

Best Practices for Gathering Optimizer
Statistics with Oracle Database 12c Release 2
O R A C L E W H I T E P A P E R | J U N E 2 0 1 7

BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Table of Contents

Introduction 1

How to Gather Statistics 1

When to Gather Statistics 7

Assuring the Quality of Optimizer Statistics 11

Gathering Statistics More Quickly 13

When Not to Gather Statistics 16

Gathering Other Types of Statistics 18

Conclusion 20

References 21

 1

Introduction

The Oracle Optimizer examines all of the possible plans for a SQL statement and picks the one with

the lowest cost, where cost represents the estimated resource usage for a given plan. In order for

the optimizer to accurately determine the cost for an execution plan it must have information about

all of the objects (table and indexes) accessed in the SQL statement as well as information about

the system on which the SQL statement will be run.

This necessary information is commonly referred to as optimizer statistics. Understanding and

managing optimizer statistics is key to optimal SQL execution. Knowing when and how to gather

statistics in a timely manner is critical to maintaining acceptable performance. This whitepaper is the

second of a two part series on optimizer statistics. The part one of this series, Understanding

Optimizer Statistics with Oracle Database 12c, focuses on the concepts of statistics and will be

referenced several times in this paper as a source of additional information. This paper will discuss

in detail, when and how to gather statistics for the most common scenarios seen in an Oracle

Database. The topics are:

» How to gather statistics

» When to gather statistics

» Improving the quality of statistics

» Gathering statistics more quickly

» When not to gather statistics

» Gathering other types of statistics

1 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

How to Gather Statistics

Strategy

The preferred method for gathering statistics in Oracle is to use the automatic statistics gathering. If you already

have a well-established, manual statistics gathering procedure then you might prefer to use that instead. Whatever

method you choose to use, start by considering whether the default global preferences meet your needs. In most

cases they will, but if you want to change anything then you can do that with SET_GLOBAL_PREFS. Once you have

done that, you can override global defaults where necessary using the DBMS_STATS “set preference” procedures.

For example, use SET_TABLE_PREFS on tables that require incremental statistics or a specific set of histograms.

In this way, you will have declared how statistics are to be gathered, and there will be no need to tailor parameters

for individual “gather stats” operations. You will be free to use default parameters for gather table/schema/database

stats and be confident that the statistics policy you have chosen will be followed. What’s more, you will be able to

switch freely between using auto and manual statistics gathering.

This section covers how to implement this strategy.

Automatic Statistics Gathering

The Oracle database collects statistics for database objects that are missing statistics or have “stale” (out of date)

statistics. This is done by an automatic task that executes during a predefined maintenance window. Oracle

internally prioritizes the database objects that require statistics, so that those objects, which most need updated

statistics, are processed first.

The automatic statistics-gathering job uses the DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC procedure,

which uses the same default parameter values as the other DBMS_STATS.GATHER_*_STATS procedures. The

defaults are sufficient in most cases. However, it is occasionally necessary to change the default value of one of the

statistics gathering parameters, which can be accomplished by using the DBMS_STATS.SET_*_PREF procedures.

Parameter values should be changed at the smallest scope possible, ideally on a per-object basis. For example, if

you want to change the staleness threshold for a specific table, so its statistics are considered stale when only 5% of

the rows in the table have changed rather than the default 10%, you can change the STALE_PERCENT table

preference for that one table using the DBMS_STATS.SET_TABLE_PREFS procedure. By changing the default value

at the smallest scope you limit the amount of non-default parameter values that need to be manually managed. For

example, here’s how you can change STALE_PRECENT to 5% on the SALES table:

exec dbms_stats.set_table_prefs(user,'SALES','STALE_PERCENT','5')

2 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

To check what preferences have been set, you can use the DBMS_STATS.GET_PREFS function. It takes three

arguments; the name of the parameter, the schema name, and the table name:

select dbms_stats.get_prefs('STALE_PERCENT',user,'SALES') stale_percent
from dual;

STALE_PERCENT

5

Setting DBMS_STATS Preferences

As indicated above, it is possible to set DBMS_STATS preferences to target specific objects and schemas to modify

the behavior of auto statistics gathering where necessary. You can specify a particular non-default parameter value

for an individual DBMS_STATS.GATHER_*_STATS command, but the recommended approach is to override the

defaults where necessary using “targeted” DBMS_STATS.SET_*_PREFS procedures.

A parameter override can be specified at a table, schema, database, or global level using one of the following

procedures (noting that AUTOSTATS_TARGET and CONCURRENT can only be modified at the global level):

SET_TABLE_PREFS

SET_SCHEMA_PREFS

SET_DATABASE_PREFS

SET_GLOBAL_PREFS

Traditionally, the most commonly overridden preferences have been ESTIMATE_PERCENT (to control the

percentage of rows sampled) and METHOD_OPT (to control histogram creation), but estimate percent is now better

left at its default value for reasons covered later in this section.

