,	HIER_LEVEL,	HIER_MEMBER_NAME,	etc	

• Broader	schema	support	for	Analytic	Views:	
– Snowflake	schemas;	flat/denormalized	fact	tables	(in	addition	to	star	schemas)	

• More	powerful	SQL	over	Analytic	Views:	
– Dynamic	definition	of	calculations	within	SQL	queries

65

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MDX	Query	Language	with	Analytic	Views
• 	Support	for	MDX	(Multi-Dimensional	Expression)	query	language	

– Initially	certified	for	use	by	Microsoft	Excel	Pivot	Tables	
• Support/certification	for	other	applications	to	follow	

– Includes	a	multi-dimensional	query	cache	
• Similar	to	the	SQL	Result	Cache

66

SELECT
 {[Measures].[Sales],
 [Measures].[Units_Sold]} ON COLUMNS,
 {[Time].[Calendar].[Year].&[2014],
 [Time].[Calendar].[Year].&[2015]} ON ROWS
FROM [Sales_View]
WHERE ([Customer].[Region].[North America],
 [Product].[Departments].[Category].&[Cameras])

Analytic View

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 67

Private	Temporary	Tables

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Private	Temporary	Tables
Global	temporary	tables	
• Persistent,	shared	(global)	table	definition	
• Temporary,	private	(session-based)	data	content	

– Data	physically	exists	for	a	transaction	or	session	
– Session-private	statistics

68

ACC_TMP

ACC_TMPACC_TMP

Private	temporary	tables	(18.1)	
• Temporary,	private	(session-based)	table	definition	

– Private	table	name	and	shape	

• Temporary,	private	(session-based)	data	content	
– Session	or	transaction	duration

ACC_PTMPACC_PTMP

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 69

Inline	External	Tables

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

In-lining external tables
• External tables

– first class object where row data resides outside database
– maps external data to internal data (table columns)
– access type:

• oracle_loader (default)
• oracle_datapump
• oracle_hive
• oracle_hdfs

– default directory (directory object)
– access parameters (opaque)
– location list (data source)
– reject limit

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Inline external tables

• Inline external tables (inline XT)
– don’t have to create an external table
– query with inline XT clause, similar to inline view
– syntax similar to external table DDL, except for column list

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Inline external tables
• Example

 select myext.*

 from external

 (

 (deptno number(2), dname varchar2(12), loc varchar2(13))

 type ORACLE_LOADER

 default directory scott_def_dir1

 access parameters

 (

 records delimited by newline

 badfile scott_def_dir2:'deptXT1.bad'

 logfile scott_def_dir2:'deptXT2.log'

 fields terminated by ','

 missing field values are null

)

 location ('tkexld01.dat')

 reject limit unlimited

) myext;

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Inline external tables
• Example, cont.

 PLAN_TABLE_OUTPUT  
-- 
Plan hash value: 674205990

| Id | Operation | Name | 

| 0 | SELECT STATEMENT | | 
| 1 | EXTERNAL TABLE ACCESS FULL| MYEXT | 

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Inline external tables
• Example, cont.

 -- inline XT in WITH clause

 with dext as (

 select * from external

 ((deptno char(2), dname char(14), loc char(13))

 type oracle_loader

 default directory scott_def_dir1

 access parameters (fields terminated by ',')

 location ('tkexld01.dat')

 reject limit unlimited

)

)

 select d.dname

 from dext d

 where d.deptno = 10

 order by 1;

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 75

Data	Bound	Collations

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| Confidential	–	Oracle	
Internal/Restricted/Highly	

Data-Bound	Collation
• Precise	and	consistent	application	of	linguistic	comparison	in	queries	

– Adds	COLLATE	clause	to	declare	column’s	collation	to	be	used	in	all	queries	
– COLLATE	operator	precisely	controls	collation	in	expressions	

• Case-	and	accent-sensitive	collations	(e.g.	BINARY_CI)	simplify	
implementation	of	case-insensitive	queries	

• Feature	is	based	on	ISO/IEC	SQL	Standard	and	simplifies	application	
migration	from	other	databases	supporting	the	COLLATE	clause

76

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Column-Based	Data-Bound	Collation
“…	a	named	set	of	rules	describing	how	to	compare	and	match	character	
strings	to	put	them	in	a	specified	order…”	
• Based	on	the	ISO/IEC/ANSI	SQL	standard	9075:1999	
• Character	set	is	always	declared	at	the	database	level	
• Collation	declared	for	a	column		

– Does	not	determine	the	character	set	of	data	in	the	column	

• Why	is	it	important?	
– it	simplifies	application	migration	to	the	Oracle	Database	from	a	number	of	non-
Oracle	databases	implementing	collation	in	a	similar	way

77

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

1

Column-Based	Data-Bound	Collation
• Oracle	supports	around	100	linguistic	collations	

– Parameterized	by	adding	the	suffix	_CI	or	the	suffix	_AI		
• _CI	-	Specifies	a	case-insensitive	sort	
• 	_AI	-	Specifies	an	accent-insensitive	sort	

CREATE TABLE products
(product_code VARCHAR2(20 BYTE) COLLATE BINARY
, product_name VARCHAR2(100 BYTE) COLLATE GENERIC_M_CI
, product_category VARCHAR2(5 BYTE) COLLATE BINARY
, product_description VARCHAR2(1000 BYTE) COLLATE BINARY_CI
);

– Product_name	is	to	be	compared	using	GENERIC_M_CI	-	case-insensitive	version	of	generic	
multilingual	collation	

78

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 79

Managing	Large	Strings
Overview	of	new	VARCHAR2	features	and	new	keywords	in	LISTAGG

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Pre-12.2	LISTAGG	

•Pre	12.2	syntax	to	manage	lists	was	relatively	simple:	
LISTAGG(c.cust_first_name||' '||c.cust_last_name, ',’)
 WITHIN GROUP (ORDER BY c.country_id) AS Customer

• Issue….key	issue	is	overflow	error:	
–ORA-01489: result of string concatenation is too
long

• Solutions	in	12.2	
– Increase	VARCHAR2	size	to	support	larger	strings	
– Handle	overflow	errors	-	New	syntax	support	to	truncate	string,	optionally	display	
count	of	truncated	items	count,	and	set	truncation	indication

80

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Support	For	Larger	VARCHAR2	objects

• Introduced	in	12c	Release	1	
– VARCHAR2	objects	supports	up	to	32K	

SQL> show parameter MAX_STRING_SIZE	

NAME TYPE VALUE
--------------- ------ --------
max_string_size string STANDARD

ALTER SYSTEM SET max_string_size=extended SCOPE= SPFILE;

–Need	to	run	rdbms/admin/utl32k.sql	script

81

Avoids	overflowing	LISTAGG	function	by	increasing	size	of	VARCHAR(2)	objects

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	Keywords	For	Use	With	LISTAGG
• With	12.2	we	have	made	it	easier	to	manage	lists:	

LISTAGG(<measure_column>[, <delimiter>] . . .

