

An Oracle White Paper

April 2012

Best Practices for Gathering Optimizer Statistics

Best Practices for Gathering Optimizer Statistics

Introduction ... 2

How to gather statistics ... 3

Automatic statistics gathering job .. 3

Manually statistics collection .. 3

ESTIMATE_PERCENT .. 4

METHOD_OPT ... 6

Pending Statistics .. 11

When to gather statistics ... 12

Automatic statistics gathering job .. 12

Manual statistics collection .. 13

Preventing "out of range" condition .. 14

Improving the efficiency of gathering statistics 15

Using parallelism ... 15

Incremental statistics ... 17

When not to gather statistics ... 18

Volatile tables .. 18

Global Temporary Tables .. 18

Intermediate work tables .. 19

Gathering other types of statistics .. 19

Dictionary statistics .. 19

Fixed object statistics .. 19

System statistics .. 20

Conclusion .. 20

Best Practices for Gathering Optimizer Statistics

2

Introduction

The Oracle Optimizer examines all of the possible plans for a SQL statement

and picks the one with the lowest cost, where cost represents the estimated

resource usage for a given plan. In order for the Optimizer to accurately

determine the cost for an execution plan it must have information about all of

the objects (table and indexes) accessed in the SQL statement as well as

information about the system on which the SQL statement will be run.

This necessary information is commonly referred to as Optimizer statistics.

Understanding and managing Optimizer statistics is key to optimal SQL

execution. Knowing when and how to gather statistics in a timely manner is

critical to maintaining acceptable performance. This whitepaper is the second

of a two part series on Optimizer statistics. The first part of this series,

Understanding Optimizer Statistics, focuses on the concepts of statistics and

will be referenced several times in this paper as a source of additional

information. This paper will discuss in detail, when and how to gather statistics

for the most common scenarios seen in an Oracle Database. The topics are

 How to gather statistics

 When to gather statistics

 Improving the efficiency of gathering statistics

 When not to gather statistics

 Gathering other types of statistics

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf

Best Practices for Gathering Optimizer Statistics

3

How to gather statistics

The preferred method for gathering statistics in Oracle is to use the supplied automatic statistics-

gathering job.

Automatic statistics gathering job

The job collects statistics for all database objects, which are missing statistics or have stale statistics by

running an Oracle AutoTask task during a predefined maintenance window. Oracle internally

prioritizes the database objects that require statistics, so that those objects, which most need updated

statistics, are processed first.

The automatic statistics-gathering job uses the DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC

procedure, which uses the same default parameter values as the other DBMS_STATS.GATHER_*_STATS

procedures. The defaults are sufficient in most cases. However, it is occasionally necessary to change

the default value of one of the statistics gathering parameters, which can be accomplished by using the

DBMS_STATS.SET_*_PREF procedures. Parameter values should be changed at the smallest scope

possible, ideally on a per-object bases. For example, if you want to change the staleness threshold for a

specific table, so its statistics are considered stale when only 5% of the rows in the table have changed

rather than the default 10%, you can change the STALE_PERCENT table preference for that one table

using the DBMS_STATS.SET _TABLE_PREFS procedure. By changing the default value at the smallest

scope you limit the amount of non-default parameter values that need to be manually managed.

Figure 1. Using DBMS_STATS.SET_TABLE_PREFS procedure to change STALE_PRECENT to 5% on SALES table

Manually statistics collection

If you already have a well-established statistics gathering procedure or if for some other reason you

want to disable automatic statistics gathering for your main application schema, consider leaving it on

for the dictionary tables. You can do so by changing the value of AUTOSTATS_TARGET parameter to

ORACLE instead of AUTO using DBMS_STATS.SET_GLOBAL_PREFS procedure.

Figure 2. Changing the automatic statistics gather job to just gather dictionary statistics

Best Practices for Gathering Optimizer Statistics

4

To manually gather statistics you should used the PL/SQL package, DBMS_STATS, which replaces the

now obsolete, ANALYZE1 command for collecting statistics. The package DBMS_STATS provides

multiple DBMS_STATS.GATHER_*_STATS procedures to gather statistics on both user schema objects

as well as dictionary and fixed objects. Ideally you should let all of the parameters for these procedures

default except for schema name and object name. The defaults and adaptive parameter settings chosen

by the Oracle are sufficient in most cases.

