
 
 

 



 

 

 

 

 

 



 

 

Before reading this document it is important that you understand Oracle’s parallel processing 

fundamentals discussed on our website.  

The focus of the paper you are now reading is on applying the fundamentals to an Oracle 

Database 11g Release 2 (11.2.0.2) environment and creating a data warehouse that can deal with a 

mixed workload running in parallel. 

To address these topics this paper covers a number of topics: 

 A short definition of mixed workloads 

 Getting ready for workload management 

 Automatic Degree of Parallelism and Concurrency 

 Parallel Statement Queuing for workload management 

 Examples: 

o User based workload management 

o Dynamic workload management based on statement execution times 

 

 

http://www.oracle.com/technetwork/database/features/bi-datawarehousing/dbbi-tech-info-sca-090608.html
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There are many different terms for a mixed workload in use today, active data warehousing, 

operational data warehousing etc. All indicate something similar, namely a diverse workload 

running on a data warehouse system concurrently. Whether it is continuous data loads while end 

users are querying data, or whether it is short running, OLTP like activities (both queries and 

trickle data loads) mixed in with more classic ad-hoc data intensive query patterns, all of these are 

mixed workloads as we define it in this paper. 

Within Oracle we assume that the workload is managed in a single database instance. There is no 

need (functionality wise) within Oracle to worry about continuous writes while end users are 

querying because supports full read consistency across transactions. This Oracle functionality is 

notably different from other data warehouse databases which typically do not support these 

levels of read consistency. 

Workload management - the understanding and management of a set of diverse workloads on a 

system - is really an ecosystem with many participants. It is ever-changing and therefore is one of 

these things in life that will always be in motion. As the workload changes, or the environment in 

which the workload runs, adjustments will be required to ensure everything runs smoothly. 

 

Figure 1. Continuous Improvements in Workload Management 
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At a high level, the cycle of continuous improvements begins with the definition of a workload 

plan. That definition should be based on a clear understanding of the actual workloads running 

on this system (more later on some of the required questions). That will be tested when the 

workloads are running on the system, and your main task is to monitor and adjust the workload. 

Adjusting - if all goes well and your plan is reasonable - is mostly required in the beginning when 

fine tuning of the plan is done.  

Once the system stabilizes and all small exceptions to the plan are corrected your main task is to 

monitor. This whole cycle will repeat itself upon changes to the workloads or to the system. It is 

crucial that major changes are planned for and not just resolved in an adjustment.  

To start creating effective workload management solutions it is crucial to understand the phases 

in above shown picture. 

To understand the workload for your given system you will need to gather information on the 

following main points: 

 

 Who is doing the work? - Which users are running workloads, which applications are 

running workloads? 

 What types of work are done on the system? - Are these workloads batch, ad-hoc, 

resource intensive (which resources) and are these mixed or separated in some form? 

 When are certain types being done? - Are there different workloads during different 

times of the day, are there different priorities during different time windows? 

 Where are performance problem areas? - Are there any specific issues in today's 

workload, why are these problems there, what is being done to fix these? 

 What are the priorities, and do they change during a time window? - Which of the 

various workloads are most important and when? 

 Are there priority conflicts? - And if so, who is going to make sure the right decisions 

are made on the real priorities? 

Understanding the workload is a crucial phase! If your understanding is incorrect, your plans are 

incorrect and you will see issues popping up during the initial running of the workload. Poorly 

understood workloads might even drive you back to square zero and cause a lot of issues when a 

system (like an operational DW) is mission critical. 
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Now that you know (in detail) the characteristics of your workload you can start to document it 

all and then implement this plan. It is recommended to document the details and reasoning for 

the decisions (as with all systems). Out of the documented plan you would create (already in 

Oracle speak, more later on the products): 

Create the required Resource Plans: 

For example: Nighttime vs. daytime, online vs. offline 

Create the resource groups: 

Map to users, application context or other characteristics  

Map based on estimated execution time  

Etc 

Set the overall priorities: 