–What	to	do	when	an	overflow	occurs	
• ON OVERFLOW ERROR (default)
• ON OVERFLOW TRUNCATE <delimiter>

– Control	to	show/not-show	many	values	were	truncated	
• WITHOUT COUNT (default)
• WITH COUNT

82

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	Keywords	For	Use	With	LISTAGG	WITH	COUNT
SELECT
 g.country_region,
 LISTAGG(c.cust_first_name||' '||c.cust_last_name, ','

ON OVERFLOW TRUNCATE WITHOUT COUNT)
 WITHIN GROUP (ORDER BY c.country_id) AS Customer
FROM customers c, countries g
WHERE g.country_id = c.country_id
GROUP BY country_region
ORDER BY country_region;

83

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Keywords:	ON	OVERFLOW	TRUNCATE	WITHOUT	COUNT

84

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	Keywords	For	Use	With	LISTAGG	WITHOUT	COUNT
SELECT
 g.country_region,
 LISTAGG(c.cust_first_name||' '||c.cust_last_name, ','

ON OVERFLOW TRUNCATE ‘***’ WITH COUNT)
 WITHIN GROUP (ORDER BY c.country_id) AS Customer
FROM customers c, countries g
WHERE g.country_id = c.country_id
GROUP BY country_region
ORDER BY country_region;

85

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 86

Managing	Data	Conversion	Errors

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Pre	12.2	Data	Conversion	Errors	Parsing	Data
• Issue:	Parsing	data	input	from	a	web	form	or	loading	data	from	external	
files	,	converting	to	specific	data	type	typically	generates	error:	

SQL Error: ORA-01722: invalid number

• Solutions:	
– Detect	data	conversion	errors	with	new	VALIDATE_CONVERSION	function		
– Enhancements	to	most	of	conversion	functions	like	TO_NUMBER,	TO_DATE	,	CAST	
etc.	to	handle	data	conversion	errors	and	replace	with	user	provided	default	values

87

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Detecting	conversion	errors	-	VALIDATE_CONVERSION

• Useful	to	detect	if	input	value	can	be	converted	to	destination	type.	Returns	
1	if	conversion	is	successful,	otherwise	returns	0	

• VALIDATE_CONVERSION	('123a'	as	NUMBER)	-->	returns	0	
• VALIDATE_CONVERSION	('123'	as	NUMBER)		-->	returns	1	

• Can	be	efficiently	used	as	filter	to	avoid	bad	data	while	importing	foreign	
data	sources,	ETL	processing	

88

Identifying	invalid	data	in	the	input	streams

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Two	Methods	for	Dealing	With	Conversion	Errors

SELECT
 VALIDATE_CONVERSION(empno AS NUMBER) AS is_empno,
 VALIDATE_CONVERSION(mgr AS NUMBER) AS is_mgr,
 VALIDATE_CONVERSION(hiredate AS DATE) AS is_hiredate,
 VALIDATE_CONVERSION(sal AS NUMBER) AS is_sal,
 VALIDATE_CONVERSION(comm AS NUMBER) AS is_comm,
 VALIDATE_CONVERSION(deptno AS NUMBER) AS is_deptno
FROM staging_emp;

89

Find	row-column	values	that	are	causing	errors:	VALIDATE_CONVERSION

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Handling	data	conversion	errors	-	TO_xxxx(),	CAST()

• Pre	12.2:	TO_NUMBER('123a')	-->	returns	invalid	number	error	(ora-01722)	

New	12.2	Features	
• New	syntax	DEFAULT	<default_value>	ON	CONVERSION	ERROR		

– Replace	conversion	failure	with	user	defined	default	value	
– TO_NUMBER('123a'	DEFAULT	'123'	ON	CONVERSION	ERROR)	-->	returns	123	

• This	new	syntax	can	be	used	for	TO_NUMBER,	TO_DATE,	TO_TIMESTAMP,	
TO_TIMESTAMP_TZ,	TO_DMINTERVAL,	TO_YMINTERVAL	and	CAST

90

-Replacing	incorrect	or	missing	data	with	default	values

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Using	CAST	and	TO_XXXX		FUNCTIONS

INSERT INTO emp
SELECT
 empno,
 ename,
 job,
 CAST(mgr AS NUMBER DEFAULT 9999 ON CONVERSION ERROR),
 CAST(hiredate AS DATE DEFAULT sysdate ON CONVERSION ERROR),
 CAST(sal AS NUMBER DEFAULT 0 ON CONVERSION ERROR),
 CAST(comm AS NUMBER DEFAULT null ON CONVERSION ERROR),
 CAST(deptno AS NUMBER DEFAULT 99 ON CONVERSION ERROR)
FROM staging_emp
WHERE VALIDATE_CONVERSION(empno AS NUMBER) = 1

91

Using	enhanced	functions	to	remove	incorrect	data	types	and	correct	conversion	errors

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 92

Approximate	Statistics
Approximate	query	processing	for	faster	analysis	within	big	data	lakes

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Approximate	Analysis

• PERCENTILE_CONT, PERCENTILE_DISC, MEDIAN
– functions	require	sorting	and	can	consume	large	amounts	of	resources	

•New	approximate	SQL	functions:
APPROX_PERCENTILE
APPROX_MEDIAN

• Results	can	be	‘DETERMINISTIC’
– Different	algorithms	used	for	deterministic	and	non-deterministic	result	sets	
– If	keyword	is	not	present,	it	means	deterministic	results	are	not	mandatory

93

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Approximate	Analysis

APPROX_PERCENTILE(pct_expr [DETERMINISTIC][,resulttype])
 WITHIN GROUP (ORDER BY expr [DESC | ASC])

APPROX_MEDIAN(expr [DETERMINISTIC][,resulttype])

* pct_expr - evaluates	to	a	numeric	value	between	0	and	1,	because	it	is	a	percentile	value

94

* resulttype	– optional.	If	not	used	then	function	returns	the	value	at	the	specified	percentile.	If	
specified	then	values	are	‘ERROR_RATE’	or	‘CONFIDENCE’

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Results	for	accuracy	
• Real	world	customer	data	set	
(manufacturing	use	case)	

• Error	range	around	0.1	-	1.0%	
• In	general	accuracy	will	not	be	a	
major	concern

Performance	Results	
• Using	TPC-H	schema	and	workload	

• 	6-13x	improvement	

• Note	that	major	savings	coming	
from:		
– Use	of	bounded	memory	regardless	of	
the	input	size	per	group	by	key	

– Reduction	in	chance	of	spill	to	disk

Accuracy	and	Performance

95

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Approximate	Analysis

• Queries	will	be	able	to	report	error	rates	and	confidence	levels	as	follows:	

SELECT
 APPROX_MEDIAN (sal) AS median_sal,  
 APPROX_MEDIAN (sal, ‘DETERMINISTIC’),
 APPROX_MEDIAN (sal, ‘ERROR_RATE’) AS error_rate,  
 APPROX_MEDIAN (sal, ‘CONFIDENCE’) as confidence,  
FROM emp ;

How	to	get	more	information	about	result	set

96

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Using	approximate	processing	with	zero	code	changes!

• Using	following	parameters	to	convert	existing	queries:	

– approx_for_count_distinct = TRUE/FALSE[DEFAULT]
• Convert	existing	COUNT(DISTINCT …)	functions	to	use	approximate	processing	

– approx_for_percentile = ‘PERCENTILE_CONT/PERCENTILE_DISC/
 MEDIAN/ALL’

– approx_percentile_deterministic	=	TRUE/FALSE[DEFAULT]

• Can	be	set	at	session	and	database	level

Converting	Existing	Queries	To	Return	Approximate	Answers

97

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Impact	of	PERCENTILE_CONT	Processing

98

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Impact	of	PERCENTILE_CONT	Processing 

1. Query	accesses	105M	rows	from	source	table	NDV

99

1

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Impact	of	PERCENTILE_CONT	Processing 

1. Query	accesses	105M	rows	from	source	table	NDV	

2. SORT	GROUP	BY	operation	consumes	temp	and	memory:	11GB	+	1GB

100

2 3

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Benefits	of	APPROX_PERCENTILE	Processing

101

1. Query	accesses	105M	rows	from	source	table	NDV

1

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Benefits	of	APPROX_PERCENTILE	Processing

102

1. Query	accesses	105M	rows	from	source	table	NDV	

2. SORT	GROUP	BY	operation	consumes	ZERO	temp	and	830KB	memory

2 3

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Benefits	of	APPROX_PERCENTILE:	13X	Faster

103

1

3

2

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 104

Approximate	Aggregations

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Why	create	a	reusable	approximate	result	set?
• Requirement:	Support	fast	access	to	approximate	answers	for	wide	range	of	
GROUP	BY	queries		

• Objective:	Avoid	revisiting	and	re-scanning	base	tables	

• Use	cases	for	storing	reusable	approximate	aggregations	
– CTAS	as	part	of	ETL	process	for	staging	data	
– CTAS	as	part	of	larger	analytical	process	

• pushing	data	into	dashboards	and	supporting	drill-down	click-through	analysis	

– Materialized	views	for	query	rewrite	of	approximate	queries	
– Materialized	views	for	transparent	query	rewrite	to	approximate	queries

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Building	Reusable	Approximate	Result	sets
COUNTRY STATE PRODUCT …

US CA A

US CA B

...

