An Oracle White Paper
October 2010

Parallel Execution and Workload Management
for an Operational Data Warehouse

ORACLE

Oracle White Paper—Parallel Execution fundamentals

Table of Content

INtrodUCTION .. 1
Managing Mixed Workloads in a Data Warehouse 2
Understanding Parallel Statement Queuing..............ccccoooiiiiiiiiiiiiinnns 9
Working EXamples........cooooiiiiiii e 19

SUMMAAIY .. 33

Oracle White Paper—Parallel Execution fundamentals

Introduction
Before reading this document it is important that you understand Oracle’s parallel processing

fundamentals discussed on our website.

The focus of the paper you are now reading is on applying the fundamentals to an Oracle
Database 11g Release 2 (11.2.0.2) environment and creating a data warchouse that can deal with a

mixed workload running in parallel.
To address these topics this paper covers a number of topics:
e A short definition of mixed workloads
e Getting ready for workload management
e Automatic Degree of Parallelism and Concurrency
e Parallel Statement Queuing for workload management
e Examples:
o User based workload management

o Dynamic workload management based on statement execution times

http://www.oracle.com/technetwork/database/features/bi-datawarehousing/dbbi-tech-info-sca-090608.html

Oracle White Paper—Parallel Execution fundamentals

Managing Mixed Workloads in a Data Warehouse

There are many different terms for a mixed workload in use today, active data warehousing,
operational data warehousing etc. All indicate something similar, namely a diverse workload
running on a data warehouse system concurrently. Whether it is continuous data loads while end
users are querying data, or whether it is short running, OLTP like activities (both queries and
trickle data loads) mixed in with more classic ad-hoc data intensive query patterns, all of these are
mixed workloads as we define it in this paper.

Within Oracle we assume that the workload is managed in a single database instance. There is no
need (functionality wise) within Oracle to worty about continuous writes while end users are
querying because supports full read consistency across transactions. This Oracle functionality is
notably different from other data warehouse databases which typically do not support these

levels of read consistency.

Continuous Improvements

Workload management - the understanding and management of a set of diverse workloads on a
system - is really an ecosystem with many participants. It is ever-changing and therefore is one of
these things in life that will always be in motion. As the workload changes, or the environment in

which the workload runs, adjustments will be required to ensure everything runs smoothly.

Figure 1. Continuous Improvements in Workload Management

Oracle White Paper—Parallel Execution fundamentals

At a high level, the cycle of continuous improvements begins with the definition of a workload
plan. That definition should be based on a clear understanding of the actual workloads running
on this system (more later on some of the required questions). That will be tested when the
workloads are running on the system, and your main task is to monitor and adjust the workload.
Adjusting - if all goes well and your plan is reasonable - is mostly required in the beginning when
fine tuning of the plan is done.

Once the system stabilizes and all small exceptions to the plan are corrected your main task is to
monitor. This whole cycle will repeat itself upon changes to the workloads or to the system. It is
crucial that major changes are planned for and not just resolved in an adjustment.

Planning your Solution

To start creating effective workload management solutions it is crucial to understand the phases

in above shown picture.

Understand the Workload

To understand the workload for your given system you will need to gather information on the

following main points:

e Who is doing the work? - Which users are running workloads, which applications are

running workloads?

e What types of work are done on the system? - Are these workloads batch, ad-hoc,

resource intensive (which resources) and are these mixed or separated in some form?

e When are certain types being done? - Are there different workloads during different
times of the day, are there different priorities during different time windows?

e Where are petformance problem areas? - Are thete any specific issues in today's

workload, why are these problems there, what is being done to fix these?

e What are the priorities, and do they change during a time window? - Which of the

various workloads are most important and when?

e Are there priority conflicts? - And if so, who is going to make sure the right decisions
are made on the real priorities?

Understanding the workload is a crucial phase! If your understanding is incorrect, your plans are
incorrect and you will see issues popping up during the initial running of the workload. Pootly
understood workloads might even drive you back to square zero and cause a lot of issues when a
system (like an operational DW) is mission critical.

Creating and Implementing the Plan

Oracle White Paper—Parallel Execution fundamentals

Now that you know (in detail) the characteristics of your workload you can start to document it
all and then implement this plan. It is recommended to document the details and reasoning for
the decisions (as with all systems). Out of the documented plan you would create (already in

Oracle speak, more later on the products):

Create the required Resource Plans:

For example: Nighttime vs. daytime, online vs. offline

Create the resource groups:

Map to users, application context or other characteristics

Map based on estimated execution time

Etc

Set the overall priorities:

Which resoutce group gets most resources (pet plan/window) for IO, CPU, Parallel Processing
Cap max utilizations that these sessions can use on the system
Etc

Create thresholds:

Estimated execution times to determine in which group to run
Reject sessions if too much time, CPU or 10 is required (both estimated and actual)
Downgrade (or upgrade) based on resources used

Set queuing thresholds for parallel statements

Etc

Create throttles:

Limit the number of active sessions

Limit degrees of parallelism

Limit the maximum CPU, IO that can be allocated

Etc

The above is just a small number of the things to consider when putting your plan into action
and is mostly focused on Database Resource Manager and 10 Resource Manager (IORM is
Exadata onlyl). Also consider working with Services and Server Pools and when you running

several databases on a system consider instance caging.

Oracle White Paper—Parallel Execution fundamentals

Monitoring and Adjusting

Last but not least you will put the plan into action and now monitor your workloads. As the

system runs you will adjust the implemented settings. Those adjustments come at various levels:
System Levels:

Memory allocations

Queuing Thresholds

Maximum Parallel Processes running

Server Pools

Etc

Resource Management Settings:

Increase or Decrease throttles and thresholds
Change the queuing guidelines

CPU and IO levels

Etc

All of these adjustments should be minor tweaks... if there are major changes required you

should consider a second look at your original assumptions and workload definition.

Oracle White Paper—Parallel Execution fundamentals

Concepts for Concurrency

This section discusses concurrency and explains some of the relevant parameters and their
impact, specifically in a mixed workload environment. Any mixed workload environment will
have statements with varying degrees of parallelism running. All of it needs to live within its
means of the resources available on the entire system. This chapter places some of the new

Oracle Database 11g Release 2 features in that context.

The goal of Auto DOP

The idea behind calculating the Automatic Degree of Parallelism is to find the highest possible
DOP (ideal DOP) that still scales. In other words, if we were to increase the DOP even more
above a certain DOP we would see a tailing off of the petformance curve and the resource cost /
performance would become less optimal. Therefore the ideal DOP is the best

resource/performance point for that statement.

The goal of Queuing

On a normal production system we should see statements running concurrently. On a Database
Machine we typically see high concurrency rates, so we need to find a way to deal with both high
DOP's and high concurtency.

Queuing is intended to make sure we:
1. Don't throttle down a DOP because other statements are running on the system
2. Stay within the physical limits of a system's processing power

Instead of making statements go at a lower DOP we queue them to make sure they will get all
the resources they want to run efficiently without trashing the system. The theory - and hopefully
- practice is that by giving a statement the optimal DOP the sum of all statements runs faster
with queuing than without queuing,.

Increasing the Number of Potential Parallel Statements

To determine how many statements we will consider running in parallel a single parameter
should be looked at. That parameter is called PARALLEL, MIN_TIME_THRESHOLD. The
default value is set to 10 seconds. So far there is nothing new here..., but do realize that anything

serial (e.g. that stays under the threshold) goes straight into processing as is not considered in this
papet.
Now, if you have a system where you have two groups of queries, serial short running and

potentially parallel long running ones, you may want to worty only about the long running ones
with this parallel statement threshold. As an example, lets assume the short running stuff runs on

Oracle White Paper—Parallel Execution fundamentals

average between 1 and 15 seconds in serial (and the business is quite happy with that). The long
running stuff is in the realm of 1 - 5 minutes.