Which resource group gets most resources (per plan/window) for IO, CPU, Parallel Processing  

Cap max utilizations that these sessions can use on the system  

Etc 

Create thresholds: 

Estimated execution times to determine in which group to run  

Reject sessions if too much time, CPU or IO is required (both estimated and actual)  

Downgrade (or upgrade) based on resources used  

Set queuing thresholds for parallel statements  

Etc 

Create throttles: 

Limit the number of active sessions  

Limit degrees of parallelism  

Limit the maximum CPU, IO that can be allocated  

Etc 

The above is just a small number of the things to consider when putting your plan into action 

and is mostly focused on Database Resource Manager and IO Resource Manager (IORM is 

Exadata only!). Also consider working with Services and Server Pools and when you running 

several databases on a system consider instance caging. 
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Last but not least you will put the plan into action and now monitor your workloads. As the 

system runs you will adjust the implemented settings. Those adjustments come at various levels: 

System Levels: 

Memory allocations  

Queuing Thresholds  

Maximum Parallel Processes running  

Server Pools  

Etc 

Resource Management Settings: 

Increase or Decrease throttles and thresholds  

Change the queuing guidelines  

CPU and IO levels  

Etc 

All of these adjustments should be minor tweaks... if there are major changes required you 

should consider a second look at your original assumptions and workload definition. 
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This section discusses concurrency and explains some of the relevant parameters and their 

impact, specifically in a mixed workload environment. Any mixed workload environment will 

have statements with varying degrees of parallelism running. All of it needs to live within its 

means of the resources available on the entire system. This chapter places some of the new 

Oracle Database 11g Release 2 features in that context. 

The idea behind calculating the Automatic Degree of Parallelism is to find the highest possible 

DOP (ideal DOP) that still scales. In other words, if we were to increase the DOP even more  

above a certain DOP we would see a tailing off of the performance curve and the resource cost / 

performance would become less optimal. Therefore the ideal DOP is the best 

resource/performance point for that statement. 

On a normal production system we should see statements running concurrently. On a Database 

Machine we typically see high concurrency rates, so we need to find a way to deal with both high 

DOP's and high concurrency.  

Queuing is intended to make sure we: 

1. Don't throttle down a DOP because other statements are running on the system  

2. Stay within the physical limits of a system's processing power  

Instead of making statements go at a lower DOP we queue them to make sure they will get all 

the resources they want to run efficiently without trashing the system. The theory - and hopefully 

- practice is that by giving a statement the optimal DOP the sum of all statements runs faster 

with queuing than without queuing. 

To determine how many statements we will consider running in parallel a single parameter 

should be looked at. That parameter is called PARALLEL_MIN_TIME_THRESHOLD. The 

default value is set to 10 seconds. So far there is nothing new here..., but do realize that anything 

serial (e.g. that stays under the threshold) goes straight into processing as is not considered in this 

paper. 

Now, if you have a system where you have two groups of queries, serial short running and 

potentially parallel long running ones, you may want to worry only about the long running ones 

with this parallel statement threshold. As an example, lets assume the short running stuff runs on 
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average between 1 and 15 seconds in serial (and the business is quite happy with that). The long 

running stuff is in the realm of 1 - 5 minutes. 

It might be a good choice to set the threshold to somewhere north of 30 seconds. That way the 

short running queries all run serial as they do today (if it is not broken, don't fix it) and allows the 

long running ones to be evaluated for (higher degrees of) parallelism. This makes sense because 

the longer running ones are (at least in theory) more interesting to unleash a parallel processing 

model on and the benefits of running these in parallel are much more significant (again, that is 

mostly the case). 

Now that you know how to control how many of your statements are considered to run in 

parallel, let’s talk about the specific degree of any given statement that will be evaluated. As the 

fundamentals paper describes this is controlled by PARALLEL_DEGREE_LIMIT. This 

parameter controls the degree on the entire cluster and by default it is CPU (meaning it equals 

Default DOP).  