The SET_TABLE_PREFS procedure allows you to change the default values of the parameters used by the

DBMS_STATS.GATHER_*_STATS procedures for the specified table only.

The SET_SCHEMA_PREFS procedure allows you to change the default values of the parameters used by the

DBMS_STATS.GATHER_*_STATS procedures for all of the existing tables in the specified schema. This procedure

actually calls the SET_TABLE_PREFS procedure for each of the tables in the specified schema. Since it uses

SET_TABLE_PREFS, calling this procedure will not affect any new objects created after it has been run. New

objects will pick up the GLOBAL preference values for all parameters.

The SET_DATABASE_PREFS procedure allows you to change the default values of the parameters used by the

DBMS_STATS.GATHER_*_STATS procedures for all of the user-defined schemas in the database. This procedure

actually calls the SET_TABLE_PREFS procedure for each table in each user-defined schema. Since it uses

SET_TABLE_PREFS, this procedure will not affect any new objects created after it has been run. New objects will

pick up the GLOBAL preference values for all parameters. It is also possible to include the Oracle owned schemas

(sys, system, etc) by setting the ADD_SYS parameter to TRUE.

The SET_GLOBAL_PREFS procedure allows you to change the default values of the parameters used by the

DBMS_STATS.GATHER_*_STATS procedures for any object in the database that does not have an existing table

preference. All parameters default to the global setting unless there is a table preference set, or the parameter is

3 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

explicitly set in the GATHER_*_STATS command. Changes made by this procedure will affect any new objects

created after it has been run. New objects will pick up the GLOBAL_PREFS values for all parameters.

The DBMS_STATS.GATHER_*_STATS procedures and the automated statistics gathering task obeys the

following hierarchy for parameter values; parameter values explicitly set in the command overrule everything else. If

the parameter has not been set in the command, we check for a table level preference. If there is no table

preference set, we use the GLOBAL preference.

Figure 1: DBMS_STATS.GATHER_*_STATS hierarchy for parameter values

Oracle Database 12 Release 2 includes a new DBMS_STATS preference called

PREFERENCE_OVERRIDES_PARAMETER. Its effect is illustrated in Figure 2. When this preference is set to TRUE, it

allows preference settings to override DBMS_STATS parameter values. For example, if the global preference

ESTIMATE_PERCENT is set to DBMS_STATS.AUTO_SAMPLE_SIZE, it means that this best-practice setting will be

used even if existing manual statistics gathering procedures use a different parameter setting (for example, a fixed

percentage sample size such as 10%).

Figure 2: Using DBMS_STATS preference PREFERENCE_OVERRIDES_PARAMETER

4 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

ESTIMATE_PERCENT

The ESTIMATE_PERCENT parameter determines the percentage of rows used to calculate the statistics. The most

accurate statistics are gathered when all rows in the table are processed (i.e. a 100% sample), often referred to as

computed statistics. Oracle Database 11g introduced a new sampling algorithm that is hash based and provides

deterministic statistics. This new approach has an accuracy close to a 100% sample but with the cost of, at most, a

10% sample. The new algorithm is used when ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE (the default)

in any of the DBMS_STATS.GATHER_*_STATS procedures. Prior to Oracle Database 11g, DBAs often set the

ESTIMATE_PRECENT parameter to a low value to ensure that the statistics would be gathered quickly. However,

without detailed testing, it is difficult to know which sample size to use to get accurate statistics. It is highly

recommended that from Oracle Database 11g onwards that the default AUTO_SAMPLE_SIZE is used for

ESTIMATE_PRECENT. This is especially important because the new Oracle Database 12c histogram types,

HYBRID and Top-Frequency, can only be created if an auto sample size is used.

Many systems still include old statistics gathering scripts that manually set estimate percent, so when upgrading to

Oracle Database 12c Release 2, consider using the PREFERENCE_OVERRIDES_PARAMETER preference (see

above) to enforce the use of auto sample size.

METHOD_OPT

The METHOD_OPT parameter controls the creation of histograms1 during statistics collection. Histograms are a

special type of column statistic created to provide more detailed information on the data distribution in a table

column.

The default and recommended value for METHOD_OPT is 'FOR ALL COLUMNS SIZE AUTO', which means that

histograms will be created for columns that are likely to benefit from having 2them. A column is a candidate for a

histogram if it is used in equality or range predicates such as WHERE col1= 'X' or WHERE col1 BETWEEN 'A'

and 'B' and, in particular, if it has a skew in the distribution of column values. The optimizer knows which columns

are used in query predicates because this information is tracked and stored in the dictionary table

SYS.COL_USAGE$.