It might be a good choice to set the threshold to somewhere north of 30 seconds. That way the
short running queries all run serial as they do today (if it is not broken, don't fix it) and allows the
long running ones to be evaluated for (higher degrees of) parallelism. This makes sense because
the longer running ones are (at least in theory) more interesting to unleash a parallel processing
model on and the benefits of running these in parallel are much more significant (again, that is

mostly the case).

Setting a System Wide Maximum DOP for a Statement

Now that you know how to control how many of your statements ate considered to run in
parallel, let’s talk about the specific degree of any given statement that will be evaluated. As the
fundamentals paper describes this is controlled by PARALLEL, DEGREE_LIMIT. This
parameter controls the degree on the entire cluster and by default it is CPU (meaning it equals
Default DOP).

For the sake of an example, let's say our Default DOP is 32. Looking at our 5 minute queries
from the previous paragraph, the limit to 32 means that none of the statements that are evaluated
for Auto DOP ever runs at more than DOP of 32.

Concurrently Running a High DOP

A basic assumption about running high DOP statements at high concurrency is that you at some
point in time (and this is true on any parallel processing platform!) will run into a resource
limitation. And yes, you can then buy more hardware (e.g. expand the Database Machine in

Oracle's case), but that is not the point of this section...

The goal is to find a balance between the highest possible DOP for each statement and the
number of statements running concurrently, but with an emphasis on running each statement at
that highest efficiency DOP.

The PARALLEL_SERVER_TARGET parameter is the all important concurrency slider here.
Setting this parameter to a higher number means more statements get to run at their maximum
parallel degree before queuing kicks in. PARALLEL_SERVER_TARGET is set per instance (so
needs to be set to the same value on all 8 nodes in a full rack Database Machine). Just as a side
note, this parameter is set in processes, not in DOP, which equates to 4* Default DOP (2
processes for a DOP, default value is 2 * Default DOP, hence a default of 4 * Default DOP).

Let's say we have PARALLEL,_SERVER_TARGET set to 128. With our limit set to 32 (the
default) we are able to run 4 statements concurrently at the highest DOP possible on this system

before we start queuing. If these 4 statements are running, any next statement will be queued.

To run a system at high concurrency the PARALLEL, SERVER_TARGET should be raised
from its default to be much closer (start with 60% or so) to PARALLEL,_MAX_SERVERS. By

Oracle White Paper—Parallel Execution fundamentals

using both PARALLEIL_SERVER_TARGET and PARALLEL_DEGREE_LIMIT you can
control easily how many statements run concurtrently at good DOPs without excessive queuing.
Because each workload is a little different, it makes sense to plan ahead and look at these

parameters and set these based on your requirements.

Oracle White Paper—Parallel Execution fundamentals

Understanding Parallel Statement Queuing

The previous section did discuss parallel statement queuing as it is a key player in a concurrent
environment. The following is a much closer look at statement queuing and it should be
understood that this is looking purely at Oracle Database 11.2.0.2 (patchset 1 on top of 11g
Release 2).

A Step Back - When do you get this functionality?

Like I said, the statement queuing is really something introduced in 11.2.0.1, but I will refer to it
with its enhancements in 11.2.0.2. To enable the new set of parallel features you must modify an
init.ora parameter. Once you enable the new features you get a few more parameters that can be
useful to work with if the default values proof they need some adjustments. These parameters

form a hierarchy of sorts:

PX Features:

1. Parallel_degree policy = Manual *NONE
a) None of the parameters have any impact

PX Features:

2. Parallel_degree_policy = Limited

> + Auto DOP
a) Parallel_min_time_threshold = 10s
b) Parallel_degree limit= CPU
3. Parallel_degree_policy = Auto FX Features:
. . +« Auto DOP
a) Parallel_min_time_threshold = 10s - Queuing
b) Parallel_degree_limit= CPU + In-Memory

c) Parallel_servers_target = Set to Default DOP on Exadata

Figure 2. Parameter Hierarchy

Here we really only look at case #3 => Auto. When the database is set up for auto all new
functionality is enabled. So you will get full Automatic DOP, full statement queuing and In-

memory parallel execution.

Here we assume that the,default, 10 second threshold set via
parallel min time thresholdis fine.

Your Safety Net - Capping the maximum DOP

One way of using parallel degree limit is to cap the DOP for every statement (inserts,
updates and selects) to a set number (as discussed in the previous section). However it is much

more flexible to leverage Database Resource Manager for that. Consequently it would be better

Oracle White Paper—Parallel Execution fundamentals

touse parallel degree limit as your safety net. In other words, it is your safeguard to
an extreme DOP on the system.

CatecDatabase OON >

Monitored SQL Executions Before
Active in last »Z.—: " L —
Aratus Duw stion Mstance ID L Daer 10 Paquests
7% I 3 foebaztw RETAL
— : gtgous nena
_ 12m 2 2dusegl FETAR
< N i neman D - [RS R
v I 2 bpokiydsly RETAX A 7
v > 2 oesideth PETAN " [T R
v > 7 Soslbitnd: RETAN y e— '
v > % SpeRZmengut® . | RETAR b T Ry
3¢ IRz~ 2 coSrBhonéy0u RETAL Gie Ko [
3t e 2 bepgighvek2y RETAR e Lo a0m
" Degre of Parallelizm: 16
e o) 2 1sq¥qqfOes RETAR Gae tnsuncerusein I 50
: - - Cross Inrtance: Yes
3¢ s After Capping with Degree | i m sl -~
3 o Limitat DOP 16 e Ko
% T TIHEBF RETAR Ghe e NN
v o Deapsrie man e Se O~
v Dsommne e Gae Do I
£ e 2] St | RETAR Gie Do N

Figure 3. A quick look in SQL Monitor

The above is an extreme case where we have automatic DOPs generated showing 56 and 64
across a number of statements. Here we set parallel degree limit to 16, which is more
akin to using it as a concurrency vehicle. It does however show the effect in Enterprise Manager
and it does show there is no visual way of telling a parameter is kicking in!

For 11.2.0.2 it is best to think of parallel degree limit as the safety net and use the
groups in Database Resource Manager to enable caps on the DOPs.

Know when to start queuing parallel statements

First of all, you should decide whether or not you want queuing and how aggressive you want to
apply it in your system / your group.

That is because queuing comes with both upsides and downsides. The upside is that each
statement will run with a computed or set DOP, no downgrades. That means that you run a
statement faster than if you run it with a lower DOP (provided the DOP calculation is
reasonably well done). It also means that you do not thrash the system by using too much
resources.

The downside is an element of unpredictability. E.g. if the statement runs in 20 seconds today, it
may run in 30 seconds tomorrow due to 10 seconds in the queue. An individual user may notice

10

Oracle White Paper—Parallel Execution fundamentals

these differences. Obviously, if you do not queue the users statement may simply get hammered
and downgraded, making life much worse.

The theory is that the upside outweighs the downside and that - overall - a workload on your

system runs better and at faster aggregate times.

Calculating minimal concurrency

To make the parameter settings a bit more tangible it pays to think of queuing as the point in
time when you have enough statements running concurrently to accept wait times for new
statements. Or differently put: find the optimal queuing point based on desired concurrency on

your system. I call that minimal concurrency.

Number Queuing Starts
of
Parallel
Server
Processes

128 Ja

Parallel_servers_target

Minimal Concurrency

14 2 (conservative)

16 32 Parallel_degree_limit

Figure 4. Understanding Concurrency

To visualize minimal concurrency consider two scenarios as shown in the graph above, one with
a maximum DOP of 16, one with a maximum DOP of 32. Again, I used

parallel degree limit, butyou should do this by group and you will get the same
calculation. By using the parallel degree limit itis justsimpler to explain as there is

only one value for the entire system.