For the sake of an example, let's say our Default DOP is 32. Looking at our 5 minute queries 

from the previous paragraph, the limit to 32 means that none of the statements that are evaluated 

for Auto DOP ever runs at more than DOP of 32. 

A basic assumption about running high DOP statements at high concurrency is that you at some 

point in time (and this is true on any parallel processing platform!) will run into a resource 

limitation. And yes, you can then buy more hardware (e.g. expand the Database Machine in 

Oracle's case), but that is not the point of this section... 

The goal is to find a balance between the highest possible DOP for each statement and the 

number of statements running concurrently, but with an emphasis on running each statement at 

that highest efficiency DOP. 

The PARALLEL_SERVER_TARGET parameter is the all important concurrency slider here. 

Setting this parameter to a higher number means more statements get to run at their maximum 

parallel degree before queuing kicks in.  PARALLEL_SERVER_TARGET is set per instance (so 

needs to be set to the same value on all 8 nodes in a full rack Database Machine). Just as a side 

note, this parameter is set in processes, not in DOP, which equates to 4* Default DOP (2 

processes for a DOP, default value is 2 * Default DOP, hence a default of 4 * Default DOP). 

Let's say we have PARALLEL_SERVER_TARGET set to 128. With our limit set to 32 (the 

default) we are able to run 4 statements concurrently at the highest DOP possible on this system 

before we start queuing. If these 4 statements are running, any next statement will be queued. 

To run a system at high concurrency the PARALLEL_SERVER_TARGET should be raised 

from its default to be much closer (start with 60% or so) to PARALLEL_MAX_SERVERS. By 
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using both PARALLEL_SERVER_TARGET and PARALLEL_DEGREE_LIMIT you can 

control easily how many statements run concurrently at good DOPs without excessive queuing. 

Because each workload is a little different, it makes sense to plan ahead and look at these 

parameters and set these based on your requirements. 
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The previous section did discuss parallel statement queuing as it is a key player in a concurrent 

environment. The following is a much closer look at statement queuing and it should be 

understood that this is looking purely at Oracle Database 11.2.0.2 (patchset 1 on top of 11g 

Release 2). 

 

Like I said, the statement queuing is really something introduced in 11.2.0.1, but I will refer to it 

with its enhancements in 11.2.0.2. To enable the new set of parallel features you must modify an 

init.ora parameter. Once you enable the new features you get a few more parameters that can be 

useful to work with if the default values proof they need some adjustments. These parameters 

form a hierarchy of sorts: 

 

Figure 2. Parameter Hierarchy 

Here we really only look at case #3 => Auto. When the database is set up for auto all new 

functionality is enabled. So you will get full Automatic DOP, full statement queuing and In-

memory parallel execution. 

Here we assume that the,default, 10 second threshold set via 

parallel_min_time_threshold is fine. 

 

One way of using parallel_degree_limit is to cap the DOP for every statement (inserts, 

updates and selects) to a set number (as discussed in the previous section). However it is much 

more flexible to leverage Database Resource Manager for that. Consequently it would be better 
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to use parallel_degree_limit as your safety net. In other words, it is your safeguard to 

an extreme DOP on the system. 

 

Figure 3. A quick look in SQL Monitor 

The above is an extreme case where we have automatic DOPs generated showing 56 and 64 

across a number of statements. Here we set parallel_degree_limit to 16, which is more 

akin to using it as a concurrency vehicle. It does however show the effect in Enterprise Manager 

and it does show there is no visual way of telling a parameter is kicking in! 

For 11.2.0.2 it is best to think of parallel_degree_limit as the safety net and use the 

groups in Database Resource Manager to enable caps on the DOPs.  

 

First of all, you should decide whether or not you want queuing and how aggressive you want to 

apply it in your system / your group.  

That is because queuing comes with both upsides and downsides. The upside is that each 

statement will run with a computed or set DOP, no downgrades. That means that you run a 

statement faster than if you run it with a lower DOP (provided the DOP calculation is 

reasonably well done). It also means that you do not thrash the system by using too much 

resources. 