Some DBAs prefer to tightly control when and what histograms are created. The recommended approach to achieve

is to use SET_TABLE_PREFS to specify which histograms to create on a table-by-table basis. For example, here is

how you can specify that SALES must have histograms on col1 and col2 only:

begin
 dbms_stats.set_table_prefs(
 user,
 'SALES',
 'method_opt',
 'for all columns size 1 for columns size 254 col1 col2');
end;
/

1 More information on the creation of histograms can be found in part one of this white paper series: Understanding Optimizer Statistics Oracle Database

12c Release 2.

5 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

It is possible to specify columns that must have histograms (col1 and col2) and, in addition, allow the optimizer to

decide if additional histograms are useful:

begin
 dbms_stats.set_table_prefs(
 user,
 'SALES',
 'method_opt',
 'for all columns size auto for columns size 254 col1 col2');
end;
/

Histogram creation is disabled if METHOD_OPT is set to 'FOR ALL COLUMNS SIZE 1'. For example, you can

change the DBMS_STATS global preference for METHOD_OPT so that histograms are not created by default:

begin
 dbms_stats.set_global_prefs(
 'method_opt',
 'for all columns size 1');
end;
/

Unwanted histograms can be dropped without dropping all column statistics by using

DBMS_STATS.DELETE_COLUMN_STATS and setting the col_stat_type to ‘HISTOGRAM’.

6 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Manual Statistics Collection

If you already have a well-established statistics gathering procedure or if for some other reason you want to disable

automatic statistics gathering for your main application schema, consider leaving it on for the dictionary tables. You

can do so by changing the value of AUTOSTATS_TARGET parameter to ORACLE instead of AUTO using

DBMS_STATS.SET_GLOBAL_PREFS procedure.

exec dbms_stats.set_global_prefs('autostats_target','oracle')

To manually gather statistics you should use the PL/SQL DBMS_STATS package. The obsolete, ANALYZE

command should not be used. The package DBMS_STATS provides multiple DBMS_STATS.GATHER_*_STATS

procedures to gather statistics on user schema objects as well as dictionary and fixed objects. Ideally you should let

all of the parameters for these procedures default except for schema name and object name. The defaults and

adaptive parameter settings chosen by the Oracle are sufficient in most cases:

exec dbms_stats.gather_table_stats('sh','sales')

As mentioned above, if it does become necessary to change the default value of one of the statistics gathering

parameters, using the DBMS_STATS.SET_*_PREF procedures to make the change at the smallest scope

possible, ideally on a per-object bases.

Pending Statistics

When making changes to the default values of the parameter in the DBMS_STATS.GATHER_*_STATS

procedures, it is highly recommended that you validate those changes before making the change in a production

environment. If you don’t have a full scale test environment you should take advantage of pending statistics. With

pending statistics, instead of going into the usual dictionary tables, the statistics are stored in pending tables so that

they can be enabled and tested in a controlled fashion before they are published and used system-wide. To activate

pending statistics collection, you need to use one of the DBMS_STATS.SET_*_PREFS procedures to change value

of the parameter PUBLISH from TRUE (default) to FALSE for the object(s) you wish to create pending statistics for.

In the example below, pending statistics are enabled on the SALES table in the SH schema and then statistics are

gathered on the SALES table:

exec dbms_stats.set_table_prefs('sh','sales','publish','false')

Gather statistics on the object(s) as normal:

exec dbms_stats.gather_table_stats('sh','sales')

The statistics gathered for these objects can be displayed using the dictionary views called

USER_*_PENDING_STATS.

You can enable the usage of pending statistics by issuing an alter session command to set the initialization

parameter OPTIMIZER_USE_PENDING_STATS to TRUE. After enabling pending statistics, any SQL workload run

in this session will use the new non-published statistics. For tables accessed in the workload that do not have

pending statistics the optimizer will use the current statistics in the standard data dictionary tables. Once you have

validated the pending statistics, you can publish them using the procedure

DBMS_STATS.PUBLISH_PENDING_STATS.

exec dbms_stats.publish_pending_stats('sh','sales')

7 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

When to Gather Statistics

In order to select an optimal execution plan the optimizer must have representative statistics. Representative

statistics are not necessarily up to the minute statistics but a set of statistics that help the optimizer to determine the

correct number of rows it should expect from each operation in the execution plan.

Automatic Statistics Gathering Task

Oracle automatically collects statistics for all database objects, which are missing statistics or have stale statistics

during a predefined maintenance window (10pm to 2am weekdays and 6am to 2am at the weekends). You can

change the maintenance window that the job will run in via Enterprise Manager or using the DBMS_SCHEDULER and

DBMS_AUTO_TASK_ADMIN packages.

Figure 3: Changing the maintenance window during which the auto stats gathering job runs

If you already have a well-established statistics gathering procedure or if for some other reason you want to disable

automatic statistics gathering you can disable the task altogether:

begin
 dbms_auto_task_admin.disable(
 client_name=>'auto optimizer stats collection',
 operation=>null,
 window_name=>null);
end;
/

8 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Manual Statistics Collection

If you plan to manually maintain optimizer statistics you will need to determine when statistics should be gathered.