Figure 3. Using the DBMS_STATS.GATHER_TABLE_STATS procedure

As mentioned above, if it does become necessary to change the default value of one of the statistics

gathering parameters, using the DBMS_STATS.SET_*_PREF procedures to make the change at the

smallest scope possible, ideally on a per-object bases.

The two parameters most frequently changed from their default values are ESTIMATE_PERCENT and

METHOD_OPT, especially in releases prior to Oracle Database 11g Release 1.

ESTIMATE_PERCENT

The most commonly asked questions around statistics gathering best practices is ‘what sample size

should I use?’ This question relates to setting the ESTIMATE_PRECENT parameter of the

DBMS_STATS.GATHER_*_STATS procedures. The ESTIMATE_PERCENT parameter determines the

percentage of rows used to calculate the statistics. The most accurate statistics are gathered when all

rows in the table are processed (i.e., 100% sample). However, the larger the sample size the longer the

statistics gathering operation will take. So how do you come up with a sample size that provides

accurate statistics in a timely manner?

ESTIMATE_PERCENT prior to Oracle Database 11g

In Oracle Database 10g, the default value for ESTIMATE_PRECENT changed from a 100% sample to

AUTO_SAMPLE_SIZE. The goal of AUTO_SAMPLE_SIZE was for Oracle to determine the appropriate

sample size for each table, each time statistics were gathered. This would allow Oracle to automatically

change the sample size as the data within each table changed but still ensure statistics were gathered in

a timely manner. This approach worked well for most tables but it had some issues if there was an

extreme skew in the data. The AUTO_SAMPLE_SIZE algorithm often chose too small a sample size

1 ANALYZE command should only be used to VALIDATE or LIST CHAINED ROWS.

Best Practices for Gathering Optimizer Statistics

5

when an extreme skew was present. In such cases it was still better to manually specify the

ESTIMATE_PRECENT.

ESTIMATE_PERCENT in Oracle Database 11g

Oracle Database 11g introduced a new hash-based sampling algorithm that provides deterministic

statistics, addressing the two key aspects of accuracy and speed2. It has accuracy close to a 100%

sample (“reading all data”) but with the cost of, at most, a 10% sample. This new algorithm is only

used when ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE (the default) in any of the

DBMS_STATS.GATHER_*_STATS procedures.

The table below shows the results, of an easily reproducible test that gathers statistics with a 1%

sample, a 100% sample, and AUTO_SAMPLE_SIZE on the Lineitem table (230GB) from the TPC-H

benchmark with a scale factor of 300. The first line compares the elapsed time for each run, while the

subsequent lines shows the number of distinct values (NDV) calculated for each run for two different

columns, L_ORDERKEY and L_COMMENT.

Figure 4. Comparison of the elapse time taken & statistic generated by a 1%, 100% sample & AUTO_SAMPLE_SIZE

In this scenario the new AUTO_SAMPLE_SIZE algorithm was 9 times faster than the 100% sample and

only 2.4 times slower than the 1 % sample, while the quality of the statistics it produced were nearly

identical to a 100% sample (not different enough to change the execution plans). Note the timings for

this experiment may vary on your system and the larger the data set, the more speedup you will

encounter from the new algorithm.

It is highly recommended from Oracle Database 11g onward you let ESTIMATE_PRECENT default. If

you manually set the ESTIMATE_PRECENT parameter, even if it is set to 100%, you will get the old

statistics gathering algorithm.

2 For more information on the AUTO_SAMPLE_SIZE algorithm please refer to the VLDB paper,
Efficient and scalable statistics gathering for large databases in Oracle 11g

http://dl.acm.org/citation.cfm?id=1376721

Best Practices for Gathering Optimizer Statistics

6

METHOD_OPT

By far the most controversial parameter in the DBMS_STATS.GATHER_*_STATS procedures is the

METHOD_OPT parameter. The METHOD_OPT parameter controls the creation of histograms3 during

statistics collection. Histograms are a special type of column statistic created to provide more detailed

information on the data distribution in a table column. So why are histograms such a controversial

issue?

Histogram creation does extend the elapse time and the system resources needed for statistics

collection but the far bigger concerns people have with histograms comes from their interaction with

the bind peeking feature and how their presence affects the cardinality estimates for near popular

values.

Histograms and bind peeking

The adverse affect of histograms on bind peeking has been relieved in Oracle Database 11g with the

introduction of Adaptive Cursor Sharing but the fear still remains today. In order to explain how

Adaptive Cursor Sharing addresses this problem, let’s first examine the cause of the problem.