The downside is an element of unpredictability. E.g. if the statement runs in 20 seconds today, it 

may run in 30 seconds tomorrow due to 10 seconds in the queue. An individual user may notice 
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these differences. Obviously, if you do not queue the users statement may simply get hammered 

and downgraded, making life much worse. 

The theory is that the upside outweighs the downside and that - overall - a workload on your 

system runs better and at faster aggregate times. 

 

To make the parameter settings a bit more tangible it pays to think of queuing as the point in 

time when you have enough statements running concurrently to accept wait times for new 

statements. Or differently put: find the optimal queuing point based on desired concurrency on 

your system. I call that minimal concurrency. 

 

Figure 4. Understanding Concurrency 

To visualize minimal concurrency consider two scenarios as shown in the graph above, one with 

a maximum DOP of 16, one with a maximum DOP of 32. Again, I used 

parallel_degree_limit, but you should do this by group and you will get the same 

calculation. By using the parallel_degree_limit it is just simpler to explain as there is 

only one value for the entire system. 

In the case of a DOP of 16, with parallel_servers_target at 128, you can run at 

minimum 4 statements concurrently. When the cap is set to 32, you can run 2 statements 

concurrently. 

There are two interesting things to note here.  
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One is that the above is a very conservative calculation in that we assume each statement runs in 

with that maximum allowed DOP. That is probably not the case, however if this is the case it 

may be worth elevating the cap a bit so statements can run faster with higher DOPs.  

Secondly, the match does not quite add up...  

The reason for my math being off is that the DOP is not the same as number of processes used 

to run this statement in parallel (or even better, it may not be the same - see partition wise joins 

for more on that). As Oracle uses producers and consumers the number of processes is often 

double the DOP. So for a DOP of 16, you often need 32 processes. 

Parallel_servers_target is set in processes (not in DOP), so on the conservative side 

we should assume 2 * DOP as the number of processes (hence the diagonal bar in the little graph 

blocks). And then the math all of a sudden adds up again... 

Since we are doing the math, this is the formula to use: 

 

Figure 5. The correct minimal concurrency 

You will have to think about the minimal concurrency per group in Database Resource Manager. 

Next up therefore, a little bit on DBRM and how you can set up groups in plans and work with 

the concurrency, queuing and DOP caps per group. 

 

Before you get excited, this is only going to touch on a small aspect of DBRM, which helps with 

the parallel execution functionality mentioned above. But to place that in some context I will 

quickly put down the basics of DBRM in a picture so we all get on board on terminology and 

high level concepts. 

 

Figure 6. Logical division of a cluster 

http://blogs.oracle.com/datawarehousing/2010/06/partition_wise_joins.html
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As a simple example, the above shows an 8-node RAC cluster divided into three resource 

groups. The cool thing about this is that as long as no one in Group 2 and 3 is working, group 1 

can have the entire machine's resources. As soon as the others start to submit work, group 1 gets 

throttled back to where each other group get its rightful resources. 

In DBRM the main entity is the resource plan. A resource plan consists of groups resource 

allocations and policies (known as directives and thresholds). Figure 7 shows a simple plan with 

three resource groups. The groups are called Static Reports, Tactical Queries and Ad-hoc 

Workload. Any request that comes into the database gets assigned to a specific group when this 

plan in active. Assignments can happen based on application context, based on Database user 

etc. Those are relatively static. The assignment can also happen based on estimated execution 

time, which is very dynamic. 

 

Figure 7. Basic DBRM workflow 

In 11.2.0.2 each of the resource groups can have a separate parallel statement queue (as shown 

above). 

Each group can have properties set to downgrade a statement to another group, or to reject the 

query from running in the first place if its estimated execution time is too long. You can also 

determine that a query gets terminated or cancelled if runs to long, this of course being evaluated 

on actual elapsed time. You'd want to catch the error in your application to make sure it is 

handled well: 

ERROR at line 1:  

ORA-12801: error signaled in parallel query server P000  

ORA-00040: active time limit exceeded - call aborted 
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The Enterprise Manager screen below shows some of these settings. 