You can determine when statistics should be gathered based on staleness, as it is for the automatic job, or based on

when new data is loaded in your environment. It is not recommended to continually re-gather statistics if the

underlying data has not changed significantly as this will unnecessarily waste system resources.

If data is only loaded into your environment during a pre-defined ETL or ELT job then the statistics gathering

operations can be scheduled as part of this process. You should try and take advantage of online statistics gathering

and incremental statistics as part of your statistics maintenance strategy.

Online Statistics Gathering

In Oracle Database 12c, online statistics gathering “piggybacks” statistics gather as part of a direct-path data loading

operation such as, create table as select (CTAS) and insert as select (IAS) operations. Gathering statistics as part of

the data loading operation means no additional full data scan is required to have statistics available immediately

after the data is loaded.

Figure 4: Online statistic gathering provides both table and column statistics for newly created SALES2 table

9 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Online statistics gathering does not gather histograms or index statistics, as these types of statistics require

additional data scans, which could have a large impact on the performance of the data load. To gather the

necessary histogram and index statistics without re-gathering the base column statistics use the

DBMS_STATS.GATHER_TABLE_STATS procedure with the new options parameter set to GATHER AUTO. Note that

for performance reasons, GATHER AUTO builds histogram using a sample of rows rather than all rows in the table.

Figure 5: Set options to GATHER AUTO creates histograms on SALES2 table without regarding the base statistics

The notes column “HISTOGRAM_ONLY” indicates that histograms were gathered without re-gathering basic

column statistics. There are two ways to confirm online statistics gathering has occurred: check the execution plan

to see if the new row source OPTIMIZER STATISTICS GATHERING appears in the plan or look in the new notes

column of the USER_TAB_COL_STATISTICS table for the status STATS_ON_LOAD.

Figure 6: Execution plan for an on-line statistics gathering operation

Since online statistics gathering was designed to have a minimal impact on the performance of a direct path load

operation it can only occur when data is being loaded into an empty object. To ensure online statistics gathering

kicks in when loading into a new partition of an existing table, use extended syntax to specify the partition explicitly.

In this case partition level statistics will be created but global level (table level) statistics will not be updated. If

incremental statistics have been enabled on the partitioned table a synopsis will be created as part of the data load

operation.

Online statistics gathering can be disabled for individual SQL statements using the

NO_GATHER_OPTIMIZER_STATISTICS hint.

Incremental Statistics and Partition Exchange Data Loading

Gathering statistics on partitioned tables consists of gathering statistics at both the table level (global statistics) and

(sub)partition level. If the INCREMENTAL3 preference for a partitioned table is set to TRUE, the

DBMS_STATS.GATHER_*_STATS parameter GRANULARITY includes GLOBAL, and ESTIMATE_PERCENT

is set to AUTO_SAMPLE_SIZE, Oracle will accurately derive all global level statistics by scanning only those

3 More information can be found in part one of this white paper series, Understanding Optimizer Statistics With Oracle Database 12c Release 2.

10 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

partitions that have been added or modified, and not the entire table. Incremental global statistics works by storing a

synopsis for each partition in the table. A synopsis is statistical metadata for that partition and the columns in the

partition. Aggregating the partition level statistics and the synopses from each partition will accurately generate

global level statistics, thus eliminating the need to scan the entire table. When a new partition is added to the table,

you only need to gather statistics for the new partition. The table level statistics will be automatically and accurately

calculated using the new partition synopsis and the existing partitions’ synopses.

Note that partition statistics are not aggregated from subpartition statistics when incremental statistics are enabled.

If you are using partition exchange loads and wish to take advantage of incremental statistics, you will need to set

the DBMS_STATS table preference INCREMENTAL_LEVEL on the non-partitioned table to identify that it will be

used in partition exchange load. By setting the INCREMENTAL_LEVEL to TABLE (default is PARTITION), Oracle

will automatically create a synopsis for the table when statistics are gathered on it. This table level synopsis will then

become the partition level synopsis after the exchange.

However, if your environment has more trickle feeds or online transactions that only insert a small number of rows

but these operations occur throughout the day, you will need to determine when your statistics are stale and then

trigger the automated statistics gathering task. If you plan to rely on the STALE_STATS column in

USER_TAB_STATISTICS to determine if statistics are stale you should be aware that this information is updated

on a daily basis only. If you need more timely information on what DML has occurred on your tables you will need to

look in USER_TAB_MODIFICATIONS, which lists the number of INSERTS, UPDATES, and DELETES that occurs

on each table, whether the table has been truncated (TRUNCATED column) and calculate staleness yourself. Again,

you should note this information is automatically updated, from memory, periodically. If you need the latest

information you will need to manual flush the information using the

DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO function.