Prior to Oracle Database 11g histograms and bind peeking

Prior to Oracle Database 11g, when optimizing a SQL statement that contains bind variables in the

WHERE clause the Optimizer peeks at the values of these bind variables on the first execution (during

hard parse) of the statement. The Optimizer then determines the execution plan based on these initial

bind values. On subsequent executions of the query, no peeking takes place (no hard parse happens),

so the original execution plan, determined with the first set of bind values, will be used by all future

executions, even if the values of the bind variables change.

The presence of a histogram on the column used in the expression with the bind variable will help to

determine the most optimal execution plan for the initial set of bind values. Consequently, the

execution plan for the same SQL statement can be different, depending on the values of the bind

variables used for the initial hard parse.

There were two solutions to avoid this behavior: drop the histogram and stop collecting them in the

future or disable the bind peeking. You can determine which approach suits your pre-Oracle Database

11g environment best, by answering a simple question; Do all of the SQL statements in this

environment use bind variables or not?

3 More information on the creation of histograms can be found in part one of this series, Understanding
Optimizer Statistics.

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf

Best Practices for Gathering Optimizer Statistics

7

Disabling histogram creation

If your environment only has SQL statements with bind variables then it is better to drop the existing

histograms and disable histograms from being created in the future. Disabling histogram creation

ensures the execution plan will not change depending on the bind variable value and will furthermore

reduce the time it takes to gather statistics. Without the histograms on the column the Optimizer will

assume a uniform distribution of rows across the distinct values in a column and will use NDV to

determine the cardinality estimate when it peeks at the initial bind values in the SQL statements.

You can begin by dropping the existing statistics including the histogram using the

DBMS_STATS.DELETE_TABLE_STATS procedure.

Figure 5. Drop statistics including histograms on the Sales table prior to 11g

 Next, change the default value for the METHOD_OPT parameter to prevent histograms from being

created in the future by using the DBMS_STATS.SET_PARAM procedure. This ensures that both the

DBMS_STATS.GATHER_*_STATS procedures and the automatic statistics gathering job will not collect

histograms in the future.

Figure 6. Change the default value of the METHOD_OPT parameter prior to 11g

Finally you can re-gather statistics for the effected object using the

DBMS_STATS.GATHER_TABLE_STATS procedure.

Note in Oracle database 11g you can drop unwanted histograms without dropping all column statistics

by using DBMS_STATS.DELETE_COLUMN_STATS and setting the col_stat_type to histogram. You can

also disable histogram creation on a single table or just a column within that table using the

DBMS_STATS.SET_TABLE_PREFS procedure.

You should be aware that histograms can also be used for some join predicates and dropping them

may have an adverse effect on join cardinality estimates. In these cases it may be safer to disable bind

peeking.

Disabling bind peeking

If your environment has some SQL statements with bind variables and some with literal values then

you should disable bind peeking. By disabling bind peeking you will prevent the Optimizer from

peeking at the initial bind value and it will not use the histogram to determine the cardinality estimates

Best Practices for Gathering Optimizer Statistics

8

for the statement. Instead the Optimizer will assume a uniform distribution of rows across the distinct

values in a column and will use NDV to determine the cardinality estimate. This will ensure a

consistent execution plan for the statements with binds. But the SQL statements with literal values will

still be able to take advantage of the histograms and get the most optimal plan. You can disable bind

peeking by setting the underscore parameter _OPTIM_PEEK_USER_BINDS to FALSE.

Oracle Database 11g histograms and bind peeking

In Oracle Database 11g, the Optimizer has been enhanced to allow multiple execution plans to be used

for a single statement with bind variables. This functionality is called Adaptive Cursor Sharing 4and

relies on the monitoring of execution statistics to ensure the correct plan is used for each bind value.

On the first execution the Optimizer will peek the bind value and determine the execution plan based

on the bind values selectivity, just like it did in previous release. The cursor will be marked bind

sensitive if the Optimizer believes the optimal plan may depend on the value of the bind variable (for

example, a histogram is present on the column or the predicate is a range, or <, >). When a cursor is

marked bind sensitive, Oracle monitors the behavior of the cursor using different bind values, to

determine if a different plan is called for.