 

Figure 8. DBRM Overview Screen 

Here we will focus on the directives for parallel execution. 

 

Parallel Execution directives focus on both limiting the maximum DOP and on managing the 

statement queue as is shown here: 
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Figure 9. Managing Statement Queuing and DOP 

 

This is what we should be using to cap the DOP on a system. Rather than using 

parallel_degree_limit which is system wide, here we specify the cap on a per resource 

group basis. Dividing your workload into groups allows you to specifically dictate what max 

DOP a certain group can run with, without interfering with other queries. Just to clarify, the 

numbers assigned do not need to add up to any given total (like max_parallel_servers). 

 

Slightly out of order, but it is much simpler than the next topic... This setting drives when a 

statement is ejected from the queue because it has been waiting too long. UNLIMITED means it 

will wait an unlimited number of seconds (also knows as eternity). The statement will "error out" 

after reaching the time limit. 

 

This is a per group threshold to queuing. As the name implies, on a per group basis you say how 

much of the space before we start queuing is given to this group. If we have a setting of 

parallel_servers_target = 128 the the above allocates 25% of that 128 to the 

LONG_SQL_GROUP. Translated, this means that once 32 processes are in use by sessions 

running within LONG_SQL_GROUP next sessions within this group will be queued.  

The total does not have to add up to 100%. In fact, UNLIMITED above equals to setting it to 

100% allowing this group to only queue processes hit 128 (using the above numbers). 

This over allocation has some interesting effects. The first is that it gives each group a certain 

leeway allowing it to queue a little later when the overall system is not busy. E.g. when nothing 

within MEDIUM and SHORT runs above, queuing will start no earlier than with 128 (e.g. 100%) 

processes in use for SHORT. When more processes run in other groups these groups use up 

their quota and SHORT will start queuing a bit sooner. That is because of the second 

file:///C:/Documents and Settings/jdijcks.ST-USERS/Local Settings/Temp/WindowsLiveWriter-429641856/supfiles18AE66B/em_dbrm_plan_px_details5.png
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phenomenon of never going over the limit set in parallel_servers_target for the 

system. 

 

Figure 10. Overallocation does not overrule system parameters 

The graph above (not always to scale!) shows this over allocation and capping in an extreme 

form. The blue group (group A) is allowed to use max percentage parallel servers target = 

unlimited, yet because group B (the green guys) are already using their maximum quota group A 

will start queuing sooner than "expected". 

When using more groups it therefore pays to consider raising the bar and increasing the overall 

head room for queuing. 

 

A great many systems today leverage services to divide a set of resources. Services works nicely 

with both DBRM and with statement queuing giving you another level of working with resource 

management. 
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Figure 11. Working within Services 

Consider two services created that divide the 8-node RAC system into 2 services called Gold and 

Silver. You can now layer the groups on top of the services. This allows you to separate the 

workloads in a physical environment (e.g. log onto service gold or silver) and then manage 

various consumer groups within that service. 

By using server pools you can choose to change the service "size" and add or revoke a node from 

a service at specific times (for example to run a large ETL load on service Gold you may want to 

add a node to it). 

Statement queuing gets still set within the group. But you must keep in mind that the service has 

only a limited number of nodes to its disposal and therefore a reduced number of processes in 

parallel_servers_target for the service. Each node has its number for 

parallel_servers_target and the aggregate for the whole system is Node count * 

parameter value. For the service it is node count within service * parameter value. 

 

As you can see from the above, there are a lot of ways to create a workload management system. 

The crucial piece is to understand your workload and then set the system up to handle such a 

workload. Different workloads require different solutions! 

For example the set up for a system that divides a data warehouse workload into short running, 

medium running and long running queries is different from a system that has OLTP style and 

DW style workloads. 