Preventing "Out of Range" Condition

Regardless of whether you use the automated statistics gathering task or you manually gather statistics, if end-users

start to query newly inserted data before statistics have been gathered, it is possible to get a suboptimal execution

plan due to stale statistics, even if less than 10% of the rows have changed in the table. One of the most common

cases of this occurs when the value supplied in a where clause predicate is outside the domain of values

represented by the [minimum, maximum] column statistics. This is commonly known as an ‘out-of-range’ error. In

this case, the optimizer prorates the selectivity based on the distance between the predicate value, and the

maximum value (assuming the value is higher than the max), that is, the farther the value is from the maximum or

minimum value, the lower the selectivity will be.

This scenario is very common with range partitioned tables. A new partition is added to an existing range partitioned

table, and rows are inserted into just that partition. End-users begin to query this new data before statistics have

been gathered on this new partition. For partitioned tables, you can use the DBMS_STATS.COPY_TABLE_STATS4

procedure (available from Oracle Database 10.2.0.4 onwards) to prevent "Out of Range" conditions. This procedure

copies the statistics of a representative source [sub] partition to the newly created and empty destination [sub]

partition. It also copies the statistics of the dependent objects: columns, local (partitioned) indexes, etc. and sets the

high bound partitioning value as the max value of the partitioning column and high bound partitioning value of the

previous partition as the min value of the partitioning column. The copied statistics should only be considered as

4 More information can be found in part one of this white paper series, Understanding Optimizer Statistics With Oracle Database 12c Release 2.

11 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

temporary solution until it is possible to gather accurate statistics for the partition. Copying statistics should not be

used as a substitute for actually gathering statistics.

Note by default, DBMS_STATS.COPY_TABLE_STATS only adjust partition statistics and not global or table level

statistics. If you want the global level statistics to be updated for the partition column as part of the copy you need to

set the flags parameter of the DBMS_STATS.COPY_TABLE_STATS to 8.

For non-partitioned tables you can manually set the max value for a column using the

DBMS_STATS.SET_COLUMN_STATS procedure. This approach is not recommended in general and is not a

substitute for actually gathering statistics.

Assuring the Quality of Optimizer Statistics

Good quality statistics are essential to be able to generate optimal SQL execution plans, but sometimes statistics

can be of poor quality and this fact could remain unnoticed. For example, older “inherited” systems might use scripts

that are no longer understood by the database administrators and, understandably, there is a reluctance to change

them. However, because Oracle continuously enhances statistics gathering features it is possible that best practice

recommendations will be neglected.

For these reasons, Oracle Database 12c Release 2 includes a new advisor called the Optimizer Statistics Advisor to

help you to improve the quality of statistics in the database. This diagnostic software analyzes information in the

data dictionary, assesses the quality of statistics and discovers how statistics are being gathered. It will report on

poor and missing statistics and generate recommendations to resolve these problems.

The principle behind its operation is to apply best-practice Rules to uncover potential problems. These problems are

reported as a series of Findings, which in turn can lead to specific Recommendations. Recommendations can be

implemented automatically using Actions (either immediately or via an auto-generated script to be executed by the

database administrator).

Figure 7: The Optimizer Statistics Advisor

The advisor task runs automatically in the maintenance window, but it can also be run on demand. The HTML or text

report generated by the advisor can be viewed at any time and the actions can be implemented at any time.

Figure 8 illustrates an example of a specific rule that leads to a finding, a recommendation and then an action to

resolve the problem:

Figure 8: Example of a rule, finding, recommendation and action.

12 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

The advisor task gathers and stores data in the data dictionary. It is a low performance overhead operation because

it performs an analysis of optimizer statistics and statistics gathering information (that’s already held in the data

dictionary). It does not perform a secondary analysis of data stored in application schema objects.

Figure 9: Reading the data dictionary, executing the task via a filter and storing the results.

Once the task is complete, the report can be generated in HTML or text format and an action (SQL) script can be
created too.

Figure 10: Reporting on the advisor task and generating the action SQL script.

It is a simple matter to view the report generated by the automated task:

select dbms_stats.report_advisor_task('auto_stats_advisor_task') as report from dual;

Alternatively, users with the ADVISOR privilege can execute the task manually and report on the results using the

following three-step process:

DECLARE
 tname VARCHAR2(32767) := 'demo'; -- task name
BEGIN
 tname := dbms_stats.create_advisor_task(tname);
END;
/
DECLARE
 tname VARCHAR2(32767) := 'demo'; -- task name
 ename VARCHAR2(32767) := NULL; -- execute name
BEGIN
 ename := dbms_stats.execute_advisor_task(tname);
END;
/
SELECT dbms_stats.report_advisor_task('demo') AS report
FROM dual;

The actions generated by the advisor can be implemented immediately:

DECLARE
 tname VARCHAR2 (32767) := 'demo'; -- task name
 impl_result CLOB; -- report of
 implementation
BEGIN
 impl_result := dbms_stats.implement_advisor_task(tname);
END;
/

13 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

In addition, Oracle Database 12c Real Application Testing includes useful performance assurance features such as

SQL Performance Advisor Quick Check. See the Oracle white paper, Database 12c Real Application Testing

Overview for more details (see Reference 3 on Page 21).