If a different bind value is used in a subsequent execution, it will use the same execution plan because

Oracle initially assumes it can be shared. However, the execution statistics for this new bind value will

be recorded and compared to the execution statistics for the previous value. If Oracle determines that

the new bind value caused the data volumes manipulated by the query to be significantly different it

"adapts” and hard parses based on the new bind value on its next execution and the cursor is marked

bind-aware. Each bind-aware cursor is associated with a selectivity range of the bind so that the cursor

is only shared for a statement when the bind value in the statement is believed to fall within the range.

When another new bind value is used, the Optimizer tries to find a cursor it thinks will be a good fit,

based on similarity in the bind value's selectivity. If it cannot find such a cursor, it will create a new

one. If the plan for the new cursor is the same as an existing cursor, the two cursors will be merged to

save space in the shared pool. And the selectivity range for that cursor will be increased to include the

selectivity of the new bind.

By allowing multiple execution plans for a single SQL statement, histograms no longer have a negative

impact for statements that use bind variables in Oracle Database 11g.

4 More information on Adaptive Cursor Sharing can be found in Closing the Query Loop in Oracle 11g

http://www.vldb.org/pvldb/1/1454178.pdf

Best Practices for Gathering Optimizer Statistics

9

Histograms and near popular values

When the Optimizer encounters a where clause predicate on a column that has a histogram created on

it, it uses different formulas to calculate the cardinality estimates based on the popularity of the literal

value. For example, let’s assume there was a height-balanced histogram created on the CUST_CITY_ID

of the CUSTOMERS table in the SH sample schema and a query is issued that has a where clause

predicate of CUST_CITY_ID =51806. The Optimizer would first check to see how many buckets in the

histogram have 51806 as their end point. In this case, the endpoint for bucket 136,137, 138 and 139 is

51806(info found in USER_HISTOGRAMS). Because the value is the endpoint of two or more buckets it

is considered to be popular and the Optimizer will use the following formula to determine the

cardinality estimate:

(Number of bucket endpoints / total number of buckets) X number of rows in the table

In this case 4/254 X 55500 = 874

Figure 7. Height balanced histogram used for popular value cardinality estimate

However, if the predicate was CUST_CITY_ID =52500, which is not the endpoint for any bucket then

the Optimizer uses a different formula. For values that are the endpoint for only one bucket or are not

an endpoint at all, the Optimizer uses the following formula:

 DENSITY X number of rows in the table

where DENSITY is calculated ‘on the fly’ during optimization using an internal formula based on

information in the histogram. The value for DENSITY seen in the dictionary view

USER_TAB_COL_STATISTICS is not the value used by the Optimizer from Oracle Database 10.2.0.4

onwards. This value is recorded for backward compatibility, as this is the value used in Oracle

Database 9i and earlier releases of 10g. Furthermore, if the parameter OPTIMIZER_FEATURES_ENABLE

is set to version release earlier than 10.2.0.4, the value for DENSITY in the dictionary view will be used.

Best Practices for Gathering Optimizer Statistics

10

Figure 8. Height balanced histogram used for non-popular value cardinality estimate

So, what happens for values that are nearly popular, the values that are the end point for just one

bucket but almost span 2 buckets? These nearly popular values are classified are non-popular values

and use the same formula as the non-popular values. For example, if the predicate was CUST_CITY_ID

=52114, it would use the cardinality estimates of 68 rows, the same as the non-popular value 52500.

But 227 rows actually have CUST_CITY_ID =52114.

The only way to make the Optimizer aware of these near popular values is to use dynamic sampling5.

Dynamic sampling collects additional statement-specific object statistics during the optimization of a

SQL statement. In this example the dynamic sampling hint is added to the query and the Optimizer get

a much more accurate cardinality estimate.

Figure 9. Use dynamic sampling to improve cardinality estimates for non-popular value in height balanced histogram

5 More information on dynamic sampling and how it works can be found in part one of this series,
Understanding Optimizer Statistics.

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf

Best Practices for Gathering Optimizer Statistics

11

In the above sections, we have discussed the caveats around using histograms and the possible

solutions in Oracle Database 10g. The recommendation from Oracle Database11g onwards is to let

METHOD_OPT default and to take advantage of Adaptive Cursor Sharing.

If you plan to manually set the METHOD_OPT parameter to a non-default value ensure you specify only

the columns that really need a histogram. Setting METHOD_OPT to FOR ALL COLUMNS SIZE 254 will

cause Oracle to gather a histogram on every column. This will unnecessarily extend the elapse time and

the system resources needed for statistics gathering, as well as increasing the amount of space required

to store the statistics.