In the case of a DOP of 16, with parallel servers target at 128, you can run at
minimum 4 statements concurrently. When the cap is set to 32, you can run 2 statements

concurrently.

There are two interesting things to note here.

11

Oracle White Paper—Parallel Execution fundamentals

One is that the above is a very conservative calculation in that we assume each statement runs in
with that maximum allowed DOP. That is probably not the case, however if this is the case it
may be worth elevating the cap a bit so statements can run faster with higher DOPs.

Secondly, the match does not quite add up...

The reason for my math being off is that the DOP is not the same as number of processes used
to run this statement in parallel (or even better, it may not be the same - see partition wise joins

for more on that). As Oracle uses producers and consumers the number of processes is often
double the DOP. So for a DOP of 16, you often need 32 processes.

Parallel servers_ target is setin processes (notin DOP), so on the conservative side
we should assume 2 * DOP as the number of processes (hence the diagonal bar in the little graph
blocks). And then the math all of a sudden adds up again...

Since we are doing the math, this is the formula to use:
Parallel_servers_target

minimal concurrency = —— x 0.5
Parallel_degree_limit

Figure 5. The correct minimal concurtency

You will have to think about the minimal concurrency per group in Database Resource Manager.
Next up therefore, a little bit on DBRM and how you can set up groups in plans and work with
the concurrency, queuing and DOP caps per group.

Database Resource Manager (DBRM)

Before you get excited, this is only going to touch on a small aspect of DBRM, which helps with
the parallel execution functionality mentioned above. But to place that in some context I will
quickly put down the basics of DBRM in a picture so we all get on board on terminology and
high level concepts.

Figure 6. Logical division of a cluster

12

http://blogs.oracle.com/datawarehousing/2010/06/partition_wise_joins.html

Oracle White Paper—Parallel Execution fundamentals

As a simple example, the above shows an 8-node RAC cluster divided into three resource
groups. The cool thing about this is that as long as no one in Group 2 and 3 is working, group 1
can have the entire machine's resources. As soon as the others start to submit work, group 1 gets
throttled back to where each other group get its rightful resources.

In DBRM the main entity is the resource plan. A resoutce plan consists of groups resource
allocations and policies (known as directives and thresholds). Figure 7 shows a simple plan with
three resource groups. The groups are called Static Reports, Tactical Queries and Ad-hoc
Wotkload. Any request that comes into the database gets assigned to a specific group when this
plan in active. Assignments can happen based on application context, based on Database user
etc. Those are relatively static. The assignment can also happen based on estimated execution

time, which is very dynamic.

I

. Static
Request g Reports |

Queue

/ Tactical

| ———————

Ad-hoc
| Queue
Workload |

. Downgrade | | Reject

Figure 7. Basic DBRM workflow

In 11.2.0.2 each of the resource groups can have a separate parallel statement queue (as shown

above).

Each group can have properties set to downgrade a statement to another group, or to reject the
query from running in the first place if its estimated execution time is too long. You can also
determine that a query gets terminated or cancelled if runs to long, this of course being evaluated

on actual elapsed time. You'd want to catch the etror in your application to make sure it is

handled well:

ERROR at line 1:
ORA-12801: error signaled in parallel query server PO00
ORA-00040: active time limit exceeded - call aborted

13

Oracle White Paper—Parallel Execution fundamentals

The Enterprise Manager screen below shows some of these settings.

Ovacle Enterprive Manager (SYS) - Marilla firefox

o B oo s 1 o m om 1

£33 sestion [wtrs 5 0w S £y D Wiwrssd DW s] irtenrad oo (B Cmsbme Mactioe |) itk) 4 B Comtort WM L Webhome < rsdta
[ot s Compier) aneger (s13) & |

CORACLE Emerprine Manage g

Catadase (

e Caxteoxe

Sume Ovisdere DON > Negoome Pued >
View Resource Plan: PEAK_PLAN
Actom | Create Like
Plan PEAX PLAM
Descrption Plan o1 ondine thawe Shat Mearily priaritizes shortiunsing queries
lstances DEMA, DEBMZ, DEMD, DBMA, DBMS, DBNG. DEMT. DEMS
Agomatc Plan Swiichng Enstied falwe

s Saple ke
Astocited Schedder Wirdow(y)
Resource Afacations
Grovp Sabplen Compwst CPU IMMzaten Lovel] Level? Level] Laveld Leweld Loveld Levsl 7 Lewid
LONG_SOL_GROLP 0
MEDAM_SOL_GROUP EY
OTHER_GROUFS 100
SHORT_SCL_GROLP n
SYS_GROP £
Directive Values
Maximun Marivem Max Mie Time I Marinum
Mavimem Nusmberof Actheasion Maximum Estimated Shocking Purcentaye of
Degree ol Actve Quens Mads Space Dvecasion Thne Max 10e Anather Sembon Pacalied Serverns
oy P aSatiom Semiom Thmesut peg " Hed Time fod g Target
LONG_SOL_GROW® L UNLMITED UNUMTED UNUMITED UNLMTED UNLMTED UNUMTED ®
MEGILM_S0L_GROUP & UNUMTED UNUMTED UNUMITED UNUMTED UNLMTED UNUMTED “©
OTHER_GROUFS UNLMITED UNUMITED UNUMITED UNUMITED UNLMTED UNLMITED UNLMTED UNUMITED
SHORT_SOL_GROWP Lr.] UNLMSTED UNUMITED UNUMITED UNLMTED UNLMTED UNLMITED UNLAMTED
SYS_(ROP UNLMTED UNUMTED LMAMTED LNUMITED UNUMTED UNUMTED WMTED UNUMTED
Thresheld
Cxacution Yime Limh 10 Limh 10 Regawst Limh Revest ahes Use
Growp (Seq -y Acion iy Bt
LONG_SOL_GROUP 1200 UNUMITED UNUMTED ¥ Tha Sesscn (=} =}
MECIM_SOL_GROUP W00 LALMTED UNLMTED Swite 33 Greep E 2
LONG_SC,_GROLe
OTHER_GROUFS UMUMTED LNUMITED UNLMTED a o
SIORT_50L_GROUP 180 UNUMITED UNLMITED Switch 10 Grocp @ 2
NEDRM_SOL_GROLP
SY5_GROLP UNUMTED UNUMITED UNLMTED a o

Actions Creste Lie

Cater | Databane | Selp | Ersferaces | el 1 Looodt

Coprrght © VU8, 003, Cracte Al gt reserved
Crnche, S0 Ewards, Pocsietion ard RRex s 1Rgtered 3 ademans 5t Orack Corpontion wndir £ attietes Clnr rames Sy b Sadenarts of S1ar reopective Swrens

Figure 8. DBRM Overview Screen

Here we will focus on the directives for parallel execution.

DBRM and Parallel Execution Management

Parallel Execution directives focus on both limiting the maximum DOP and on managing the

statement queue as is shown here:

-

=)

=)

g

b

Ratun

§

14

Oracle White Paper—Parallel Execution fundamentals

Clusier Database DEM > Besource Plang >
Edit Resource Plan: PEAK_PLAM

Actions | Create Like % | GO

General | Parablelisem Segsion Pogl Undo Pool Thregholds |die Tiene

Specify & limit on the degeed of paralleliem for any operation issusd by (ke consumer group, @ limat o ke total number of parallel seners that can be used by all sessions o
I Iime 3 paraliel siatement can be queued

Graup Max Degrae of Parallelism Max Percentage of Parallel Servers Targst Pavallel dueus Tineout

LOMNG_S0L_GROUP =] % UNLIMITED

MEDIM_SOL_GROUP Ed &0 UNLIMITED

OTHER_GROUPS 16 F UNLIMITED

SHORT_SQL_GROLP 128 UNLIMITED UNLIMITED

SYS_GROUP URLIMITED UNLIMITED UNLIMITED
Genersl | Pasalelism | Segsion Pool Undo Pool Thesholds ldle Time

Figure 9. Managing Statement Queuing and DOP

Max Degree of Parallelism

This is what we should be using to cap the DOP on a system. Rather than using

parallel degree limit which is system wide, here we specify the cap on a per resource
group basis. Dividing your workload into groups allows you to specifically dictate what max
DOP a certain group can run with, without interfering with other queries. Just to clarify, the
numbers assigned do not need to add up to any given total (like max parallel servers).