Gathering Statistics More Quickly

As data volumes grow and maintenance windows shrink, it is more important than ever to gather statistics in a timely

manner. Oracle offers a variety of ways to speed up the statistics collection, from parallelizing the statistics gathering

operations to generating statistics rather than collecting them.

Using Parallelism

Parallelism can be leveraged in several ways for statistics collection

» Using the DEGREE parameter

» Concurrent statistics gathering

» A combination of both DEGREE and concurrent gathering

Using the DEGREE Parameter

The DBMS_STATS, DEGREE parameter controls the number of parallel execution processes that will be used to

gather the statistics.

By default Oracle uses the same number of parallel server processes specified as an attribute of the table in the

data dictionary (Degree of Parallelism). All tables in an Oracle database have this attribute set to 1 by default. It may

be useful to explicitly set this parameter for the statistics collection on a large table to speed up statistics collection.

Alternatively you can set DEGREE to AUTO_DEGREE; Oracle will automatically determine the appropriate number of

parallel server processes that should be used to gather statistics, based on the size of an object. The value can be

between 1 (serial execution) for small objects to DEFAULT_DEGREE (PARALLEL_THREADS_PER_CPU X

CPU_COUNT) for larger objects.

Figure 11: Using parallelism via the DEGREE parameter

You should note that setting the DEGREE for a partitioned table means that multiple parallel sever processes will be

used to gather statistics on each partition but the statistics will not be gathered concurrently on the different

partitions. Statistics will be gathered on each partition one after the other.

Concurrent Statistic Gathering

Concurrent statistics gathering enables statistics to be gathered on multiple tables in a schema (or database), and

multiple (sub)partitions within a table concurrently. Gathering statistics on multiple tables and (sub)partitions

concurrently can reduce the overall time it takes to gather statistics by allowing Oracle to fully utilize a multi-

processor environment.

14 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Concurrent statistics gathering is controlled by the global preference, CONCURRENT, which can be set to MANUAL,

AUTOMATIC, ALL, OFF. By default it is set to OFF. When CONCURRENT is enabled, Oracle employs Oracle Job

Scheduler and Advanced Queuing components to create and manage multiple statistics gathering jobs concurrently.

Calling DBMS_STATS.GATHER_TABLE_STATS on a partitioned table when CONCURRENT is set to MANUAL or

ALL, causes Oracle to create a separate statistics gathering job for each (sub)partition in the table. How many of

these jobs will execute concurrently, and how many will be queued is based on the number of available job queue

processes (JOB_QUEUE_PROCESSES initialization parameter, per node on a RAC environment) and the available

system resources. As the currently running jobs complete, more jobs will be dequeued and executed until all of the

(sub)partitions have had their statistics gathered.

If you gather statistics using DBMS_STATS.GATHER_DATABASE_STATS,

DBMS_STATS.GATHER_SCHEMA_STATS, or DBMS_STATS.GATHER_DICTIONARY_STATS, then Oracle will

create a separate statistics gathering job for each non-partitioned table, and each (sub)partition for the partitioned

tables. Each partitioned table will also have a coordinator job that manages its (sub)partition jobs. The database will

then run as many concurrent jobs as possible, and queue the remaining jobs until the executing jobs complete.

However, to prevent possible deadlock scenarios multiple partitioned tables cannot be processed simultaneously.

Hence, if there are some jobs running for a partitioned table, other partitioned tables in a schema (or database or

dictionary) will be queued until the current one completes. There is no such restriction for non-partitioned tables.

Figure 12 illustrates the creation of jobs at different levels, when a DBMS_STATS.GATHER_SCHEMA_STATS

command has been issued on the SH schema. Oracle will create a statistics gathering job (Level 1 in Figure 12) for

each of the non-partitioned tables;

» CHANNELS

» COUNTRIES

» TIMES

Oracle will create a coordinator job for each partitioned table: SALES and COSTS, which in turn creates a statistics

gathering job for each of partition in SALES and COSTS tables, respectively (Level 2 in Figure 12).

Figure 12: List of the statistics gathering job created when Concurrent Statistics Gathering occurs on the SH schema

Each of the individual statistics gathering jobs can also take advantage of parallel execution if the DEGREE

parameter is specified.

