
Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Gentle introduction to
SQL Macros in Autonomous Database

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

About me….

• Keith Laker
• Product Manager for Analytic SQL and Autonomous DW
• Oracle

• Blog: oracle-big-data.blogspot.com
• Twitter: @ASQLBarista @AutonomousDW

• Email: keith.laker@oracle.com

2

http://http/oracle-big-data.blogspot.com
http://twitter.com/@ASQLBarista
http://twitter.com/@AutonomousDW
mailto:keith.laker@oracle.com?subject=Question%20about%20analytic%20SQL

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Agenda
• What is a SQL Macro?
• SQL Macros – simple examples of TABLE type SQL Macros
• Parameterized views using SQL Macros

• Wrap up

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is a SQL Macro?
• SQL Macros are new in Database 20c
• Allows SQL developers to encapsulate complex processing within a macro

which then be used anywhere inside SQL statement
• Two types of SQL Macros ->

1. TABLE expressions used in a FROM-clause
and coming soon…
2. SCALAR expressions used in SELECT list, WHERE/HAVING, GROUP

BY/ORDER BY clauses

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is a TABLE type SQL Macro?
• Two distinct types:

1. Parameterized Views
2. Polymorphic Views

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is a Parameterized View?
• Tables used in queries are fixed inside the definition of macro
• Arguments are passed in to select rows from those tables
• "shape" of queries returned is (typically) fixed.
• Common use of these parameterized views is when the scalar arguments

are used to select a subset of the rows that are then aggregated

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Parameterized View – Simply pass in arguments

CREATE FUNCTION budget (dept_no number
DEFAULT 10)
RETURN varchar2 SQL_MACRO(TABLE)
IS BEGIN
RETURN q’[
SELECT
d.deptno,
SUM(e.sal) budget,
ANY_VALUE(d.dname) department,
count(e.empno) headcount,
count(e.mgr) mgr_headcount

FROM emp e, dept d
WHERE d.deptno = :dept_no
AND e.deptno = d.deptno

GROUP BY d.deptno]’;
end BUDGET;
/

WITH east_coast as
(SELECT deptno
FROM dept
WHERE loc = 'Boston')

SELECT *
FROM budget(east_coast);

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is a Polymorphic View?
• Table valued macros that have one or more table arguments
– can additionally have scalar valued arguments as well!

• Input tables are used inside the query returned by macro.
• Example: anti-select where…
– for a given table return a query that skips columns of a given name or data-type
– Pass in generic predicates (e.g. rownum < n),
– Provide a functional syntax for existing syntax

select *
from NJ(sales, products, customers)

select *
from sales
natural join products
natural join customers

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Dynamic SQL Macros – Polymorphic Views
CREATE OR REPLACE FUNCTION row_sampler(t
DBMS_TF.Table_t, pct number DEFAULT 5)

RETURN VARCHAR2 SQL_MACRO(TABLE)
AS
BEGIN
RETURN q'{SELECT *

FROM t
order by dbms_random.value
fetch first row_sampler.pct percent rows

only}';
END;
/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Dynamic SQL Macros – Polymorphic Views
SELECT *

FROM row_sampler(t=>sh.sales, pct=>15);

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Using SQL Macros (TABLE) to Return a Range
• Generates an arithmetic progression of rows in the range [first, stop).
– First row will have the value first
– Each subsequent row's value will be step more than previous row's value

• Semantics of these macros are modeled after the Python's built-in range()
function
– PL/SQL Package
– PL/SQL Package Body

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Using SQL Macros to Return a Range
create or replace package GEN is

function gRANGE(gstop number)

return varchar2 SQL_MACRO(TABLE);

function gRANGE(gfirst number default 0, gstop number, gstep number default 1)

return varchar2 SQL_MACRO(Table);

end GEN;

/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Using SQL Macros to Return a Range – Function Overloading
create or replace package body GEN is

function gRANGE(gstop number)
return varchar2 SQL_MACRO(TABLE) is

begin
return q’{

select * from (select level-1 n from dual connect by level<=gstop) where gstop>0
}’;

end;

function gRANGE(gfirst number default 0, gstop number, gstep number default 1)
return varchar2 SQL_MACRO(TABLE) is

begin
return q’{

select gfirst+n*gstep n from grange(round((gstop-gfirst)/nullif(gstep,0)))
}’;

end;

end GEN;
/

Note: We have SQL Macro calling SQL Macros – NESTED Macros

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Examples - Using SQL Macros to Return a Range

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Updates to Dictionary Views

• {USER, ALL, DBA}_PROCEDURES views will have new column called
SQL_MACRO.
– Column can have the values NULL, SCALAR, or TABLE.

• Following SQM functions were created with the annotation SQL_MACRO,
SQL_MACRO(SCALAR), and SQL_MACRO(TABLE) respectively:

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Summary
• SQL Macros offers a simple SQL-based framework for encapsulating

business/technical logic
– Avoids the need to call custom PL/SQL procedures, functions within queries

• Automatically inherits all the usual in-database query optimizations

• Makes it possible to build parameterized views!