You should also refrain from setting METHOD_OPT to FOR ALL INDEX COLUMNS SIZE 254 as this

will cause Oracle to gather histograms on every column used in an index, which again could waste system

resources. This setting also has a nasty side effect of preventing Oracle from collecting basic column

statistics for non-index columns.

Please refer to part one of this series, Understanding Optimizer Statistics to determine what type of

histogram you should manually create.

Pending Statistics

When making changes to the default values of the parameter in the DBMS_STATS.GATHER_*_STATS

procedures, it is highly recommended that you validate those changes before making the change in a

production environment. If you don’t have a full scale test environment you should take advantage of

pending statistics. With pending statistics, instead of going into the usual dictionary tables, the statistics

are stored in pending tables so that they can be enabled and tested in a controlled fashion before they

are published and used system-wide. To activate pending statistics collection, you need to use one of

the DBMS_STATS.SET_*_PREFS procedures to change value of the parameter PUBLISH from TRUE

(default) to FALSE for the object(s) you wish to create pending statistics for. In the example below,

pending statistics are enabled on the SALES table in the SH schema and then statistics are gathered on

the SALES table.

Figure 10. Enable pending statistics by setting the publish preference to FALSE

Gather statistics on the object(s) as normal.

Figure 11. Using the DBMS_STATS.GATHER_TABLE_STATS procedure

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf

Best Practices for Gathering Optimizer Statistics

12

The statistics gathered for these objects can be displayed using the dictionary views called

USER_*_PENDING_STATS.

You can enable the usage of pending statistics by issuing an alter session command to set the

initialization parameter OPTIMIZER_USE_PENDING_STATS to TRUE. After enabling pending statistics,

any SQL workload run in this session will use the new non-published statistics. For tables accessed in

the workload that do not have pending statistics the Optimizer will use the current statistics in the

standard data dictionary tables. Once you have validated the pending statistics, you can publish them

using the procedure DBMS_STATS.PUBLISH_PENDING_STATS.

Figure 12. Publishing pending statistics

When to gather statistics

In order to select an optimal execution plan the Optimizer must have representative statistics.

Representative statistics are not necessarily up to the minute statistics but a set of statistics that help the

Optimizer to determine the correct number of rows it should expect from each operation in the

execution plan.

Automatic statistics gathering job

Oracle automatically collects statistics for all database objects, which are missing statistics or have stale

statistics during a predefined maintenance window (10pm to 2am weekdays and 6am to 2am at the

weekends).

You can change the maintenance window that the job will run in via Enterprise Manager or using the

DBMS_SCHEDULER and DBMS_AUTO_TASK_ADMIN packages.

Best Practices for Gathering Optimizer Statistics

13

Figure 13. Changing the maintenance window during which the auto stats gathering job runs

If you already have a well-established statistics gathering procedure or if for some other reason you

want to disable automatic statistics gathering you can disable the task altogether:

Figure 14. Disabling the automatic statistics gather job

Manual statistics collection

If you plan to manually maintain Optimizer statistics you will need to determine when statistics should

be gathered.

You can determine when statistics should be gathered based on staleness, as it is for the automatic job,

or based on when new data is loaded in your environment. It is not recommended to continually re-

gather statistics if the underlying data has not changed significantly as this will unnecessarily waste

system resources.

Best Practices for Gathering Optimizer Statistics

14

If data is only loaded into your environment during a pre-defined ETL or ELT job then the statistics

gathering operations can be scheduled as part of this process. Note if you are using partition exchange

loads and wish to take advantage of incremental statistics6, you will need to gather statistics after the

exchange procedure and not before as in previous releases.

However, if your environment has more trickle feeds or online transactions that only insert a small

number of rows but these operations occur throughout the day, you will need to determine when your

statistics are stale and then trigger the statistics gathering job. If you plan to rely on the STALE_STATS

column in USER_TAB_STATISTICS to determine if statistics are stale you should be aware that this

information is updated on a daily basis only. If you need more timely information on what DML has

occurred on your tables you will need to look in USER_TAB_MODIFICATIONS, which lists the number

of INSERTS, UPDATES, and DELETES that occurs on each table, whether the table has been truncated

(TRUNCATED column) and calculate staleness yourself. Again, you should note this information is

automatically updated, from memory, periodically. If you need the latest information you will need to

manual flush the information using the DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO

function.