The first example would use dynamic assignment to consumer groups of queries based on 

estimated execution time. The second would probably leverage a user/application driven 

mapping to consumer groups. 

The latter may use a very wide range of parallel settings. OLTP would have very low DOP caps, 

almost never queue and get the high priority when on-line orders are being placed - e.g. maximize 
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concurrency. The former would potentially focus on overall throughput and allow queuing to 

make sure few statements are suffering from too much capping. 

 

 



 

19 

To better understand the theory, the following are two examples of a real running workload 

solution. All are geared towards the mixed workload scenario we are discussing in this paper. 

 

In DBRM I have created 2 plans, one called batch_plan and one called daytime_plan. The 

batch_plan favors long running queries from the user RETAIL and gives the resource group 

called BATCH_PLAN (that is linked to RETAIL - again for simplicity I use a 1:1 mapping to a 

user) 70% of the CPU capacity and gives a resource group called RT_CRITICAL 30% of the 

CPU capacity. RT_CRITICAL is linked to a single user called... RT_CRITICAL which will run 

our highly critical queries for this environment. 

The idea is that we are running a heavy workload with long running queries (batch type of stuff) 

within user RETAIL.  

 

Figure 12. Two plans managing this workload 

During the time window where we are running these batch like queries, we have the 

BATCH_PLAN enabled as is shown above. This means that with the current settings our critical 

queries run by RT_CRITICAL are squeezed to only 30% of CPU capacity. We have other 

throttles in place, but more about that later. First we will have a look at some of the query 

profiles and the result on our system of individual queries. 
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To show some of the characteristics for an individual query we run it with the BATCH_PLAN 

enabled and with nothing else running on the system. 

 

Figure 13. SQL Monitor showing a query 

We can see a couple of things, first off all the query is capped at DOP 64, running across 8 nodes 

of the database machine. Currently the query is in progress and clicking on the query will show 

the execution plan in action. This allows you to monitor long running queries in EM. The tool 

we are using here is called SQL Monitor. 

SQL Monitor shows us the progress and the plan, of which we see a part here: 

 

Figure 14. Cell Offload Efficiency on Exadata 

As you can see this plan is a real query doing real work. You can also see that for some of the 

data / IO pieces we collect information on the Exadata efficiency. Here we achieve 63% offload 

efficiency. That means rather than moving 126GB to the compute nodes we only move 46GB. 

We actually read that data with the peak capacity of my V1 hardware (note a V2 machine will 

push about 21GB or so per second), which is 14GB/sec as shown here: 
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Figure 15. IO and Memory footprint of our query 

You can see that we read at 14GB/sec in the top graph - yellow line. What is also interesting is 

that we see the memory build up underneath. E.g. as we are reading at peak levels we are building 

any constructs in memory and slowly increase the PGA usage. Once the IO is mostly done PGA 

starts going up and we work in PGA. 

 

Now that we have an idea about our batch queries, let's look at some characteristics of the critical 

queries. We have 5 of them in this scenario, and if we run them all by themselves they complete 

in around 5 seconds or so on average. Note nothing else is running on the system, so even while 

we have BATCH_PLAN active these 5 queries can use all CPU resources. This is because 

DBRM allows a group to use more resource as long as the other groups are not working on the 

system. 
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Figure 16. Short-running queries 

 

Now, the entire idea is to load up the machine with batch queries and show the effect of this 

load on the critical queries. With the batch plan, the critical queries will be squeezed for resources 

and show a large variation in runtime. We will then switch to the daytime_plan, and will see that 

the critical queries run as if nothing else is going on on the system. 

To  understand what is going on at the system and plan level let's have a look at the actual plans 

we will be using here. 