US IL A

US IL C

US IL D

…

US TX A

…

US CO D

US CO F

US CO H

…

US NY A

US NY A

US NY G

…

COUNTRY STATE AC_PROD	
(INTERNAL)

US CA BLOB

US IL BLOB

US TX BLOB

US CO BLOB

US NY	 BLOB

…
 APPROX_COUNT_DISTINCT_DETAIL(product) AS ac_prod
…
GROUP BY country, state

Builds summary
table containing
results for all
dimensions in
GROUP BY clause

106

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Creating	a	STATE	level	approximation

COUNTRY STATE AC_PROD	
(INTERNAL)

US CA BLOB

US IL BLOB

US TX BLOB

US CO BLOB

US NY	 BLOB

COUNTRY STATE AC_PROD

US CA 2

…
 TO_APPROX_COUNT_DISTINCT(ac_prod)
…
WHERE state = ‘CA’

…
 APPROX_COUNT_DISTINCT_DETAIL
 (product) AS ac_prod
…
GROUP BY country, state

107

Returns results from
the specified
aggregated results
table

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Creating	a	STATE	level	approximation

…
 APPROX_COUNT_DISTINCT_AGG(ac_prod)
…
GROUP BY country

COUNTRY AC	_PROD

US BLOB

CANANDA BLOB

MEXICO BLOB

BRAZIL BLOB

108

COUNTRY STATE AC_PROD	
(INTERNAL)

US CA BLOB

US IL BLOB

US TX BLOB

US CO BLOB

US NY	 BLOB

…
 APPROX_COUNT_DISTINCT_DETAIL
 (product) AS ac_prod
…
GROUP BY country, state

Builds higher level
summary table based on
results from table derived
from _DETAIL function

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Building	Reusable	Approximate	Result	sets

…
 TO_APPROX_COUNT_DISTINCT (ac_prod)
…

COUNTRY AC_PROD

US 84

COUNTRY AC	_PROD

US BLOB

CANANDA BLOB

MEXICO BLOB

BRAZIL BLOB

109

…
 APPROX_COUNT_DISTINCT_AGG(ac_prod)
…
GROUP BY country

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Returning	COUNTRY	data	from	STATE	level	approximation

COUNTRY STATE AC_PROD	
(INTERNAL)

US CA BLOB

US IL BLOB

US TX BLOB

US CO BLOB

US NY	 BLOB

…
 TO_APPROX_COUNT_DISTINCT(
 APPROX_COUNT_DISTINCT_AGG(ac_prod))
…
GROUP BY country

COUNTRY AC_PROD

US 84

…
 APPROX_COUNT_DISTINCT_DETAIL
 (product) AS ac_prod
…
GROUP BY country, state

110

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Query	Rewrite	with	Approximate	
MVs

111

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Building	an	MV	Containing	Approximate	Results

CREATE MATERIALIZED VIEW pctl_mview
ENABLE QUERY REWRITE AS
SELECT
 state,
 count,
 APPROX_PERCENTILE_DETAIL(volume) AS pctl_detail
FROM sales_fact
GROUP BY state, county;

Builds materialized view containing results for all dimensions in GROUP BY clause

112

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Queries	Rewrite	to	use	an	Approximate	MV

SELECT
 state,
 county,
 APPROX_PERCENTILE(0.1)
 WITHIN GROUP (ORDER BY volume)
FROM sales_fact
WHERE state = 'CA';

Query rewrites to use materialized view PCTL_MVIEW containing approximate results

113

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	about	non-approximate	queries?

alter session set approx_for_precentile = ‘all’;

SELECT
 state,
 county,
 MEDIAN(volume)
FROM sales_fact
WHERE state = 'CA'
GROUP BY state, county;

Query results returned from materialized view PCTL_MVIEW containing approximate results

114

Exciting	feature:	Optimizer	can	rewrite	exact	functions	to	use	MV

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 115

In-Database	Dimensional	Modeling

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Review:	Analytic	Views	in	12.2
Enhanced	Analysis	and	Simplified	Access

• Organizes	data	into	a	user	and	application	friendly	business	model	
– Intuitive	for	the	end	user	

• Defined	with	SQL	DDL	
– Includes	hierarchical	expressions	and	calculated	measures	
– Easy	to	define,	supported	by	SQL	Developer	

• Easily	queried	with	simple	SQL	SELECT	
– Smart	Analytic	View	(containing	hierarchies	and	calculations)	=	Simple	Query

116

12.2

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Review:	Analytic	Views	in	12.2
Embedded	Calculations

• Define	centrally	in	the	Database	
and	access	with	any	application	
– Single	version	of	the	truth	

• Easily	create	new	measures	
– Simplified	syntax	based	on	
business	model	

– Includes	dimensional	and	
hierarchical	functions

117

Sales	Year	to	Date	
sales_ytd AS
 (SUM(sales)
 OVER(HIERARCHY time_hierarchy
 BETWEEN UNBOUNDED PROCEEDING
 AND 0 FOLLOWING
 WITHIN ANCESTOR AT LEVEL year)

Product	Share	of	Parent	
share_product_parent_sales AS
 (SHARE_OF (sales
 HIERARCHY product_hierachy PARENT))

12.2

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Review:	Analytic	Views	in	12.2
Smart	Views	and	Simple	Queries

118

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13
14 15 16 17 18 19 20

21 22 23 24 25 26 27
28 29 30 31

Total

Region

Country Country

Region

Country Country

SELECT time_hierarchy.member_name AS time,
 product_hierarchy.member_name AS product,
 customer_hierarchy.member_name AS customer,
 sales AS sales,
 sales_ytd_pct_chg_yr_ago AS sales_ytd_pct_chg,
 share_product_parent_sales AS prod_share_sales
FROM sales_analysis hierarchies
 (time_hierarchy,
 product_hierarchy,
 customer_hierarchy)
WHERE
 time_hierarchy.level_name = 'YEAR'
 AND product_hierarchy.level_name = 'DEPARTMENT'
 AND customer_hierarchy.level_name = 'REGION';

Calculations
Aggregate data at

Year, Department and
Region

12.2

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 119

External Tables
Enhancements	in	Database	12c	Release	2	
MODIFY	clause	
Partitioned

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

External Tables
• Key	issues:	

– Definition	of	external	table	is	fixed	at	creation	time	
– Need	ability	to	define	table	once	and	use	it	multiple	times,	to	access	different	external	files	
– Apply	same	table	definition	to	different	inputs	

• Solution:	
– Added	EXTERNAL	MODIFY	clause		
– Ease	of	use	enhancement	for	using	external	tables	
– Clause	allows	external	table	to	be	overridden	at	query	time	
– Properties:	DEFAULT_DIRECTORY,	certain	ACCESS	PARAMETERS,	LOCATION	and	REJECT	
LIMIT

120

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

External Tables – existing functionality
• Example….LOCATION specification is fixed 