Preventing "out of range" condition

Regardless of whether you use the automatic statistics gathering job or you manually gather statistics, if

end-users start to query newly inserted data before statistics have been gathered, it is possible to get a

suboptimal execution plan due to stale statistics, even if less than 10% of the rows have changed in the

table. One of the most common cases of this occurs when the value supplied in a where clause

predicate is outside the domain of values represented by the [minimum, maximum] column statistics.

This is commonly known as an ‘out-of-range’ error. In this case, the Optimizer prorates the selectivity

based on the distance between the predicate value, and the maximum value (assuming the value is

higher than the max), that is, the farther the value is from the maximum or minimum value, the lower

the selectivity will be.

This scenario is very common with range partitioned tables. A new partition is added to an existing

range partitioned table, and rows are inserted into just that partition. End-users begin to query this new

data before statistics have been gathered on this new partition. For partitioned tables, you can use the

DBMS_STATS.COPY_TABLE_STATS7 procedure (available from Oracle Database 10.2.0.4 onwards) to

prevent "Out of Range" conditions. This procedure copies the statistics of a representative source [sub]

6 More information on Incremental Statistics can be found in part one of this series, Understanding
Optimizer Statistics.

7 More information on DBMS_STATS.COPY_TABLE_STATS can be found in part one of this series,
Understanding Optimizer Statistics.

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf

Best Practices for Gathering Optimizer Statistics

15

partition to the newly created and empty destination [sub] partition. It also copies the statistics of the

dependent objects: columns, local (partitioned) indexes, etc. and sets the high bound partitioning value

as the max value of the partitioning column and high bound partitioning value of the previous partition

as the min value of the partitioning column. The copied statistics should only be considered as

temporary solution until it is possible to gather accurate statistics for the partition. Copying statistics

should not be used as a substitute for actually gathering statistics.

Note by default, DBMS_STATS.COPY_TABLE_STATS only adjust partition statistics and not global or

table level statistics. If you want the global level statistics to be updated for the partition column as part

of the copy you need to set the flags parameter of the DBMS_STATS.COPY_TABLE_STATS to 8.

For non-partitioned tables you can manually set the max value for a column using the

DBMS_STATS.SET_COLUMN_STATS procedure. This approach is not recommended in general and is

not a substitute for actually gathering statistics.

Improving the efficiency of gathering statistics

As data volumes grow and maintenance windows shrink, it is more important than ever to gather

statistics in a timely manner. Oracle offers a variety of ways to speed up the statistics collection, from

parallelizing the statistics gathering operations to generating statistics rather than collecting them.

Using parallelism

Parallelism can be leveraged in several ways for statistics collection

 Intra object parallelism

 Inter object parallelism

 A combination of both intra and inter object parallelism

Intra object parallelism

Intra object parallelism is controlled by the DEGREE parameter in the DBMS_STATS.GATHER_*_STATS

procedures. The DEGREE parameter controls the number of parallel server processes that will be used

to gather the statistics.

By default Oracle uses the same number of parallel server processes specified as an attribute of the

table in the data dictionary (Degree of Parallelism). All tables in an Oracle database have this attribute

set to 1 by default. It may be useful to explicitly set this parameter for the statistics collection on a large

table to speed up statistics collection.

Alternatively you can set DEGREE to AUTO_DEGREE; Oracle will automatically determine the

appropriate number of parallel server processes that should be used to gather statistics, based on the

size of an object. The value can be between 1 (serial execution) for small objects to DEFAULT_DEGREE

(PARALLEL_THREADS_PER_CPU X CPU_COUNT) for larger objects.

Best Practices for Gathering Optimizer Statistics

16

Figure 15. Use Intra object parallelism via the DEGREE parameter of the DBMS_STATS.GATHER_*_STATS

procedures

You should note that setting the DEGREE for a partitioned table means that multiple parallel sever

processes will be used to gather statistics on each partition but the statistics will not be gathered

concurrently on the different partitions. Statistics will be gathered on each partition one after the other.

Inter object parallelism

In Oracle Database 11.2.0.2, inter object parallelism was introduced and is controlled by the global

statistics gathering preference CONCURRENT8. When CONCURRENT is set to TRUE, Oracle employs the

Oracle Job Scheduler and Advanced Queuing components to create and manage multiple statistics

gathering jobs concurrently. Gathering statistics on multiple tables and (sub)partitions concurrently can

reduce the overall time it takes to gather statistics by allowing Oracle to fully utilize a multi-processor

environment.