Parallel Queue Timeout

Slightly out of order, but it is much simpler than the next topic... This setting drives when a
statement is ejected from the queue because it has been waiting too long. UNLIMITED means it
will wait an unlimited number of seconds (also knows as eternity). The statement will "error out"

after reaching the time limit.

Max Percentage of Parallel Servers Target

This is a per group threshold to queuing. As the name implies, on a per group basis you say how
much of the space before we start queuing is given to this group. If we have a setting of
parallel servers target = 128 the the above allocates 25% of that 128 to the
LONG_SQL_GROUP. Translated, this means that once 32 processes are in use by sessions
running within LONG_SQL_GROUP next sessions within this group will be queued.

The total does not have to add up to 100%. In fact, UNLIMITED above equals to setting it to
100% allowing this group to only queue processes hit 128 (using the above numbers).

This over allocation has some interesting effects. The first is that it gives each group a certain
leeway allowing it to queue a little later when the overall system is not busy. E.g. when nothing
within MEDIUM and SHORT runs above, queuing will start no earlier than with 128 (e.g. 100%)
processes in use for SHORT. When more processes run in other groups these groups use up
their quota and SHORT will start queuing a bit sooner. That is because of the second

15

file:///C:/Documents and Settings/jdijcks.ST-USERS/Local Settings/Temp/WindowsLiveWriter-429641856/supfiles18AE66B/em_dbrm_plan_px_details5.png

Oracle White Paper—Parallel Execution fundamentals

phenomenon of never going over the limit setin parallel servers_ target for the

system.
Nun'lfher 100% Utilization
o
Server
Processes 25[Parallel_max_servers

Hard limit at 128 => The sum of all
consumer groups % in use cannot
exceed the system wide target
Parallel_servers_target

128 ‘
If group A uses 64 processes
96 Group B is limited to 64 as well
‘ before queuing starts. ..
64 1 -]
Minimal

Minimal
Concurrency = 1

oncurrency = 4

32
0

€=

f

:

r
L4

Figure 10. Overallocation does not overrule system parameters

The graph above (not always to scalel) shows this over allocation and capping in an extreme
form. The blue group (group A) is allowed to use max percentage parallel servers target =
unlimited, yet because group B (the green guys) are already using their maximum quota group A

will start queuing soonet than "expected".

When using more groups it therefore pays to consider raising the bar and increasing the overall

head room for queuing.

Leveraging Services

A great many systems today leverage services to divide a set of resources. Services works nicely
with both DBRM and with statement queuing giving you another level of working with resource

management .

16

Oracle White Paper—Parallel Execution fundamentals

Service Gold € | > Service Silver

Figure 11. Working within Services

Consider two services created that divide the 8-node RAC system into 2 services called Gold and
Silver. You can now layer the groups on top of the services. This allows you to separate the
workloads in a physical environment (e.g. log onto service gold or silver) and then manage

various consumer groups within that service.

By using setver pools you can choose to change the service "size" and add or revoke a node from
a service at specific times (for example to run a large ETL load on service Gold you may want to
add a node to it).

Statement queuing gets still set within the group. But you must keep in mind that the service has
only a limited number of nodes to its disposal and therefore a reduced number of processes in
parallel servers target for the service. Each node has its number for

parallel servers target and the aggregate for the whole system is Node count *
parameter value. For the service it is node count within service * parameter value.

Setting up your system

As you can see from the above, there are a lot of ways to create a workload management system.
The crucial piece is to understand your workload and then set the system up to handle such a

workload. Different workloads require different solutions!

For example the set up for a system that divides a data warehouse workload into short running,
medium running and long running queries is different from a system that has OLTP style and
DW style workloads.

The first example would use dynamic assighment to consumer groups of queries based on
estimated execution time. The second would probably leverage a user/application driven

mapping to consumer groups.

The latter may use a very wide range of parallel settings. OLTP would have very low DOP caps,
almost never queue and get the high priority when on-line orders are being placed - e.g. maximize

17

Oracle White Paper—Parallel Execution fundamentals

concurrency. The former would potentially focus on overall throughput and allow queuing to

make sutre few statements are suffering from too much capping.

18

Oracle White Paper—Parallel Execution fundamentals

Working Examples

To better understand the theory, the following are two examples of a real running workload
solution. All are geared towards the mixed workload scenario we are discussing in this paper.

Example 1: Multi-plan DBRM Workload Management

In DBRM I have created 2 plans, one called batch_plan and one called daytime_plan. The
batch_plan favors long running queries from the user RETAIL and gives the resource group
called BATCH_PLAN (that is linked to RETAIL - again for simplicity I use a 1:1 mapping to a
user) 70% of the CPU capacity and gives a resource group called RT_CRITICAL 30% of the
CPU capacity. RT_CRITICAL is linked to a single user called... RT_CRITICAL which will run
our highly critical queries for this environment.

The idea is that we are running a heavy workload with long running queries (batch type of stuff)
within user RETAIL.

| Dracle Enterprise Manager (5YS) - ...

ORACLE Enterprise Manager Mg

Clygler Dalabase DEW =
Resource Manager Settings

Wiew and configure the currend resource manager settings

Active Resource Plan AN
Totad CPUs par Sener a8

Mumber CPLIs Lsed per Instance B (nstance Caging Disabled)
& TIP Use Instance ¢ aging 1o limil the numbér of CPUS used by each database malance Instance Caging s eénabled by acindling any rédour
cpu_cound parametar
Ayailable Resource Plans DATTIME_PLAN ¥ | Anivaie selenied Resowrce Flan) View selected Resource Pla

Clygter | Database | Selup | Preferences | Help | Logout

Copyright 9 1955, 2000, Oracle. AN rghts reserved
Oracle, JO Edwerds, PeopieSoft, and Rebek are registered trademarics of Oracke Conporation sndior i affiisles, Other names may be trademarks of their respective owhers

Figure 12. Two plans managing this workload

During the time window where we are running these batch like queties, we have the
BATCH_PLAN enabled as is shown above. This means that with the current settings our critical
queries run by RT_CRITICAL are squeezed to only 30% of CPU capacity. We have other
throttles in place, but more about that later. First we will have a look at some of the query
profiles and the result on our system of individual queries.

Running a Single Large Query

19

Oracle White Paper—Parallel Execution fundamentals

To show some of the characteristics for an individual query we run it with the BATCH_PLAN
enabled and with nothing else running on the system.

- - 2
| Dracle Enteipise Hanager (575] - M.+ m I
2o

CHPACLE Enneipiiss Manager 11

dlr Doidabonie DR >

sbcmitored S0L Executions

Active i Last | 1 b - Refeesh | 5w
Status f— [e— 501, I e - atubians Thme 10 Fequasty e Trndnt

+ I 1| Jorbatommgies | AETAL s La e N = | e

< [3 Gpechimicady | S [T 'L a00a) ru a0000 e

Figure 13. SQL Monitor showing a query

We can see a couple of things, first off all the query is capped at DOP 64, running across 8 nodes
of the database machine. Currently the query is in progress and clicking on the query will show
the execution plan in action. This allows you to monitor long running queries in EM. The tool
we are using here is called SQL Monitor.