15 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

If a table, partition, or sub-partition is very small or empty, the database may automatically batch the object with

other small objects into a single job to reduce the overhead of job maintenance.

Configuring Concurrent Statistics Gathering

The concurrency setting for statistics gathering is turned off by default. It can be turned on as follows:

exec dbms_stats.set_global_prefs('concurrent', 'all')

You will also need some additional privileges above and beyond the regular privileges required to gather statistics.

The user must have the following Job Scheduler and AQ privileges:

» CREATE JOB

» MANAGE SCHEDULER

» MANAGE ANY QUEUE

The SYSAUX tablespace should be online, as the Job Scheduler stores its internal tables and views in SYSAUX

tablespace. Finally, the JOB_QUEUE_PROCESSES parameter should be set to fully utilize all of the system

resources available (or allocated) for the statistics gathering process. If you don't plan to use parallel execution you

should set the JOB_QUEUE_PROCESSES to 2 X total number of CPU cores (this is a per node parameter in a RAC

environment). Please make sure that you set this parameter system-wise (ALTER SYSTEM ... or in init.ora file)

rather than at the session level (ALTER SESSION).

If you are going to use parallel execution as part of concurrent statistics gathering you should disable the parallel

adaptive multi user:

ALTER SYSTEM SET parallel_adaptive_multi_user=false;

Resource manager must be activated using, for example:

ALTER SYSTEM SET resource_manager_plan = 'DEFAULT_PLAN';

It is also recommended that you enable parallel statement queuing. This requires resource manager to be activated,

and the creation of a temporary resource plan where the consumer group "OTHER_GROUPS" should have queuing

enabled. By default, Resource Manager is activated only during the maintenance windows. The following script

illustrates one way of creating a temporary resource plan (pqq_test), and enabling the Resource Manager with this

plan.

-- connect as a user with dba privileges
begin
 dbms_resource_manager.create_pending_area();
 dbms_resource_manager.create_plan('pqq_test', 'pqq_test');
 dbms_resource_manager.create_plan_directive(
 'pqq_test',
 'OTHER_GROUPS',
 'OTHER_GROUPS directive for pqq',
 parallel_target_percentage => 90);
 dbms_resource_manager.submit_pending_area();
end;
/
ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'pqq_test' SID='*';

If you want the automated statistics gathering task to take advantage of concurrency, set CONCURRENT to either

AUTOMATIC or ALL. A new ORA$AUTOTASK consumer group has been added to the Resource Manager plan

used during the maintenance window, to ensure concurrent statistics gathering does not use too much of the system

resources.

16 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

When Not to Gather Statistics

Although the optimizer needs accurate statistics to select an optimal plan, there are scenarios where gathering

statistics can be difficult, too costly, or cannot be accomplished in a timely manner and an alternative strategy is

required.

Volatile Tables

A volatile table is one where the volume of data changes dramatically over time. For example, an orders queue

table, which at the start of the day the table is empty. As the day progresses and orders are placed the table begins

to fill up. Once each order is processed it is deleted from the tables, so by the end of the day the table is empty

again.

If you relied on the automatic statistics gather job to maintain statistics on such tables then the statistics would

always show the table was empty because it was empty over night when the job ran. However, during the course of

the day the table may have hundreds of thousands of rows in it.

In such cases it is better to gather a representative set of statistics for the table during the day when the table is

populated and then lock them. Locking the statistics will prevent the automated statistics gathering task from over

writing them. Alternatively, you could rely on dynamic sampling to gather statistics on these tables. The optimizer

uses dynamic sampling during the compilation of a SQL statement to gather basic statistics on the tables before

optimizing the statement. Although the statistics gathered by dynamic sampling are not as high a quality or as

complete as the statistics gathered using the DBMS_STATS package, they should be good enough in most cases.

Global Temporary Tables

Global temporary tables are often used to store intermediate results in an application context. A global temporary

table shares its definition system-wide with all users with appropriate privileges, but the data content is always

session-private. No physical storage is allocated unless data is inserted into the table. A global temporary table can

be transaction specific (delete rows on commit) or session-specific (preserves rows on commit). Gathering statistics

on transaction specific tables leads to the truncation of the table. In contrast, it is possible to gather statistics on a

global temporary table (that persist rows) but in previous releases its wasn’t always a good idea as all sessions

using the GTT had to share a single set of statistics so a lot of systems relied on dynamic statistics.

However, in Oracle Database 12c, it is now possible to have a separate set of statistics for every session using a

GTT. Statistics sharing on a GTT is controlled using a new DBMS_STATS preference

GLOBAL_TEMP_TABLE_STATS. By default the preference is set to SESSION, meaning each session accessing

the GTT will have its own set of statistics. The optimizer will try to use session statistics first but if session statistics

do not exist, then optimizer will use shared statistics.