CREATE TABLE SALES_TRANSACTIONS_EXT  
(PROD_ID NUMBER,  
 CUST_ID NUMBER,  
 PROMO_ID NUMBER)  
ORGANIZATION EXTERNAL ( 
TYPE ORACLE_LOADER  
DEFAULT DIRECTORY data_file_dir  
ACCESS PARAMETERS  
(RECORDS DELIMITED BY NEWLINE  
 FIELDS (PROD_ID (1-6) CHAR,  
 CUST_ID (7-11) CHAR,  
 PROMO_ID (12-15) CHAR))  
LOCATION('sh_sales1.dat'))  
REJECT LIMIT UNLIMITED

121

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Override settings with EXTERNAL MODIFY clause
• Example:	Override	LOCATION	specification	(continued) 
 
SELECT * FROM SALES_TRANSACTIONS_EXT  
EXTERNAL MODIFY (LOCATION('sh_sales2.dat'))

• NOTE:		LOCATION	and	REJECT	LIMIT	specifications	can	be	specified	as	bind	
values	in	the	EXTERNAL	MODIFY	clause

122

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 123

Partitioned	External	Tables

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Partitioned External Table

• Similar to partitioned tables stored in Oracle database
• Source files can be stored on file system, Apache Hive storage, or HDFS

• Benefits:
– Fast query performance
– Enhanced data maintenance
– Support static and dynamic(bloom, nested loop, subquery) partition pruning
– Support full and partial partition-wise join

• Partitioning strategies supported:

124

Primary\Secondary Range List Auto-List Interval

Range Y Y N N

List Y Y N N

Interval N N N N

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Keywords For Partitioned External Table

• Partitioning strategy determined by PARTITION clause
– partition by range (c1)

• Partition templates define organization for each partition
– partition p1 values less than (7655) location('./tkexpetu_p1a.dat', './tkexpetu_p1b.dat'),
– partition p2 values less than (7845) default directory def_dir2 location('./tkexpetu_p2.dat'),
– partition p3 values less than (7935) location(def_dir3:'./tkexpetu_p3*.dat’)

125

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example Partitioned External Table
create table salesrp_xt_hdfs
(c1 number, c2 number)
organization external (
 type oracle_hdfs
 default directory def_dir1
 access parameters (
 com.oracle.bigdata.cluster=hadoop_cl_1
 com.oracle.bigdata.fields: (c1 int, c2 int)
 com.oracle.bigdata.rowformat=delimited fields terminated by ','))
reject limit unlimited
partition by range (c1) (
 partition p1 values less than (7655)
 location('./tkexpetu_p1a.dat', './tkexpetu_p1b.dat'),
 partition p2 values less than (7845)
 default directory def_dir2 location('./tkexpetu_p2.dat'),
 partition p3 values less than (7935)
 location(def_dir3:'./tkexpetu_p3*.dat’));

126

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Explain Plan For Accessing Partitioned External Table

 Select * from salesrp_xt_hdfs partition (p2) order by c2;
 --
 | Id | Operation | Name | Pstart| Pstop |
 --
0	SELECT STATEMENT			
1	SORT ORDER BY			
2	PARTITION RANGE SINGLE		2	2
3	EXTERNAL TABLE ACCESS FULL	SALESRP_XT_HDFS	2	2
 --

– select AVG(s.L_PARTKEY) from scott.emp e, salesrp_xt s
 where s.l_orderkey = e.sal and e.job = 'SALESMAN';

127

 --	

 | Id | Operation | Name | Pstart| Pstop |	

 --	

 | 0 | SELECT STATEMENT | | | |	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 128

Creating	External	Tables	for	Big	Data

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Metadata:	Extend	Oracle	External	Tables
• New	types	of	external	tables	

–ORACLE_HIVE	(leverage	hive	metadata)	
–ORACLE_HDFS	(specify	metadata)	

• Access	parameters	used	to	describe	
how	to	identify	sources	and	process	
data	on	the	hadoop	cluster

129

CREATE TABLE movielog (

 click VARCHAR2(4000))

ORGANIZATION EXTERNAL (

 TYPE ORACLE_HIVE

 DEFAULT DIRECTORY DEFAULT_DIR

 ACCESS PARAMETERS

 (

com.oracle.bigdata.tablename logs

com.oracle.bigdata.cluster mycluster

))

REJECT LIMIT UNLIMITED;

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Access	Parameters:	HDFS	Example

130

CREATE	TABLE	WEB_SALES_CSV	
(
		WS_SOLD_DATE_SK	NUMBER		
,	WS_SOLD_TIME_SK	NUMBER		
,	WS_ITEM_SK	NUMBER		
)		
ORGANIZATION	EXTERNAL		
(
		TYPE	ORACLE_HDFS	
		DEFAULT	DIRECTORY	DEFAULT_DIR		
		ACCESS	PARAMETERS		
		(
				com.oracle.bigdata.cluster=orabig	
				com.oracle.bigdata.fileformat=TEXTFILE	
				com.oracle.bigdata.rowformat:	DELIMITED	FIELDS	TERMINATED	BY	'|’	
				com.oracle.bigdata.erroropt:	{"action":	"replace",	"value":	"-1"}		
)		
		LOCATION	('/data/tpcds/benchmarks/bigbench/data/web_sales')	
)		
REJECT	LIMIT	UNLIMITED;

• Access	Parameters	
describe	source	data	
and	processing	rules	

• Schema-on-Read

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Access	Parameters:	ORACLE_HIVE

131

CREATE	TABLE	WEB_SALES_CSV	
(
		WS_SOLD_DATE_SK	NUMBER		
,	WS_SOLD_TIME_SK	NUMBER		
,	WS_ITEM_SK	NUMBER		
)		
ORGANIZATION	EXTERNAL		
(
		TYPE	ORACLE_HIVE	
		DEFAULT	DIRECTORY	DEFAULT_DIR		
		ACCESS	PARAMETERS		
		(
				com.oracle.bigdata.cluster=orabig	
				com.oracle.bigdata.tablename:	csv.web_sales	
			com.oracle.bigdata.erroropt:	{"action":	"replace",	"value":	"-1"}		
			com.oracle.bigdata.datamode=automatic		
)		
REJECT	LIMIT	UNLIMITED;

• Access	Parameters	refer	
to	metadata	description	
in	Hive	

• Add	processing	rules

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Use	ORACLE_HIVE	When	Possible
• Oracle	Database	query	execution	accesses	Hive	metadata	at	describe	time		

– Changes	to	underlying	Hive	access	parameters	will	not	impact	Oracle	table	(one	
exception…	column	list)	

• Metadata	an	enabler	for	performance	optimizations	
– Partition	pruning	and	predicate	pushdown	into	intelligent	sources	

• Utilize	tooling	for	simplified	table	definitions	
– SQL	Developer	and	DBMS_HADOOP	packages

132

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Viewing	Hive	Metadata	from	Oracle	Database
• ALL_HIVE_DATABASES,	ALL_HIVE_TABLES,	ALL_HIVE_COLUMNS

133

ALL_HIVE_COLUMNS

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Creating	Tables

134

SQL	Developer	with	Hive	JDBC

Right-click	on	Hive	
Table.		Use	in	Oracle	
Big	Data	SQL

Review	generated	columns.		
Update	as	needed	-	focusing	on	
data	types	and	precision

Add	optional	access	parameters.		
Automatically	generate	table	or	save	
DDL.

1 2 3

See:		https://blogs.oracle.com/datawarehousing/entry/oracle_sql_developer_data_modeler

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• PL/SQL	Package	used	to	create	
table	or	generate	DDL	

• Combine	with	ALL_HIVE*	dictionary	
views	to	automate	creation	of	
many	tables	

• Consider	optimizing	data	type	
conversions	-	especially	precision	
– string	->	varchar2(?)