SQL Monitor shows us the progress and the plan, of which we see a part here:

1 18 - ™ L%
LEL) S = e M
MM 203 —! L ™ | s R jros
BTG T a anw LA i
T b —_— i T AL
L e R T
19708 il I gy AT
L 4 . Lo -
LS a a (%] =
L L] r L2 33
ki] L P

Figure 14. Cell Offload Efficiency on Exadata

As you can see this plan is a real query doing real work. You can also see that for some of the
data / IO pieces we collect information on the Exadata efficiency. Here we achieve 63% offload
efficiency. That means rather than moving 126GB to the compute nodes we only move 46GB.

We actually read that data with the peak capacity of my V1 hardware (note a V2 machine will
push about 21GB or so per second), which is 14GB/sec as shown here:

20

Oracle White Paper—Parallel Execution fundamentals

Y Dirachs [nberprise Manager (575 S Lsecwthes Deiaib - Marilla Fired
fie (& Yem Hgloy feoimals Jook e Ia
=2 X w i m-l—g fPoutara e nu:uu—::u;a-;cmu;avnm_'m"-_wwa(-uﬁxw-w-ﬂ.p--cx_durna:-a.sq:s—x.-.l_'
(Y pmetion [o) 2miten (2 0w bracer o G bt Do | It D |] uickiinis | 0 [Corbert Dor-ptt (BB Sppent Fovtal (iriwers il Rostalemaratrationil)
| Twadle Erkewprie Manager (87%) - .. & L
[N = |

L Merbsdsengin (L Tirvee: B W S5 acinhics ik St atistics

cursten | w0 Baurfer 0 iU

[P st L‘:\“"‘- L) I 3-.-....

P il QP
& 0 ey, (E-008)

T
& 0 Theoaghpat () TN ERELER
ol Wt
W e pes
. (LR g

Figure 15. I0 and Memory footprint of our query

You can see that we tead at 14GB/sec in the top graph - yellow line. What is also interesting is
that we see the memory build up underneath. E.g. as we are reading at peak levels we are building
any constructs in memory and slowly increase the PGA usage. Once the 10 is mostly done PGA
starts going up and we work in PGA.

Critical Queries

Now that we have an idea about our batch queries, let's look at some characteristics of the critical
queries. We have 5 of them in this scenario, and if we run them all by themselves they complete
in around 5 seconds or so on average. Note nothing else is running on the system, so even while
we have BATCH_PLAN active these 5 queries can use all CPU resources. This is because
DBRM allows a group to use more resource as long as the other groups are not working on the
system.

21

Oracle White Paper—Parallel Execution fundamentals

Orache [nterpeise Manager (SYS) - Manitored SQU Dxecutions - Mazitla | irefox
G & Yew Hgoy fodests Jods b

£3Y C X (’m»m“au::... oo acke com: | LS ey corace dat sbane, rot wce pgMond.or % wget =COMEL Yo ac_da abane
153 2ntva [0 vk 1509 @ rvwmnsd W B0 |) trtwrad O |] Quicirds) D4 (BB Contwre owist (B sappurt Fodl (irten w.(.r.-m.um:-g
| Orache [nterpeive Masager (SYS) - M., © .

18]

CRACLE Enterprive Manage: 11g
atrol

Databiase (

Cusier Databane DEN >
Monitored SOL Executtions

Active I8 ast | 1 bow .

Aaun One ascmn it © e P alind [20 Pequasts Start
¢ Jroe [) Dize e '~
¢ B> 1 1OtegeteR S Lo R LT B e
o B> 1 NG N Size Ao e BELECT 30 000 _ITHM_BE
o B 1 MeasMDALYS Sim b e j o SOLECT 340 800 _ITEN_ 00
v W= QE=SITE S CRIT Sie e - BELECT 5302 SP_ITEM_ 00
v I | Megedsngn PETAR Go Lo NN - W 4209 PM axear WITH GRVIY A { SELECT Po

—_—
< -5(\! 2 tpehingicady o”s .".n ‘l) A0 P 4000 rv PECLARE oh IMARY_ NTES
Cluster | Database | Sstig | Pusferences | Hefp | Logodt

Copyrght © 1956, 2010, Ovacke. AJ rights reserved
Oracle, JO Ewards, Pacoieon, and Metek ars sogatered by sdemarts of Cracie Conporstion andkr £ siates Offer rimes mary B0 badtmarks Of Shek cotpactive owrers

Figure 16. Short-running queries

The Goal of the Case Study

Now, the entire idea is to load up the machine with batch queries and show the effect of this
load on the critical queries. With the batch plan, the critical queries will be squeezed for resources
and show a large variation in runtime. We will then switch to the daytime_plan, and will see that
the critical queries run as if nothing else is going on on the system.

To understand what is going on at the system and plan level let's have a look at the actual plans
we will be using here.

BATCH_PLAN

The BATCH_PLAN is the plan that favors the analytical or large batch queries. Here we can see
(in order from top to bottom) the settings (in edit mode) for CPU, Parallelism and Thresholds:

22

Oracle White Paper—Parallel Execution fundamentals

CRACLE Ertmprive Mansges 119 -
Databass Control Chugtir

Couger Datahae DEM > Bejource Plang > Logged in A 515
Edit Regsurcs Flan: BATCH_FLAM

At [Cuataie) (G0} (Sowsin) (R) | sgoh)
Gemsral | Paolsbam Sedsicn Poal Usdo Pood Thessholdy e Tens
A Resonce Plan conliens Sescivas that speciy how sesources e alocabed 10 Congurr Geoups. Fot each Consumes Geoup, & dreive spacilies e amount of CPU estusces are sllotated R slso
speCibes bats Such 4% the masmam degire of parallelsm, enecution Dame, 3nd amount of V0, Tal aach Sesin in e Consumer Groep Can Condema. Tou Can snable a Resosce Flan manually of
wulnmabicaly, usng Scheduler Windows.
Pian BATCH_PLAN
Dwecnption | Blatch Bisch - Plan for off liew Réunt it Rt Ermintastint

instances DERI, DEMZ. DEMI, FERI, DEWS, DBMG, DEMT, DEMES | Ed1 |
e e 6 1 1 B, et P b v i Wt Pl

Resource Allocations
Mook (3 PRCErcags [Adeancid

paana)
[Gantip Subplan | Mas Unilizasion Limit. Percentage
o - ’ - -
RT_ANALYTICS T
RIF_CRIICAL n
| Gemssal | Palelsm Session Pool Usd Pool Thessholds kile Time

Actons | Covate ke ¥ | Ga Shiw SO | | Ravert | (_Apgk, |

Chuiter | Dutabine | S#lug | Brsferescss | Halp | Logest

Copyright & 1906, 2010, Onacie. Alirights ressrved
e, JO Exfwrdi, PacpinSofl, and Mintek ane tegistorne Braciemarts of Oracie Conperafion andie 2 afflaten. Oy rmed sty be bademarks of i ratpeciion wren
-

{ Onprls Ergaiags Wye

Figure 17. Setting CPU Percentages

SR ACLE Evtsrprice Mansges 11g - ¥
Databasy Cantrol Chgter

CusierDatabase DEW > EBesoure Flang * Logged in As 515
Edit Resaures Plan: BATCH_PLAM

Actisns [Crome Lie] (Z2) (Thowsa) (Eeen) (dgph)

Geoeral | Paralelem | Sensico Ppdl LedePood Theeshoiy ks Tene

Specily 8 brdl on B digrie ol for any ap icbued by thes igrinp, @ B gn the todal numbsr of paealil derams thl can be used by ol peksion n This corumer geaug, and the
Frcrtegrm Bt & paraibel Ealesinl Can b qeiued

Giaup I Mas Dagres of Patallalism’ Max Peicentage of Paiallel Senver Taigel Parallel Gusiie Timeeul

OTHER_GROUPS LLBATED LeLsaTER URLRATED

RT_ANALYTICS 4 o UNLMITED

RT_CRITICAL |wameD | |uLaTED UNLIAITED

Gonerdl | Parallelem | Seigion Popl Lsds Pool Thessholdy kile Teme
Aetnd | Cowite Lke % (G Shiw SOL | | Fieven || (_Appdy |