 

The BATCH_PLAN is the plan that favors the analytical or large batch queries. Here we can see 

(in order from top to bottom) the settings (in edit mode) for CPU, Parallelism and Thresholds: 
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Figure 17. Setting CPU Percentages 

 

 

Figure 18. Setting Parallel Directives 
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Figure 19. Setting Thresholds and Actions 

As you can see you can modify and create these plans within Enterprise Manager, under the 

Server Tab in DB Control. We have set CPU limits at 70% for RT_ANALYTICS. We have set a 

maximum DOP for RT_ANALYTICS at 64, and give it 70% of the available parallel processes 

set in parallel_servers_target. This means it starts queuing at 70% of 8 * 128. 

In this plan we have not worked with any thresholds. Again this is for simplicity reasons. If you 

look at the Thresholds it is important to understand that the Use Estimate? column signifies that 

we use the optimizer estimate for execution time to determine what to do. So before the query 

executes you can decide on thresholds and for example move something from RT_CRITICAL 

into RT_ANALYTICS.  

 

The following is the overview of the DAYTIME_PLAN. If it needs any editing you press Edit 

and get the tabbed version of the plan as we saw earlier in our BATCH_PLAN screenshots. 
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Figure 20. Overview of the DayTime plan 

As we can see in the DAYTIME_PLAN we did set thresholds but these are based on actual 

execution times (we left the Use Estimate? box unchecked!). 

Within the DAYTIME_PLAN we reversed the CPU settings and now are giving only 30% of CPU 

resources to the RT_ANALYTICS group. RT_ANALYTICS is also capped at a much lower DOP (16 

instead of 64) and will start queuing at 30% of the total number in 

parallel_servers_target. 

 

With the BATCH_PLAN on, we will first start a load on the system. The system is always loaded 

with 10 to 12 high octane queries like the one we looked at when it ran by itself. 
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Figure 21. A running system under the batch plan 

SQL Monitor above shows what is going on. We have five queries running at DOP 64 (with 128 

processes each). We see that subsequent statements are being queued to ensure we do not 

completely overload the system and use up all parallel processes.  

This statement queuing is an important workload management tool as it stops statements from 

being downgraded to serial (which happens once we run out of parallel processes).  

With the system loaded up with queries, we are starting our critical queries. As expected, the 

critical queries struggle to get enough resources. They are not queued in this case and get the 

appropriate DOP, but are starved for CPU (and IO). 
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Figure 22. Short running queries struggle for resources - as planned 

If you look closely above, you see that an RT_CRITICAL query completed in 1.3 minutes, one 

completed in 31 seconds and a third one is running. Eventually the latter queries would complete 

in around 25 seconds or so. This is of course a far cry from the 5 seconds on average. But it is 

expected as we place full emphasis on the batch jobs. 

Next we switch the plan to the DAYTIME_PLAN. In our case we do this via the UI, but in 

reality this would be scheduled, which is of course supported via the database scheduler. 

 

After we switch the plan we can see a couple of things. First of all we see the new DOP cap for 

any statement within RT_ANALYTICS. The cap is now set to 16: 
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Figure 23. Different DOPs and better runs 

As you can see we still have statement that completed under the old plan with DOP 64, but the 

new statements that started after we change the plan are now showing a cap of 16. 

If we now run the critical statements we will see that they run very near their original runtimes of 

5 seconds: 
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Figure 24. Running critical statements at optimal speed 

Note that I cropped the statement to show the queuing, the caps and the critical runtimes. 

 

While this scenario is relatively simple, you can quickly see the power of the functionality. Here 

we protect statements from downgrades to serial through queuing. We ensure the important 

workloads get the appropriate resource allocation when it matters (here we did it by time 

windows), and we can see how a heavy load can be managed to ensure critical work gets done.  

By using the parallelism in 11.2.0.2, Database Resource Manager and SQL Monitor (which is part 

of the EM Tuning pack!) you can manage your mixed workloads the way you want to manage 

them.  

How do I manage a workload if I do not have any users to map to consumer groups as shown 

before? Well you could use application context and other nice things in DBRM, but really, what 

if you want this to be driven by the amount of work to be done? 
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That is what we this example shows, a way of dynamically moving queries from one resource 

plan to the other BEFORE it executes. Doing the switch before the statement actually starts is 

beneficial in many cases. It certainly helps with getting the right resources allocated from the 

start. If all goes well, it also helps with runaway query prevention by choosing the right group 

(resource profile) for the statement. 