135

Creating	Tables

declare	
		DDLout	VARCHAR2(4000);	
begin	
		DDLout	:=	null;	
			
		dbms_hadoop.create_extddl_for_hive	(
								CLUSTER_ID=>	'orabig',	
								DB_NAME=>	'parq',	
								HIVE_TABLE_NAME=>	'store_sales',	
								HIVE_PARTITION=>FALSE,	
								TABLE_NAME=>	'store_sales_orcl',	
								PERFORM_DDL=>FALSE,	
								TEXT_OF_DDL=>DDLout	
);	
							
		dbms_output.put_line(DDLout);	
end;	
/

DBMS_HADOOP	Package

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 136

Schema Modeling Features
Invisible	columns,	default	values,	indexing	multiple	columns	
And	identity	columns

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Overview	of	Schema	Modeling	Enhancements
• Invisible Columns
• DEFAULT VALUE enhancements

– Metadata-Only Default column values for NULL’able columns
– Default values for columns on explicit NULL insertion
– Default values for columns based on sequences

• Multiple Indexes on the same columns
• IDENTITY columns

137

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Invisible Columns

• Create a simple table with invisible column
CREATE TABLE hr.emp
(empno NUMBER(5), name VARCHAR2(30) not null,
 status VARCHAR2(10) INVISIBLE)
TABLESPACE admin_tbs STORAGE (INITIAL 50K));

• Modify to make the status column visible:
ALTER TABLE hr.admin_emp MODIFY(status VISIBLE);

138

Examples

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Invisible Columns – Usage in Views
• Invisible columns at the view level is supported.
• View Columns will be visible unless explicitly over-ridden by the ‘

invisible’ syntax – irrespective of the visibility of the table column.
• Invisible columns at the edition-ing view level is supported.
• Examples:

– CREATE OR REPLACE VIEW emp (empno, ename,  
 status invisible)  
AS SELECT empno, ename, status FROM emp;

139

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

DEFAULT	VALUE	Enhancements

• New	in	Oracle	Database	12c:		
• Current	Scenario	when	adding	a	NULL’able	column	with	a	default	value	
• Adds	column	to	metadata	
• Run	as	serial	recursive	SQL		to	populate	existing	rows	with	default	value.	
• Holds	an	Exclusive	DML	and	KGL	lock	during	the	operation	
• Make	the	entire	DDL	a	metadata	only	operation

140

Metadata-only	DEFAULT	Column	Values	For	NULL’able	Columns

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

DEFAULT	VALUE	Enhancements

• Allow SQL column defaulting when user specifies a NULL value on a
NOT NULL column in an insert statement

• Example:

 CREATE TABLE test(a1 number DEFAULT ON NULL 10 NOT NULL, a2 varchar2(10);

 INSERT INTO TEST (a1, a2) VALUES(NULL, ‘abc’);

 SELECT a1, a2 FROM test;
 a1 a2

 -------- -------
 10 abc

141

Column Defaulting for specific NULL insertion

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

DEFAULT	VALUE	Enhancements

• Allow sequence [CURRVAL|NEXTVAL] to be used in SQL default
expression

• Example
 CREATE SEQUENCE s1 START WITH 1;

 CREATE TABLE test (a1 number DEFAULT S1.NEXTVAL, a2 varchar2(10));

 INSERT INTO test (a2) VALUES (‘abc’);

 INSERT INTO test (a2) VALUES (‘xyz’);

 SELECT * FROM test;

 C1 C2
 ------ ------------
 1 abc
 2 xyz

142

Column Defaulting Using A Sequence

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Examples	of	Multiple	Indexes	On	Same	Set	Of	Columns

• Create	table	and	index	
CREATE TABLE test(c1 int, c2 int);
CREATE INDEX test_idx ON test (c1,c2);

• 	Create	bitmap	index	on	the	same	set	of		columns	as	TEST_IDX:	
CREATE BITMAP INDEX test_idx2 ON test(c1, c2) INVISIBLE;

• “Activate”	new	index	
ALTER INDEX test_idx INVISIBLE;
ALTER INDEX test_idx2 VISIBLE;

143

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Multiple	Indexes	On	Same	Set	Of	Columns

• Only	one	visible	index	on	the	same	set	of	columns	at	any	point	of	time	
• To	create	a	visible	index	,	existing	indexes	on	the	same	set	of	columns	need	
to	be	invisible	

• Alter	index	visible	will	only	be	allowed	if	all	other	indexes	on	the	same	set	
of	columns	are	invisible

144

Usage	Constraints

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Identity	Columns

• Identity	columns	enable	a	simple	way	of	creating	a	unique	identifier	as	part	
of	a	schema	model	
– Part	of	ANSI	Standard	

• Identity	Columns	will	default	a	monotone	increasing	integer	on	insert	DML	
from	a	sequence	generator,	whose	options	are	specified	by	the	identity	
syntax	
– Note:	uniqueness	is	not	enforced	as	part	of	the	IDENTITY	definition

145

Concept

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example of Identity Columns

• Create simple table with identity column
– Generated by default, start with 100:

 CREATE TABLE test(C1 number GENERATED AS IDENTITY
 (START WITH 100));

• Add identity column, increment by 10
– Existing rows will be updated with a value from sequence generator, but order is not

deterministic
 ALTER TABLE test ADD(C1 number GENERATED AS IDENTITY
 (INCREMENT BY 10));

146

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Identity	Columns

• Create	simple	table	with	default	identity	column	at	NULL	insertion	
CREATE TABLE test (C1 number GENERATED BY DEFAULT ON NULL AS IDENTITY, 
 C2 varchar2(10));

• Identity	column	generated	by	default	starts	with	1		
INSERT INTO test(C2) VALUES (‘abc’);  
INSERT INTO test(C1,C2) VALUES (null, ‘xyz’);
 
SELECT c1, c2 FROM test;  
C1 C2  
------ ------------ 
1 abc 
2 xyz

147

Example,	cont.

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 148

 
 
Storage Optimizations
Attribute Clustering and Zone Maps

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Attribute	Clustering

• Orders	data	so	that	it	is	in	close	proximity	based	on	selected	columns	values:	
“attributes”	

• Attributes	can	be	from	a	single	table	or	multiple	tables	
– e.g.	from	fact	and	dimension	tables	

• Significant	IO	pruning	when	used	with	zone	maps	

• Reduced	block	IO	for	table	lookups	in	index	range	scans	

• Queries	that	sort	and	aggregate	can	benefit	from	pre-ordered	data	

• Enable	improved	compression	ratios	
– Ordered	data	is	likely	to	compress	more	than	unordered	data

149

Concepts	and	Benefits

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

 
Attribute	Clustering	for	Zone	Maps
Ordered	rows

ALTER TABLE sales
ADD CLUSTERING BY
LINEAR ORDER (category);

ALTER TABLE sales MOVE;

Ordered	rows	containing	
category	values	BOYS,	GIRLS	
and	MEN.		

Zone	maps	catalogue	regions	
of	rows,	or	zones,	that		
contain	particular	column	
value	ranges.	

By	default,	each	zone	is	up	to	
1024	blocks.	