Cluster | Cubabasa | Sehg | Bieferces | Heio | Logosd

L 2 D, Cruci. Al rights reaasrved.
o Fecpin o e Bwten arg 1egenswd ey o Crmcl Conpor shon Srelion B8 arilaten O rama may D8 P aimari of Sad retpacied craTan
CEEPLTET

Figure 18. Setting Parallel Directives

23

Oracle White Paper—Parallel Execution fundamentals

CHRACLE Enterprive Mansges 11g Lo ErEdTosl Bem Looou

Clustir

Dasbase DE& > Fegoge Plar

Edit Resource Flan: BATCH_PLAN

Actisrd [Craste Like % (G0 Saow SL | | Rareen | | Apoly
Genersl Paolsbin Seddien Posl Ueds Poel Threahalds

Specy the lirre Surstion o The seiource bmdi prder which 8 bais Can Aretule 5 & contume grogp. Fasy of the bmds ane aoceeded The feiie can be
wwitchad by snother conmumer geoup, The ersiion’y SO0 operstion can be contaled, o the persion con b killed

g guntion Tims 1O Haquast Limh Havent (L2
fataup Ll {Sach| 190 Lisds {MB) Requests Action alter call? sasimabs 7
OTHER GROUPS [UNLMITED | UMLMTED UMLIITED = 0O O
RT_ANALYTICS UHLMITED | UMLBTED URMLIITED = o
RT_CRITICAL LIKLMITED LINLMTED UNLIBATED - o O

i Eaplslim S daFas Therhedds
Actions | Crmte Lile 38 (C2) Enow 5L} | Raven) |_appsy)
187 | Daabass | Seivg | Breferences | e | Logou

Cogryright B Ve, 000, racks, A right rederved
(e o, 0 Egrerwr g, Proge Son ared Soten e $ogoien e b sy 4 o O g0k Corpor aon waliie 15 it CIer o) Sy D 1 odevsh § OF Fee retpeciien (rafe)

Figure 19. Setting Thresholds and Actions

As you can see you can modify and create these plans within Enterprise Manager, under the
Server Tab in DB Control. We have set CPU limits at 70% for RT_ANALYTICS. We have set a
maximum DOP for RT_ANALYTICS at 64, and give it 70% of the available parallel processes
setinparallel servers target. This means it starts queuing at 70% of 8 * 128.

In this plan we have not worked with any thresholds. Again this is for simplicity reasons. If you
look at the Thresholds it is important to understand that the Use Estimate? column signifies that
we use the optimizer estimate for execution time to determine what to do. So before the query
executes you can decide on thresholds and for example move something from RT_CRITICAL
into RT_ANALYTICS.

DAYTIME_PLAN

The following is the overview of the DAYTIME_PLAN. If it needs any editing you press Edit
and get the tabbed version of the plan as we saw eatlier in our BATCH_PLAN screenshots.

24

Oracle White Paper—Parallel Execution fundamentals

CORACLE Enterprine Manager 11g Saa Defuaties e Lodod
Database Contrul Shutree
Shinier Datadase CEM > Benogrce Plarg >
View Resource Plan: DAYTIME_PLAN
Actony Crestelde & (Go) Ede) | Return
Flan DAYIIME PLAN
Descrgtion Short Gwary Blas - Online plan for Retall Ewdronamant
I=tarces ineme)
Adomatic Plin Swiching Enstied falve
5 Subgplen fahse
Assocanted Schedder Window(s)
Resource Allocations
Gtuup Sabplan Max Urdlizasion Limit Puicantage
OTHER_GROUPS
RT_ANALYTICS 0
RT_CRMCAL 0
Directive Values
Man Max Max bl Time
Max Degive Porcontage of Pasallel Max Mumbet Acthvation Esthmated M Blocking
o Pasallel Quene of Acthve Quens Max Unde Execution Max Wis Aasther
Gloup Pacalieliom Sarvers Taaget Thneou Semlons Thavesut ec) Space KBy Thne o) Time pac) Seabom feed)
OTHER _GROUPS UNUMITED UNUMITED UNUMITED UNUMITED UNLMITED . UNLBMITED. UNUMITED UNUMTED UNUMITED
RT_ANALYTICS 16 0 UNUMTED UNUMITED UNUMTED UNUMITED UNUMTED UNUMTED UNLMITED
RT_CRMCAL LNLMITED USUMTED UNUMITED UNUMITED UNUMITED UNUMITED UNUMTED UNUMTED UNUMITED
Thresholds
Execution Time Limit 10 Limit 10 Request Limit Ravert afte) Use
Gluup Seq mu Reqoosty) Actlem call? wethanate !
OTHER_GROUPS UNUMTED UNUMITED UNUMITED Cancel SOL o o
AT_ANALYTICS UNUMITED UNLMITED UNUMITED =]]
RY_CRIMCAL 30 UNLMITED UNUMITED Switch to Growp) o
AT_ANALYTICS
Actions | Create Like %/ (Co) e | Bgteen)
Chater | Databane | Setup | Erefesences | Help | Logedt

Figure 20. Overview of the DayTime plan
As we can see in the DAYTIME_PILAN we did set thresholds but these are based on actual

execution times (we left the Use Estimate? box unchecked!).

Within the DAYTIME_PLAN we reversed the CPU settings and now are giving only 30% of CPU
resources to the RT_ANALYTICS group. RT_ANALYTICS is also capped at a much lower DOP (16
instead of 64) and will start queuing at 30% of the total number in

parallel servers target.

Running the Batch

With the BATCH_PLAN on, we will first start a load on the system. The system is always loaded
with 10 to 12 high octane queries like the one we looked at when it ran by itself.

25

Oracle White Paper—Parallel Execution fundamentals

Oracke [nterpeise Manager (SYS) - Monitored SOU Dxecutions - Mazith irefox
G O Yew Mgy fdesls Yook Beb
k3 C X LM'MHWILAGIH::VXI'A.lcr\‘(:ru*-"ddmh!nmvfb\b‘t‘r«xmwn—ur_dwm

LA
163 vatrn 153 2tva (5 0 v 153 D Srvownsd W B |) bremri 0% |] Quickinks) 04 (5 Contare Dwitt (S5 Sapport Pt (veen . G u.;.«m.m.-..g)) Coeris Svg -
| Orache Enkerpeive Manages (SY5) - M., ©
-
CRACLE [metprine Manage: 11g e Petences Heb Lodod
Databiase Control
Causter Database DEM >
Monitored SOL Executions
Active o bast | 1 bowr . Refresh | Soeconds v | Ve Refenih |
e O o Mistann 1 0L 0 veer Parsdol e 10 Pageests St Taded 6t Text
P L ! Cgmymgeod SLTAR jrm 0 M WITH GIIY AS (SELRCT A
S o 1 AP Ibe SETAL e e WM OBV A UG 2
& % 0 1 abvgestyd RETAN e sarim WITH CBUY AS ($ELECT 2
,b 0w 1 VIt FETAL .)) b ANNN WTHOMIY ASCIRLRCY #
& “n 1 Guwbwowebn SETAR joo azare WITH OBUY AS { SELECT #
~'y S)tw ' et Trend sy BETAL .‘; .] anx0m™N WITH QMY ASC SOURCT
e
& arow 1 laciOgas3e) BETAR jo~ 39w WATH GRUY AS C IELECT £
grao ' gravharooel? BETAR Tlea Lo [VR - e WITH ORUY AS (RLECT A
9% . 1 Sp1eMbN 90y ETAL Tica 20 “.‘.‘- .- 42908 M WITH OBUY AS (S8LECT A
2 1 ewichudhiess BETAL Yo 20 B~ e 42404 P WATH CRUY AS (SRLECT &
O | Oveegrh@até FETAR Yo Lo WY o5 42400 P WATH OUY AS (SELECT A
'~ | dataiOhang RETAL Yoo Lo] 137 azessru WITH OBUY AS{ SELECT A
e —
v . - Y Fadpaseway SETAN Y Lo - § o PR 03 ru WITH OV AS { SRAECT A
< . >~ 1. Opahuyen g SETAN Ties 20 _m- j e aemrn e ru WITH ORUY AL (ALECY A
v HEH>> 1 At SETAN Ges 2o -uv. o AP AN WAEN CRUY AS (SRLECT A
< B> 1 gEISTe) BETAN T Lo RN o> 42400 P 43506 P WATH OMY AS (SELECT 2
< > 1 Bt . Yise Lo B2 2 2240 ru SELECT Sw Sa0_ITEM_D4
a0 ' IptNeguR K - v SELRCT Se0) 3ey_ITEM, D4
< 2 e Lo
o I 1 ety sroammen aze Lo e R SEUBET S 01T 08
o I ' RebasMbeive BT _CRITIC Gze Lo - j asraru MEORET) $5_s T B0
o B> 1 SeseSeay? KT OICA. Syze R --1- e “zzviem SELECT Sl Swu_1TEM_be
< N> 1 Metsdemgin SETAN G 2o r— R 30w A2084 P WITH OBUY AS (SELECT &
_—
v B> 8 Ggeilmicaly 515 o i» 2005 Fu DECLARE job SNARV_ISTE %