The maximum number of active concurrent statistics gathering jobs is controlled by the

JOB_QUEUE_PROCESSES parameter. By default the JOB_QUEUE_PROCESSES is set to 1000. Typically

this is too high for a CONCURRENT statistics gathering operation especially if parallel execution will also

be employed. A more appropriate value would be 2 X total number of CPU cores (this is a per node

parameter in a RAC environment). You need to make sure that you set this parameter system-wise

(ALTER SYSTEM ... or in init.ora file) rather than at the session level (ALTER SESSION).

Combining Intra and Inter parallelism

Each of the statistics gathering jobs in a concurrent statistics gather operation can execute in parallel.

Combining concurrent statistics gathering and parallel execution can greatly reduce the time it takes to

gather statistics.

8 More information on concurrent statistics gathering can be found in part one of this series, Understanding
Optimizer Statistics.

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf

Best Practices for Gathering Optimizer Statistics

17

Figure 16. Use Inter and Intra object parallelism to speed up a DBMS_STATS.GATHER_TABLE_STATS on a

partitioned table.

When using parallel execution as part of a concurrent statistics gathering you should disable the

PARALLEL_ADAPTIVE_MULTI_USER initialization parameter to prevent the parallel jobs from being

down graded to serial. Again this should be done at a system level and not at a session level. That is;

Figure 17. Disable parallel_adaptive_mutli_user parameter

Incremental statistics

Gathering statistics on partitioned tables consists of gathering statistics at both the table level (global

statistics) and (sub)partition level. If the INCREMENTAL9 preference for a partitioned table is set to

TRUE, the DBMS_STATS.GATHER_*_STATS parameter GRANULARITY includes GLOBAL, and

ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE, Oracle will accurately derive all global level

statistics by scanning only those partitions that have been added or modified, and not the entire table.

Incremental global statistics works by storing a synopsis for each partition in the table. A synopsis is

statistical metadata for that partition and the columns in the partition. Aggregating the partition level

statistics and the synopses from each partition will accurately generate global level statistics, thus

eliminating the need to scan the entire table. When a new partition is added to the table, you only need

9 More information on Incremental Statistics can be found in part one of this series, Understanding
Optimizer Statistics.

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1354477.pdf

Best Practices for Gathering Optimizer Statistics

18

to gather statistics for the new partition. The table level statistics will be automatically and accurately

calculated using the new partition synopsis and the existing partitions’ synopses.

Note partition statistics are not aggregated from subpartition statistics when incremental statistics are

enabled.

When not to gather statistics

Although the Optimizer needs accurate statistics to select an optimal plan, there are scenarios where

gathering statistics can be difficult, too costly, or cannot be accomplished in a timely manner and an

alternative strategy is required.

Volatile tables

A volatile table is one where the volume of data changes dramatically over time. For example, an

orders queue table, which at the start of the day the table is empty. As the day progresses and orders

are placed the table begins to fill up. Once each order is processed it is deleted from the tables, so by

the end of the day the table is empty again.

If you relied on the automatic statistics gather job to maintain statistics on such tables then the

statistics would always show the table was empty because it was empty over night when the job ran.

However, during the course of the day the table may have hundreds of thousands of rows in it.

In such cases it is better to gather a representative set of statistics for the table during the day when the

table is populated and then lock them. Locking the statistics will prevent the automatic statistics

gathering job from over writing them. Alternatively, you could rely on dynamic sampling to gather

statistics on these tables. The Optimizer uses dynamic sampling during the compilation of a SQL

statement to gather basic statistics on the tables before optimizing the statement. Although the

statistics gathered by dynamic sampling are not as high a quality or as complete as the statistics

gathered using the DBMS_STATS package, they should be good enough in most cases.

Global Temporary Tables

Global temporary tables are often used to store intermediate results in an application context. A global

temporary table shares its definition system-wide with all users with appropriate privileges, but the data

content is always session-private. No physical storage is allocated unless data is inserted into the table.

A global temporary table can be transaction specific (delete rows on commit) or session-specific

(preserves rows on commit). Gathering statistics on transaction specific tables leads to the truncation

of the table. In contrast, it is possible to gather statistics on a global temporary table (that persist rows);

however the statistics gathered will only be based on the session-private data content of the user

collecting the statistics but the statistics will be used by all sessions accessing that table.