17 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Figure 13: Changing the default behavior of not sharing statistics on a GTT to forcing statistics sharing

If you have upgraded from Oracle Database 11g and if database applications have not been modified to take

advantage of SESSION statistics for GTTs, you may want to keep GTT behavior consistent with the pre-upgrade

environment by setting the DBMS_STATS preference GLOBAL_TEMP_TABLE_STATS to SHARED (at least until

applications have been updated).

When populating a GTT (that persists rows on commit) using a direct path operation, session level statistics will be

automatically created due to online statistics gathering, which will remove the necessity to run additional statistics

gathering command and will not impact the statistics used by any other session.

Figure 14: Populating a GTT using a direct path operation results in session level statistics being automatically gathered

18 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Intermediate Work Tables

Intermediate work tables are typically seen as part of an ELT process or a complex transaction. These tables are

written to only once, read once, and then truncated or deleted. In such cases the cost of gathering statistics

outweighs the benefit, since the statistics will be used just once. Instead dynamic sampling should be used in these

cases. It is recommended you lock statistics on intermediate work tables that are persistent to prevent the

automated statistics gathering task from attempting to gather statistics on them.

Gathering Other Types of Statistics

Since the Cost Based Optimizer is now the only supported optimizer, all tables in the database need to have

statistics, including all of the dictionary tables (tables owned by SYS,SYSTEM, etc., and residing in the system and

SYSAUX tablespace) and the x$ tables used by the dynamic v$ performance views.

Dictionary Statistics

Statistics on the dictionary tables are maintained via the automated statistics gathering task run during the nightly

maintenance window. It is highly recommended that you allow the automated statistics gather task to maintain

dictionary statistics even if you choose to switch off the automatic statistics gathering job for your main application

schema. You can do this by changing the value of AUTOSTATS_TARGET to ORACLE instead of AUTO using the

procedure DBMS_STATS.SET_GLOBAL_PREFS.

exec dbms_stats.set_global_prefs('autostats_target','oracle')

Fixed Object Statistics

Beginning with Oracle Database 12c, fixed object statistics are collected by the automated statistics gathering task if

they have not been previously collected. Beyond that, the database does not gather fixed object statistics. Unlike

other database tables, dynamic sampling is not automatically used for SQL statements involving X$ tables when

optimizer statistics are missing so the optimizer uses predefined default values for the statistics if they are missing.

These defaults may not be representative and could potentially lead to a suboptimal execution plan, which could

cause severe performance problems in your system. It is for this reason that we strongly recommend you manually

gather fixed objects statistics.

You can collect statistics on fixed objects using DBMS_STATS.GATHER_FIXED_OBJECTS_STATS procedure.

Because of the transient nature of the x$ tables it is import that you gather fixed object statistics when there is a

representative workload on the system. This may not always be feasible on large systems due to additional

resources needed to gather the statistics. If you can’t do it during peak load you should do it after the system has

warmed up and the three key types of fixed object tables have been populated:

» Structural data - for example, views covering datafiles, controlfile contents, etc.

» Session based data - for example, v$session, v$access, etc.

» Workload data - for example, vsql, vsql_plan, etc.

It is recommended that you re-gather fixed object statistics if you do a major database or application upgrade,

implement a new module, or make changes to the database configuration. For example if you increase the SGA size

then all of the x$ tables that contain information about the buffer cache and shared pool may change significantly,

such as x$ tables used in v$buffer_pool or v$shared_pool_advice.

19 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

System Statistics

System statistics enable the optimizer to more accurately cost each operation in an execution plan by using

information about the actual system hardware executing the statement, such as CPU speed and IO performance.

System statistics are enabled by default, and are automatically initialized with default values; these values are

representative for most systems.

20 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Conclusion

In order for the Oracle Optimizer to accurately determine the cost for an execution plan it must have accurate

statistics about all of the objects (table and indexes) accessed in the SQL statement and information about the

system on which the SQL statement will be run. This two part white paper series explains in detail what optimizer

statistics are necessary, how they are used, and the different statistics collection method available to you.

By using a combination of the automated statistics gathering task and the other techniques described in this paper a

DBA can maintain an accurate set of statistics for their environment and ensure the optimizer always has the

necessary information in order to select the most optimal plan. Once a statistics gathering strategy has been put in

place, changes to the strategy should be done in a controlled manner and take advantage of key features such as

pending statistics to ensure they do not have an adverse effect on application performance.

21 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

References

1. Oracle white paper: Understanding Optimizer Statistics with Oracle Database 12c Release 2

2. Oracle white paper: Optimizer with Oracle Database 12c Release 2

3. Oracle white paper: Database 12c Real Application Testing Overview

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-statistics-concepts-12c-1963871.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-12c-1963236.pdf
http://www.oracle.com/technetwork/database/manageability/real-application-testing-wp-12c-1896131.pdf

22 BEST PRACTICES FOR GATHERING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0617

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