The following code (for credits read on) creates a dynamic switching system based on the 

optimizer's estimate of the execution time. We create 3 resource groups (one of which is 

OTHER_GROUPS - default on each system) which are assigned a query time. One group is for 

"long running" queries, the other for "medium" and one more for "short". All these are in "" 

because it is up to you (and me) to define what short means for you. So if your groups are 10, 

100 and 1000 seconds than that is what we use as switch boundaries. 

 

Figure 25. Use DBRM to dynamically switch based on execution times 

When a user submits a statement the database optimizer determines the estimated duration of 

that statement. Based on that estimate DBRM then assigns a query to a specific resource group, 

the statement then runs with the appropriate resources (parallel statement queuing, max parallel 

degree, CPU and IO etc.). 

To build something like this, have a look at this code example: 

begin  

dbms_resource_manager.create_pending_area();  

  /* Create consumer groups.  

   * By default, users will start in OTHER_GROUPS, which is 

automatically  

   * created for every database.  

   */  
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dbms_resource_manager.create_consumer_group(  

    'MEDIUM_SQL_GROUP',  

    'Medium-running SQL statements, between 1 and 15 minutes.  

Medium  priority.');  

dbms_resource_manager.create_consumer_group(  

    'LONG_SQL_GROUP',  

    'Long-running SQL statements of over 15 minutes.  Low 

priority.');  

  /* Create a plan to manage these consumer groups */  

dbms_resource_manager.create_plan(  

    'REPORTS_PLAN',  

    'Plan for daytime that prioritizes short-running queries');  

dbms_resource_manager.create_plan_directive(  

    'REPORTS_PLAN', 'SYS_GROUP', 'Directive for sys activity',  

    mgmt_p1 => 100);  

dbms_resource_manager.create_plan_directive(  

    'REPORTS_PLAN', 'OTHER_GROUPS', 'Directive for short-running 

queries',  

    mgmt_p2 => 70,  

    parallel_degree_limit_p1 => 4,  

    switch_time => 60, switch_estimate => TRUE, switch_for_call 

=> TRUE,  

    switch_group => 'MEDIUM_SQL_GROUP');  

dbms_resource_manager.create_plan_directive(  

    'REPORTS_PLAN', 'MEDIUM_SQL_GROUP', 'Directive for medium-

running queries',  

    mgmt_p2 => 20,  

    parallel_target_percentage => 80,  

    switch_time => 900, switch_estimate => TRUE, switch_for_call 

=> TRUE,  

    switch_group => 'LONG_SQL_GROUP');  

dbms_resource_manager.create_plan_directive(  

    'REPORTS_PLAN', 'LONG_SQL_GROUP', 'Directive for medium-

running queries',  

    mgmt_p2 => 10,  

    parallel_target_percentage => 50,  

    parallel_queue_timeout => 14400);  

dbms_resource_manager.submit_pending_area();  

end;  

/  

/* Allow all users to run in these consumer groups */  

exec dbms_resource_manager_privs.grant_switch_consumer_group( -  

  'public', 'MEDIUM_SQL_GROUP', FALSE);  
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exec dbms_resource_manager_privs.grant_switch_consumer_group( -  

  'public', 'LONG_SQL_GROUP', FALSE); 

The time based approach allows a system to be set up based on the work a statement will do and 

because it does not rely on a user to group mapping it is very flexible and handles a workload 

with a large number of concurrent sessions with limited setup requirements. 
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As we have seen in the above examples Oracle Database 11g Release 2 offers a number of ways 

to control and manage a complex, mixed workload for data warehousing. This capability, added 

to the rich data warehouse functionality in general, allows an Oracle data warehouse to handle 

highly demanding and complex workloads. 

 

 

 

 



 

 

 

 