For	example,	we	only	need	to	
scan	this	zone	if	we	are	
searching	for	category	
“GIRLS”.	We	can	skip	all	other	
zones.	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Attribute	Clustering 
Basics

• Two	types	of	attribute	clustering	
– LINEAR	ORDER	BY	

• Classical	ordering	
– INTERLEAVED	ORDER	BY	

• Multi-dimensional	ordering	

• Simple	attribute	clustering	on	a	single	table	
• Join	attribute	clustering	

– Cluster	on	attributes	derived	through	join	of	multiple	tables	
• Up	to	four	tables	
• Non-duplicating	join	(PK	or	UK	on	joined	table	is	required)

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Attribute	Clustering	With	Zone	Maps
Example

• CLUSTERING	BY	LINEAR	
ORDER	(category,	
country)	

• Zone	map	benefits	are	most	
significant	with	ordered	data

LINEAR	ORDER

Pruning	with:

SELECT ..
FROM table
WHERE category = ‘BOYS’;
AND country = ‘US’

SELECT ..
FROM table
WHERE category = ‘BOYS’;

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Attribute	Clustering	With	Zone	Maps
Example

• CLUSTERING	BY	
INTERLEAVED	ORDER	
(category,	country)	

• Zone	map	benefits	are	most	
significant	with	ordered	data

INTERLEAVED	ORDER

Pruning	with:

SELECT ..
FROM table
WHERE category = ‘BOYS’;

SELECT ..
FROM table
WHERE category = ‘BOYS’;
AND country = ‘US’

SELECT ..
FROM table
WHERE country = ‘US’

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Basics	of	Zone	Maps
• Independent	access	structure	built	for	a	table	

– Implemented	using	a	type	of	materialized	view	
– For	partitioned	and	non-partitioned	tables	

• One	zone	map	per	table	
– Zone	map	on	partitioned	table	includes	aggregate	entry	per	[sub]partition	

• Used	transparently	
– No	need	to	change	or	hint	queries	

• Implicit	or	explicit	creation	and	column	selection	
– Through	Attribute	Clustering:	CREATE	TABLE	…	CLUSTERING	
– CREATE	MATERIALIZED	ZONEMAP	…	AS	SELECT	…

154

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Zone	Maps

• DML	and	partition	operations	can	cause	zone	maps	to	become	fully	or	partially	stale	
– Direct	path	insert	does	not	make	zone	maps	stale	

• Single	table	‘local’	zone	maps	
– Update	and	insert	marks	impacted	zones	as	stale	(and	any	aggregated	partition	entry)	
– No	impact	on	zone	maps	for	delete	

• Joined	zone	map	
– DML	on	fact	table	equivalent	behavior	to	single	table	zone	map	
– DML	on	dimension	table	makes	dependent	zone	maps	fully	stale

155

Staleness

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Refreshing	Zone	Maps

• Incremental	and	full	refresh,	as	required	by	DML	
–Zone	map	refresh	does	require	a	materialized	view	log	

•Only	stale	zones	are	scanned	to	refresh	the	MV	
–For	joined	zone	map	

•DML	on	fact	table:	incremental	refresh	
•DML	on	dimension	table:	full	refresh	

• Zone	map	maintenance	through	
–DBMS_MVIEW.REFRESH()	
–ALTER	MATERIALIZED	ZONEMAP	<xx>	REBUILD;

156

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Zone	Maps	with	Attribute	Clustering
• Combined	Benefits	

• Improved	query	performance	and	concurrency	
– Reduced	physical	data	access	
– Significant	IO	reduction	for	highly	selective	
operations	

• Optimized	space	utilization	
– Less	need	for	indexes	
– Improved	compression	ratios	through	data	clustering	

• Full	application	transparency	
– Any	application	will	benefit

157

Attribute	Clustering	

Orders	data	so	that	columns	
values	are	stored	together	on	disk	

X
Zone	maps	

Stores	min/max	of	specified	
columns	per	zone	

Used	to	filter	un-needed	data	
during	query	execution	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Attribute	Clustering	with	In-Memory	Column	Store
Snowflake	Schema	Benchmark

• Attribute	clusters	alone	-	no	zone	maps	
• With	attribute	clustering	versus	without	(baseline)	
• Warehousing	benchmark	run	on	snowflake-schema	
• In-Memory	Column	Store		
• Result	with	attribute	clustering:	

–Overall,	1.4X	response	time	improvement	over	baseline	
– Improved	sort	and	aggregation	performance	

• Pre-ordered	rows	can	require	less	sorting

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Zone	Maps		With	Attribute	Clustering
Star	Schema	Benchmark

• Overall,	2.6X	end-to-end	elapsed	time	improvement	
– Comparing	with	and	without	zone	map	and	attribute	clustering

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Zone	Maps	and	Partitioning
• Zone	maps	can	prune	partitions	for	columns	that	are	not	included	in	the	
partition	(or	subpartition)	key

160

SALES

Partition	Key:	  
ORDER_DATE

JAN FEB MAR APR

Zone	map:	  
SHIP_DATE JAN FEB MAR

Zone	map	column		
SHIP_DATE  
correlates	with		
partition	key	
ORDER_DATE

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Zone	Maps	and	Partitioning
• Zone	maps	can	prune	partitions	for	columns	that	are	not	included	in	the	
partition	(or	subpartition)	key

161

JAN FEB MAR APR

JAN FEB MAR

MAR	and	APR	
partitions	
are	pruned

WHERE	ship_date	=		TO_DATE(‘10-JAN-2011’)	

SALES

Partition	Key:	  
ORDER_DATE

Zone	map:	  
SHIP_DATE

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Zone	Maps	and	Storage	Indexes

• Attribute	clustering	and	zone	maps	work	transparently	with	Exadata	storage	indexes	
– The	benefits	of	Exadata	storage	indexes	continue	to	be	fully	exploited	

• In	addition,	zone	maps	(when	used	with	attribute	clustering)	
– Enable	additional	and	significant	IO	optimization	

• Provide	an	alternative	to	indexes,	especially	on	large	tables	
• Join	and	fact-dimension	queries,	including	dimension	hierarchy	searches	
• Particularly	relevant	in	star	and	snowflake	schemas	

– Are	able	to	prune	entire	partitions	and	sub-partitions	
– Are	effective	for	both	direct	and	conventional	path	reads	
– Include	optimizations	for	joins	and	index	range	scans	
– Part	of	the	physical	database	design:	explicitly	created	and	controlled	by	the	DBA

162

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Summary

• Making	I/O	elimination	techniques	even	more	effective	
• Attribute	clustering	is	used	to	store	related	data	in	close	proximity	

–Ensures	that	similar	data	falls	within	the	same	zone	

• Zone	maps	provide	I/O	reduction	for	single	tables,	table	joins	and	
dimensional	hierarchies

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Top-N Filtering

164

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Native	Support	for	TOP-N	Queries

• ANSI	2008/2011	compliant	with	some	additional	extensions	
• Specify	offset	and	number	or	percentage	of	rows	to	return	
• Provisions	to	return	additional	rows	with	the	same	sort	key	as	the	last	row	
(WITH	TIES	option)

New	offset	and	fetch	FIRST	clause

165

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Native	Support	for	TOP-N	Queries

Find	5	percent	of	employees	with	the	lowest	salaries	
SELECT employee_id, last_name, salary
FROM employees
ORDER BY salary
FETCH FIRST 5 percent ROWS ONLY;

Internal	processing

166

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Find	5	percent	of	employees	with	the	lowest	salaries	
SELECT employee_id, last_name, salary
FROM employees
ORDER BY salary
FETCH FIRST 5 percent ROWS ONLY;

Native	Support	for	TOP-N	Queries
Internal	processing,	cont.