If you have a global temporary table that persists rows, and each session will have approximately the

same amount of data with roughly the same values then you should gather a representative set of

Best Practices for Gathering Optimizer Statistics

19

statistics for the table in one session and lock them. Thus preventing other sessions from over-riding

them. Note the automatic statistics gathering job does not collect statistics on global temporary tables.

However, if each session could have drastically different data or the global temporary table does delete

on commit, you should use dynamic sampling.

Intermediate work tables

Intermediate work tables are typically seen as part of an ELT process or a complex transaction. These

tables are written to only once, read once, and then truncated or deleted. In such cases the cost of

gathering statistics outweighs the benefit, since the statistics will be used just once. Instead dynamic

sampling should be used in these cases. It is recommended you lock statistics on intermediate work

tables that are persistent to prevent the automatic statistics gathering job from attempting to gather

statistics on them.

Gathering other types of statistics

Since the Cost Based Optimizer is now the only supported optimizer, all tables in the database need to
have statistics, including all of the dictionary tables (tables owned by ‘SYS’,SYSTEM, etc, and residing
in the system and SYSAUX tablespace) and the x$ tables used by the dynamic v$ performance views.

Dictionary statistics

Statistics on the dictionary tables are maintained via the automatic statistics gathering job run during

the nightly maintenance window. It is highly recommended that you allow Oracle to automatic

statistics gather job to maintain dictionary statistics even if you choose to switch off the automatic

statistics gathering job for your main application schema. You can do this by changing the value of

AUTOSTATS_TARGET to ORACLE instead of AUTO using the procedure

DBMS_STATS.SET_GLOBAL_PREFS.

Figure 18. Modify the automatic statistics gather job to gather dictionary statistics only

Fixed object statistics

The automatic statistics gathering job does not gather fixed object statistics. And unlike other database

tables, dynamic sampling is not automatically used for SQL statements involving X$ tables when

optimizer statistics are missing. The Optimizer uses predefined default values for the statistics if they

are missing. These defaults may not be representative and could potentially lead to a suboptimal

execution plan, which could cause severe performance problems in your system. It is for this reason

that we strongly recommend you manually gather fixed objects statistics.

Best Practices for Gathering Optimizer Statistics

20

You can collect statistics on fixed objects using DBMS_STATS.GATHER_FIXED_OBJECTS_STATS

procedure. Because of the transient nature of the x$ tables it is import that you gather fixed object

statistics when there is a representative workload on the system. This may not always be feasible on

large systems due to additional resources needed to gather the statistics. If you can’t do it during peak

load you should do it after the system has warmed up and the three key types of fixed object tables

have been populated:

 Structural data - for example, views covering datafiles, controlfile contents, etc.

 Session based data - for example, v$session, v$access, etc.

 Workload data - for example, vsql, vsql_plan, etc

It is recommended that you re-gather fixed object statistics if you do a major database or application

upgrade, implement a new module, or make changes to the database configuration. For example if you

increase the SGA size then all of the x$ tables that contain information about the buffer cache and

shared pool may change significantly, such as x$ tables used in v$buffer_pool or

v$shared_pool_advice.

System statistics

System statistics enable the Optimizer to more accurately cost each operation in an execution plan by

using information about the actual system hardware executing the statement, such as CPU speed and

IO performance. System statistics are enabled by default, and are automatically initialized with default

values; these values are representative for most systems.

Conclusion

In order for the Optimizer to accurately determine the cost for an execution plan it must have accurate

statistics about all of the objects (table and indexes) accessed in the SQL statement and information

about the system on which the SQL statement will be run. This two part white paper series explains in

detail what Optimizer statistics are necessary, how they are used, and the different statistics collection

method available to you.

By using a combination of the automatic statistics gathering job and the other techniques described in

this paper a DBA can maintain an accurate set of statistics for their environment and ensure the

Optimizer always has the necessary information in order to select the most optimal plan. Once a

statistics gathering strategy has been put in place, changes to the strategy should be done in a

controlled manner and take advantage of key features such as pending statistics to ensure they do not

have an adverse effect on application performance.

Best Practices for Gathering Optimizer

Statistics

April 2012

Author: Maria Colgan

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

Copyright © 2011, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license

and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open

Company, Ltd. 1010