Figure 21. A running system under the batch plan

SQL Monitor above shows what is going on. We have five queries running at DOP 64 (with 128
processes each). We see that subsequent statements are being queued to ensure we do not
completely overload the system and use up all parallel processes.

This statement queuing is an important workload management tool as it stops statements from
being downgraded to serial (which happens once we run out of parallel processes).

With the system loaded up with queries, we are starting our critical queries. As expected, the
critical queries struggle to get enough resources. They are not queued in this case and get the
appropriate DOP, but are starved for CPU (and I10).

26

Oracle White Paper—Parallel Execution fundamentals

Orache [nterpeise Nanager (SYS) - Monitored SOU Dxecutions - Mazilla [irefox

e (2 Vew Mgoy fodests Yook Heb
k3 C X @ L.m""" [factardt 1. or acke core: | LS eeycorche]dat sbase it wnce saMont.or % et ~CBMBL ypeat a_dwabaoe J
»

16 vevrens (5] 2tva (B 0 o 150)) srvwwnsd W Mo |) rtwrs 0w |) Quickirds) D (B Cortare Dwit (B tupprt Pt (ke G p..;.mc,.m:.f ;) Coenis vy -
|| Orache Interpeive Manages (SY8) - M.+ k -
CRACLE [mtetprine Manage: 11g St fraterences Hem Loood
Databiase Control Chaster |
Cusier Database DEN > A
Monitored SQL Executions

Active inbast | 1 bowr - Refresh | S iacends v Step Relreid
e O s staone 1 0L 0 Ve Pacsel Outabiase Tiwe » Begansts Stant Corded S8, Temt
& e 1 adadwoginkd SLTAR LAl amworv WETH GOUY AR SELRCT £ o)
% B ' avasawrs et onen | S e [TRES josw amBIv SELECT 0 B0 ITEN_B4 |
& QO 1 SR Todnt BETAN pow P WATH GOV AS (SELEET A
S @i 1 Mayitwgiae FETAL e AT o e WITH COUY A% [SELECT A
& 14 1 OpbpOvameT BETAR jr= azrmrm WITH QOUT AS (SELECT #
P 1om ' G010t BETAN ' R i amarv WITH GOUY AS (SELECT £
): 1om 1 botyrieguy SETAL ‘ om i ’ an e v WITH GOUY AD [BEARCT
. 4o v hudvafstede SLTAR Sles Lo u-\v- §- amam v WETH GOV AN (SELECT A J
" G 1 Quwartanw BETAR Sica 2o [SRS Tt Pt WETH GO AS(SELECT £
™ o 1 fgeregs sy RETAL Y s -.‘4:- S amoirm WETH CIrY AS (BELECT A
< -:9- ' Agpabibin FETAL Yo 1. ‘)?h -«- amarv anarw WITH QOUY A (SELRCT £
< - Iom 1 radvartrsa FETAL Yoo Lo _ -lom WM Ammrm At WITH GOUY AD [SELRCT 7
[
o B> Y Rsbaabarvs T oammca Ghaze Ao -.'y!- ™ amonrw anymw BELLCT 50 SeU_ITEM B4
< 1 apootsed METAN Yoo 20 Y~ - a2 rm A WETH GO AS (SALECT £
< - 19 1 SusrsSeay) AT _CRITICAL :p.,. 1. u;osa .n:» A0 v EE T] BALECYT h S0 TN 24
< -."n 1 @StTrontyy FETAN G Lo ‘:-'- Lo amoev Apszmw WM GOV AD (RELECT #
- —cce 1 newedwrsate SFTAN Mee Do m——ee 4 vaaw azn24rm A WUIH GOUY AS [SeLecT 27
Chunter | Database | St | Bxefacsaces | Heh | Logest
Copyrght © 1936, 2010, Cracte. Al rights reserved
Crncim, JO Edwaeds, Paccleson, and Kok aro 1epesered rademants of Oracis Corportion adir 5 afleter Ofer rames mry 5 S'ademarks Of Sl retpecive Owners

Figure 22. Short running queries struggle for resources - as planned

If you look closely above, you see that an RT_CRITICAL query completed in 1.3 minutes, one
completed in 31 seconds and a third one is running. Eventually the latter queries would complete
in around 25 seconds or so. This is of course a far cry from the 5 seconds on average. But it is
expected as we place full emphasis on the batch jobs.

Next we switch the plan to the DAYTIME_PLAN. In our case we do this via the Ul but in
reality this would be scheduled, which is of course supported via the database scheduler.

A Better Run

After we switch the plan we can see a couple of things. First of all we see the new DOP cap for
any statement within RT_ANALYTICS. The cap is now set to 16:

27

Oracle White Paper—Parallel Execution fundamentals

Drache [nterprise Mansger (SYS) - Monitored SQU [xecutions - Mazitha | irefox

O (2 Ve Hgoy fodests Jods teb
(<SRN PR S . . Do — rer——y 7l
1623 vewrens £33 20vtva (5 0w v 8505) yrvownsd U B0 |) iremradl 0w | Quickirbs) 04 (5 Cortwre Dbt (5 Support Pt (Intem G Raeawncrty stionor | L) Coeris g -
|| Orache Enkerpeie Masager (SY8) - M., ¢ =
CRACLE Emetprine Manage: 11g et fraterences Hew Lot
Dataiase Control p
Cusier Datadase. DEN > Logged in As SY
Monitored SOU Executions
Active nlast | 1 how . Refresh | 5 weconds v Shep Relreh
Haus am sthon Mtance B S0 wier Pt Catatare Towe 10 Requests St Ended S0 T
& e V agiglocathin BETAR o anaIM WITH GOVY 4B (SEBCT £ 8
Y e 1\ imadienty RETAR o NI WETH GOWY AS [HELACT £
& e~ VAR RETAR jor AU
$ e~ t Onapeterad RETAR o PETEE T WTH QBT AS [SELBLT 7
@ -gn»:' Sk e BETAR .ﬁ). annmwm WITH GRUY AL BELECT &
& 1am Y squIdmAe BETAL jro- ansrv WETH GOUY AS (SELECT £
e -"- 1 byStoebdoen ALTAL lu. jree amrv DECLAME | sember = 0. B
) 1. ' brhdssade SETAL jree annrw T GOWY AL (SILRCT £
& 1. 1 P radvadise RETAL - A WETH GO AS (SELBCT A
¢ 2. 1 lowhivaZiogms SETAR G Lo Joom g a200 Pm WATH CRUY AS [SELBCT £
< .- " mgebhiseliw RETAR S 2 L | o ares v T GOUY AS (SELBCT 7
< R 1\ Ogutdredtes ACTAL G L [V [T LAl aanzerm s WITH GOUY AS [SELECT 7
< Vo ldpgatgnigd BELTAR ' = “300 M EER Y] TECLARE | sumber # 0. 0
< oo T AYAOTd SETAL B Lo VL - e rw 43408 N WM GOV AS [BILBET £
v 1 ST Mwewiey BETAR G Lo 2 b Y AN00 M CEE R WETH GOUY AS (SELBCT A
—
< —N- 1 ST SETAR ‘w- = AN - ANI0 MM LRCLAME | namaas = B
- A om SFTAN Mo 0o W3 M 2% «208 rm anzorm WATH GEUY AL SELECT A7)
Clusier | Database | St | Exefeceacas | el | Logast
Copyright © 196, 2010, Cracte. Al rghts reserved
Cracin, JO Ewae s, Facclrion, and Sntek are 19e8ered iradenarks of COracks Corpontion andicr £ ailetes. Ofar rames iy e ¥'ademarks of ok raipacive Owners