▪ Internally the query is transformed into an equivalent query using window functions
SELECT employee_id, last_name, salary
FROM (SELECT employee_id, last_name, salary,
 row_number() over (order by salary) rn,
 count(*) over () total
 FROM employee)
WHERE rn <= CEIL(total * 5/100);

▪ Additional Top-N Optimization:
– SELECT list may include expensive PL/SQL function or costly expressions
– Evaluation of SELECT list expression limited to rows in the final result set

167

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SQL for Advanced Analysis
Pattern	matching	with	MATCH_RECOGNIZE

168

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Pattern	Recognition	In	Sequences	of	Rows
• Recognize patterns in sequences of events using SQL

– Sequence is a stream of rows
– Event equals a row in a stream

• New SQL construct MATCH_RECOGNIZE
– Logically partition and order the data

• ORDER BY and PARTITION BY are optional – but be careful
– Pattern defined using regular expression using variables
– Regular expression is matched against a sequence of rows
– Each pattern variable is defined using conditions on rows and aggregates

169

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Business	Problem:	Finding	Suspicious	Money	Transfers

• Suspicious	money	transfer	pattern	for	an	account	is:	
– 	3	or	more	small	(<2K)	money	transfers	within	30	days	
– 	Large	transfer	(>=1M)	within	10	days	of	last	small	transfer		

• Report	account,	date	of	first	small	transfer,	date	of	last	large	
transfer

170

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Finding	Suspicious	Money	Transfers

171

Data	Set

TIME USER ID EVENT AMOUNT
1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Finding	Suspicious	Money	Transfers

172

TIME USER ID EVENT AMOUNT
1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Three small transfers within 30 days

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Finding	Suspicious	Money	Transfers

173

TIME USER ID EVENT AMOUNT
1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Three small transfers within 30 days

 Large transfer within 10 days of last small
transfer

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 . . .

)

SQL Pattern Matching in action

New	syntax	for	discovering	
patterns	using	SQL:	finding	
suspicious	money	transfers	

	MATCH_RECOGNIZE	()

174

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time

)

Define the how data is to be processed

STEP	1	

Set	the	PARTITION	BY	and	
ORDER	BY	clauses

175

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time

 PATTERN (X{3,})

)

Define PATTERN clause

STEP	2	

Define	the	PATTERN	–		

Three	or	more	small	amount	(<2K)	
money	transfers	within	30	days

176

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time

 PATTERN (X{3,} Y)

)

Define PATTERN clause

STEP	2	Define	the	PATTERN	
variables:	

Large	transfer	(>=1M)	within			
10	days	of	last	small	transfer	

177

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time

 PATTERN (X{3,} Y)
 DEFINE
 X as (amount < 2000) AND
 LAST(X.time) - FIRST(X.time) < 30,

)

Define PATTERN clause

STEP	2	Define	the	PATTERN	
variables:	

Describe	the	details	of	each	
pattern	–		small	amount		is	
less	than	2K	and	within	30	
days

178

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time

 PATTERN (X{3,} Y)
 DEFINE
 X as (amount < 2000) AND
 LAST(X.time) - FIRST(X.time) < 30,
 Y as (amount >= 1000000
)

Define PATTERN clause

STEP	2	Define	the	PATTERN	
variables:		

Describe	the	details	of	each	
pattern	–	large	amount		is	more	
than	1M

179

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time

 PATTERN (X{3,} Y)
 DEFINE
 X as (amount < 2000) AND
 LAST(X.time) - FIRST(X.time) < 30,
 Y as (amount >= 1000000 AND
 Y.time - LAST(X.time) < 10))

Define PATTERN clause

STEP	2	Define	the	PATTERN	
variables:	

Large	transfer	within	10	days			
of	last	small	transfer

180

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time
 MEASURES FIRST(x.time) first_t,
 y.time last_t,
 y.amount amount

 PATTERN (X{3,} Y)
 DEFINE
 X as (amount < 2000) AND
 LAST(X.time) - FIRST(X.time) < 30,
 Y as (amount >= 1000000 AND
 Y.time - LAST(X.time) < 10))

Define Measures To Be Calculated

STEP	3	Define	the	MEASURES:	

Report	account,	date	of	first	
small	transfer,	date	of	last			
large	transfer

181

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT . . .
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time
 MEASURES FIRST(x.time) first_t,
 y.time last_t,
 y.amount amount
 ONE ROW PER MATCH
 PATTERN (X{3,} Y)
 DEFINE
 X as (amount < 2000) AND
 LAST(X.time) - FIRST(X.time) < 30,
 Y as (amount >= 1000000 AND
 Y.time - LAST(X.time) < 10))

Define How Much Data Is Returned

STEP	4	Control	the	output:		

Output	one	row	each	time	we	
find	a	match	to	our	pattern

182

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT userid, first_t, last_t, amount
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time
 MEASURES FIRST(x.time) first_t,
 y.time last_t,
 y.amount amount
 ONE ROW PER MATCH
 PATTERN (X{3,} Y)
 DEFINE
 X as (amount < 2000) AND
 LAST(X.time) - FIRST(X.time) < 30,
 Y as (amount >= 1000000 AND
 Y.time - LAST(X.time) < 10))

Define output columns

Finally	list	columns	to	return	
as	part	of	the	query	result	
set…

183

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Adding	New	Requirements

• Additional	requirement:	
– 	Check	for	transfers	across	different	accounts	

• 	total	sum	of	small	transfers	must	be	less	than	20K

184

Using	SQL	makes	it	very	easy	to	extend	pattern	for	new	requirements

TIMESTAMP USER ID EVENT TRANSFER_TO AMOUNT
1/1/2012 John Deposit - 1,000,000
1/2/2012 John Transfer Bob 1,000
1/5/2012 John Withdrawal - 2,000
1/10/2012 John Transfer Allen 1,500
1/20/2012 John Transfer Tim 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer Tim 1,000,000
2/2/20212 John Deposit - 500,000

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Adding	New	Requirements

• Additional	requirement:	
– 	Check	for	transfers	across	different	accounts	

• 	total	sum	of	small	transfers	must	be	less	than	20K

Using	SQL	makes	it	very	easy	to	extend	pattern	for	new	requirements

TIMESTAMP USER
ID EVENT TRANSFER_TO AMOUNT

1/1/2012 John Deposit - 1,000,000
1/2/2012 John Transfer Bob 1,000
1/5/2012 John Withdrawal - 2,000
1/10/2012 John Transfer Allen 1,500
1/20/2012 John Transfer Tim 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer Tim 1,000,000
2/2/20212 John Deposit - 500,000

Three	small	transfers	within	30	
days		
to	different	acct	and	total	sum	<	
20K

Large	transfer	within	10	days	of	
last	small	transfer

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT userid, first_t, last_t, amount
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time
 MEASURES FIRST(x.time) first_t,
 y.time last_t,
 y.amount amount
 ONE ROW PER MATCH
 PATTERN (X{3,} Y)
 DEFINE
 X as (amount < 2000) AND
 LAST(X.time) - FIRST(X.time) < 30 AND
 PREV(X.transfer_to) <> X.transfer_to

Adding	New	Requirements

Modify	the	pattern	variables	
DEFINE	

	-	Check	the	transfer	account

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SELECT userid, first_t, last_t, amount
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE (
 PARTITION BY userid ORDER BY time
 MEASURES FIRST(x.time) first_t,
 y.time last_t,
 y.amount amount
 ONE ROW PER MATCH
 PATTERN (X{3,} Y)
 DEFINE
 X as (amount < 2000) AND
 LAST(X.time) - FIRST(X.time) < 30 AND
 PREV(X.transfer_to) <> X.transfer_to
 Y as (amount >= 1000000 AND
 y.time - LAST(X.time) < 10 AND
 SUM(X.amount) < 20,000);

Adding	New	Requirements

Modify	the	pattern	variables	
DEFINE	

- Check	the	total	of	the	
small	transfers	is	less	than	
20K

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SQL for Advanced Analysis
Approximate	count	distinct

188

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Exploring	Today’s	Big	Data	Lakes
• 	Key	business	challenges	

–Many	queries	rely	on	counts	and/or	statistical	calculations	
• NDVs,	Pareto’s	80:20	rule,	identifying	outliers	etc.	