Figure 23. Different DOPs and better runs

As you can see we still have statement that completed under the old plan with DOP 64, but the
new statements that started after we change the plan are now showing a cap of 16.

If we now run the critical statements we will see that they run very near their original runtimes of

5 seconds:

28

Oracle White Paper—Parallel Execution fundamentals

.

Status D ation Instance 1D SOL I User Parallel
:‘b .2':.':! 1 6pmth7zf02z8r RETAIL
:i_’ -54.05 1 bl4Strxvhdues RETAIL
;i._a _1.Bm 1 2wa49rwvki4n0 RETAIL
Z.E‘J _1.$m 1 Gjnwzywxggq22z | RETAIL
:-;L-? 25m 1 ag9glcczgbhiw RETAIL
:‘l'._, 2.5m 1 g93smuvwDScmSg | RETAIL
;j_) 2Bm 1 dzv4ifuSma470 RETAIL
;b 26m 1 OmzgyhaSyrzad RETAIL
;l'._’ 26m 1 Salzynvi49uak RETAIL
:;; 30m 1 86qul3bStjd4u RETAIL

el 00 EEU 1 byB43¢hbdzyan RETAIL
e EEL 1 burdrdkasiup RETAIL B1e Le

8 R 1 giv7azvqyfiS8 RETAL Bie L
I

o | 1 9s9jxdfuzrbS9 RT_CRITICAL = @128 B8
o | 1 iptkhsgueleSt RT_CRITICAL @128 D s
o) I 4.0 1 2J3n523gm8271 RT_CRITICAL ﬁ 128 rgﬂi

Figure 24. Running critical statements at optimal speed

Note that I cropped the statement to show the queuing, the caps and the critical runtimes.

Conclusion

While this scenario is relatively simple, you can quickly see the power of the functionality. Here
we protect statements from downgrades to serial through queuing. We ensure the important
workloads get the appropriate resource allocation when it matters (here we did it by time
windows), and we can see how a heavy load can be managed to ensure critical work gets done.

By using the parallelism in 11.2.0.2, Database Resource Manager and SQL Monitor (which is part
of the EM Tuning pack!) you can manage your mixed workloads the way you want to manage
them.

Dynamic Management based on Execution Time

How do I manage a workload if I do not have any users to map to consumer groups as shown
before? Well you could use application context and other nice things in DBRM, but really, what
if you want this to be driven by the amount of work to be done?

29

Oracle White Paper—Parallel Execution fundamentals

That is what we this example shows, a way of dynamically moving queries from one resource
plan to the other BEFORE it executes. Doing the switch before the statement actually starts is
beneficial in many cases. It certainly helps with getting the right resources allocated from the
start. If all goes well, it also helps with runaway query prevention by choosing the right group
(resource profile) for the statement.

The following code (for credits read on) creates a dynamic switching system based on the
optimizer's estimate of the execution time. We create 3 resource groups (one of which is
OTHER_GROUPS - default on each system) which are assigned a query time. One group is for
"long running" queries, the other for "medium" and one more for "short". All these are in ""
because it is up to you (and me) to define what short means for you. So if your groups are 10,
100 and 1000 seconds than that is what we use as switch boundaries.

A
]] Request
vV
Estimata
I Execution
Time
\Ur’ Long
Running
Assign to
| Consumer
Grou
Medium — |
Running

Short
il Running pieve
Figure 25. Use DBRM to dynamically switch based on execution times

When a user submits a statement the database optimizer determines the estimated duration of
that statement. Based on that estimate DBRM then assigns a query to a specific resource group,
the statement then runs with the appropriate resources (parallel statement queuing, max parallel

degree, CPU and 1O etc.).

To build something like this, have a look at this code example:

begin
dbms resource manager.create pending area();

/* Create consumer groups.

* By default, users will start in OTHER GROUPS, which is
automatically

* created for every database.

*/

30

Oracle White Paper—Parallel Execution fundamentals

dbms resource manager.create consumer group (
'"MEDIUM SQL GROUP',
'Medium-running SQL statements, between 1 and 15 minutes.
Medium priority.");

dbms resource manager.create consumer group (
'LONG_SQL GROUP',
'Long-running SQL statements of over 15 minutes. Low
priority."');
/* Create a plan to manage these consumer groups */

dbms resource manager.create plan(
'REPORTS PLAN',
'Plan for daytime that prioritizes short-running queries');

dbms resource manager.create plan directive(
'REPORTS PLAN', 'SYS GROUP', 'Directive for sys activity',
mgmt pl => 100);

dbms resource manager.create plan directive(

'REPORTS_ PLAN', 'OTHER GROUPS', 'Directive for short-running
queries',

mgmt _p2 => 70,

parallel degree limit pl => 4,

switch time => 60, switch estimate => TRUE, switch for call
=> TRUE,

switch group => 'MEDIUM SQL GROUP');

dbms resource manager.create plan directive(

'REPORTS PLAN', 'MEDIUM SQL GROUP', 'Directive for medium-
running queries',

mgmt _p2 => 20,

parallel target percentage => 80,

switch time => 900, switch estimate => TRUE, switch for call
=> TRUE,

switch group => 'LONG_SQL GROUP');

dbms resource manager.create plan directive (

'REPORTS PLAN', 'LONG SQL GROUP', 'Directive for medium-
running queries',

mgmt _p2 => 10,

parallel target percentage => 50,

parallel queue timeout => 14400);

dbms resource manager.submit pending area();
end;

/
/* Allow all users to run in these consumer groups */

exec dbms_resource manager privs.grant switch consumer group(-
'public', '"MEDIUM SQL GROUP', FALSE);

31

Oracle White Paper—Parallel Execution fundamentals

exec dbms_resource manager privs.grant switch consumer group(-
'public', 'LONG_SQL GROUP', FALSE);

The time based approach allows a system to be set up based on the work a statement will do and
because it does not rely on a user to group mapping it is very flexible and handles a workload

with a large number of concurrent sessions with limited setup requirements.

32

Oracle White Paper—Parallel Execution fundamentals

Summary

As we have seen in the above examples Oracle Database 11g Release 2 offers a number of ways
to control and manage a complex, mixed workload for data warehousing. This capability, added
to the rich data warehouse functionality in general, allows an Oracle data warehouse to handle

highly demanding and complex workloads.

33

ORACLE

Parallel Execution and workload management
for an operational data warehouse

October 2010

Author: Jean-Pierre Dijcks

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
USA

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

& ‘ Oracle is committed to developing practices and products that help protect the environment

Copyright © 2010, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

0109