– Exact	processing	of	large	data	sets	is	resource	intensive	

– Exploratory	queries	don’t	require	completely	accurate	result	
• Trending	analysis,	social	analysis,	sessionization	analytics	

• Oracle’s	solutions	
– Provide	“approximate	result”	capabilities	in	SQL	
– Key	objectives	

• Return	approximate	results	faster,	minimal	deviation	from	actual	
• Use	fewer	resources,	allowing	more	queries	to	run

189

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Answer	“How	many…”	type	questions	
– How	many	unique	sessions	today	
– How	many	unique	customers	logged	on	
– How	many	unique	events	occurred	

COUNT	(DISTINCT	expr)		
– returns	the	exact	number	of	rows	that	
contain	distinct	values	of	specified	expression	

– Can	be	resource	intensive	because	requires	
sorting

APPROX_COUNT_DISTINCT(expr) 		
– processes	large	amounts	of	data	
significantly	faster	

– uses	HyperLogLog	algorithm	
– negligible	deviation	from	exact	result	

• ignores	rows	containing	null	values	

– supports	any	scalar	data	type	
• Does	not	support	BFILE,	BLOB,	CLOB,	LONG,	
LONG	RAW,	or	NCLOB

Getting	Approximate	Counts

190

…	significantly	faster	solution

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	and	Accuracy	of	APPROX_COUNT_DISTINCT

Performance	Results	
• Real	world	customer	workload	
• 	5-50x	improvement	

Results	for	accuracy	
• Real	world	customer	workload	
• Accuracy	that	is	typically	97%	with	95%	confidence

191

Notes:		
this	approach	does	not	use	sampling,	it	uses	a	
hash-based	approach	ignores	rows	that	contain	
a	null	value	for	specified	expression	

Supports	any	scalar	data	type	other	than	BFILE,	
BLOB,	CLOB,	LONG,	LONG	RAW,	or	NCLOB

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

COUNT(DISTINCT)	Processing 

1. Query	is	processing	all	6,00M	rows	in	table	LINEITEM	
2. Table	access	consumes	541MB	memory	
3. Sort	operation	to	manage	count	+	distinct	operations	
4. Distinct	+	Count	processing	consumes	8GB	of	memory	and	164GB	of	temp

192

1 2

43

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Benefits	of	APPROX_COUNT_DISTINCT	processing 

193

1 2

3

4

1. Query	is	processing	all	6,00M	rows	in	table	LINEITEM	
2. Table	access	consumes	542MB	memory	
3. Only	sort	operation	is	now	AGGREGATE	APPROX	
4. Approximate	processing	ONLY	consumes	524MB	of	memory	and	zero	GB	of	temp

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Benefits	of	APPROX_COUNT_DISTINCT:	50X	Faster 

1. COUNT(DISTINCT…)	timeline	3,059	seconds	on	6,000M	rows	

2. APPROX_COUNT_DISTINCT	indicator	in	explain	plan	

3. APPROX_COUNT_DISTINCT	timeline	69	seconds	on	6,000M	rows

194

1

3

2

50X	FASTER

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Using	Statistical	Analytics	For	Intelligent	Analysis

• Key	business	requirements	
– Searching	for	outliers	within	a	data	set	
– Pareto	(80/20)	analysis	
– Data	points	3	SDs	from	mean	

• Data	outside	3	SDs	is	often	considered	an	anomaly	

• Typical	use	cases	include	
– Quality	monitoring	and	assurance	
– Monitoring	SLA	performance	
– Anomaly/outlier	detection	
– Tracking	activity/visibility	on	social	media	sites

195

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Materialized Views

196

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Overview	of	Materialized	Views	in	Oracle	Database	12c
• Objectives	

– Improve	performance	of	refresh	operation	
–Minimize	staleness	time	of	materialized	views	

• Two	fundamental	new	concepts	for	refresh	
–Out-of-place	refresh	

• Refresh	“shadow	MV”	and	swap	with	original	MV	after	refresh	

– Synchronous	refresh	
• Refresh	base	tables	and	MVs	synchronously,	leveraging	equi-partitioning	of	the	objects

197

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Materialized	Views:	In-Place	vs.	Out-of-Place	Refresh

• Apply	refresh	statement	to	MV	directly	

• MV	remains	unusable	during	execution	of	refresh	
statement	

• Potential	suboptimal	processing	
– Conventional	DMLs	don’t	scale	well	
– Truncate	and	direct	path	load	only	used	in	limited	
cases	

• MV	becomes	fragmented	after	certain	numbers	of	
refreshes

198

• Create	outside	table(s)	
– Populate	outside	table(s)	
– Switch	outside	table(s)	to	become	new	MV	or	MV	
partition	

• High	MV	availability		
• Efficiency	due	to	direct	load	

• Addresses	fragmentation	problem

In-place	refresh Out-of-place	refresh

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Overview	of	Synchronous	Refresh

• Materialized	View	and	base-tables	refreshed	together		
–Materialized	View	and	base-tables	always	“in	sync”	
–Materialized	Views	always	fresh	

• Improved	availability	of	Materialized	View	for	rewrite	
• Materialized	View	and	fact	tables	must	be	equi-partitioned	

– Partition	key	of	fact	table	must	functionally	determine	partition-key	of	MV	

• Synchronous	Refresh	uses	partition	exchange	of	changed	fact	table	and	
Materialized	View	partitions

199

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Data Bound Collations
Enhancements	to	tables/views	to		
support	searching	multilingual		
text	strings

200

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Data-Bound	Collations

“…	a	named	set	of	rules	describing	how	to	compare	and	match	character	strings	to	put	
them	in	a	specified	order…”	
• Based	on	the	ISO/IEC/ANSI	SQL	standard	9075:1999	
• Character	set	is	always	declared	at	the	database	level	
• Collation	declared	for	a	column		

– Does	not	determine	the	character	set	of	data	in	the	column	

• Why	is	it	important?	
– it	simplifies	application	migration	to	the	Oracle	Database	from	a	number	of	non-Oracle	databases	
implementing	collation	in	a	similar	way

201

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

1

Data-Bound	Collations
• Oracle	supports	around	100	linguistic	collations	

– Parameterized	by	adding	the	suffix	_CI	or	the	suffix	_AI		
• _CI	-	Specifies	a	case-insensitive	sort	
• 	_AI	-	Specifies	an	accent-insensitive	sort	

CREATE TABLE products
(product_code VARCHAR2(20 BYTE) COLLATE BINARY
, product_name VARCHAR2(100 BYTE) COLLATE GENERIC_M_CI
, product_category VARCHAR2(5 BYTE) COLLATE BINARY
, product_description VARCHAR2(1000 BYTE) COLLATE BINARY_CI
);

– Product_name	is	to	be	compared	using	GENERIC_M_CI	-	case-insensitive	version	of	generic	multilingual	
collation	

202

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

#oow17
Get	the	most	from	#oow17	-	Must-See	DW	and	Big	Data	Sessions	and	
Hands-on	Labs

203

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Big	Data	Warehousing	Review	of	#oow17
Download	our	complete	review	of	all	the	
key	Big	DW	sessions,	presenters,	
keynotes	and	links	to	social	media	sites	
etc:		

https://oracle-big-data.blogspot.co.uk/
2017/10/review-of-big-data-
warehousing-at.html

204

https://oracle-big-data.blogspot.co.uk/2017/10/review-of-big-data-warehousing-at.html
https://oracle-big-data.blogspot.co.uk/2017/10/review-of-big-data-warehousing-at.html
https://oracle-big-data.blogspot.co.uk/2017/10/review-of-big-data-warehousing-at.html
https://oracle-big-data.blogspot.co.uk/2017/10/review-of-big-data-warehousing-at.html
https://oracle-big-data.blogspot.co.uk/2017/10/review-of-big-data-warehousing-at.html
https://oracle-big-data.blogspot.co.uk/2017/10/review-of-big-data-warehousing-at.html
https://oracle-big-data.blogspot.co.uk/2017/10/review-of-big-data-warehousing-at.html
https://oracle-big-data.blogspot.co.uk/2017/10/review-of-big-data-warehousing-at.html

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement

The	preceding	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

205

206

