

An Oracle White Paper
March 2014

Best Practices for Workload Management of a
Data Warehouse on the Oracle Exadata
Database Machine

Best Practices for Workload Management of a Data Warehouse on the Oracle Exadata Database Machine

Introduction ... 1	
Parallel Execution ... 2	

Basic principles of parallel processing .. 2	
Controlling parallel execution on a RAC environment 3	

Workload Monitoring ... 4	
Monitoring the benefits of Exadata storage ... 8	

Storage Indexes .. 11	
Database Resource Manager ... 12	
Optimizer Statistics Management ... 13	

Frequency of statistics gathering .. 14	
Conclusion .. 15	

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

 1

Introduction

Regardless of the purpose of your data warehouse the challenge is
always the same, access and process large amounts of data in an
extremely short amount of time. The key to getting good performance from
your data warehouse is to leverage all of the hardware resource available:
multiple CPUs, all IO channels, storage arrays and disks, as well as large
volumes of memory.

This paper explains how to leverage Oracle key database technologies
such as Parallel Execution, Resource Manager and more to fully utilize
your system regardless of which data model you have implement. It will
build on what you have already learned in part one of our best practices
for Data Warehousing series “How to Implement a Data Warehouse on
Oracle Exadata Database Machine”.

The paper is divided into four sections:

The first describes Oracle’s parallel execution capabilities and how you
should use it to fully utilize your system.

The second explains how Oracle Resource manager enables you to
manage a mixed workload environment. It also outlines the Optimizer
statistics management.

The remaining three sections explain how to implement these models in
the most optimal manner in an Oracle database and provide detailed
information on how to achieve optimal data loading performance.

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

2

Parallel Execution

Parallel execution is one of the key features, which will enable you to fully utilize your system and is
beneficial regardless of which data model you will implement. Parallel execution should be leveraged
for all resource intensive operations including:

• Complex queries that access large amounts of data

• Building indexes on large tables

• Gathering Optimizer statistics

• Loading or manipulating large volumes of data

Basic principles of parallel processing

SQL parallel execution in the Oracle Database is based on the principles of a coordinator (often called
the Query Coordinator or QC for short) and parallel server processes (see Figure 1). The QC is the
session that initiates the parallel SQL statement and the parallel servers are the individual sessions that
perform work in parallel. The QC is responsible for acquiring the parallel server processes from the
global pool and distributes the work to them. The QC may have to perform a minimal mostly logistical
– portion of the work that cannot be executed in parallel. For example a parallel query with a SUM()
operation requires the QC to add up the individual sub-totals calculated by each parallel server.

Figure 1 SQL Parallel executions

The QC is easily identified in the parallel execution plan in Figure 2 as 'PX COORDINATOR'. The
process acting as the QC of a parallel SQL operation is the actual user session process itself. The
parallel server processes are taken from a pool of globally available parallel server processes and
assigned to a given operation. The parallel server processes do all the work shown in a parallel plan
BELOW the QC.

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

3

Figure 2 SQL Parallel Execution Plan

By default the Oracle Database is configured to support parallel execution out-of-the-box.

While parallel execution provides a very powerful and scalable framework to speed up SQL operations,
you should not forget that it requires more resources and might also have side effects on other users or
operations on the same system. Small tables/indexes (up to thousands of records; up to 10s of data
blocks) should never be enabled for parallel execution. Operations that only hit small tables will not
benefit much from executing in parallel, but they will use parallel servers that you will want to be
available for operations accessing large tables. Remember also that once an operation starts at a certain
degree of parallelism (DOP), there is no way to reduce its DOP during the execution.

Controlling parallel execution on a RAC environment

By default the Oracle database leverages inter-node parallel execution (parallel execution of a single
statement involving more than one RAC node). However, there can be times when you want to limit
the number of nodes some applications or workloads operate on.

The preferred method for controlling inter-node parallel execution on the Database Machine is to use
RAC services. A service can be created using the srvctl command line tool or using Oracle
Enterprise Manager. Figure 3 shows an example of a 4-node RAC system that has both ETL
processes and end-user queries running on it, services have been used to limit the ETL processes to
nodes 1 and 2 in the cluster and Ad-hoc queries to node 3 and 4.

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

4

Srvctl add service –d database_name
 -s ETL
 -r sid1, sid2

Srvctl add service –d database_name
 -s ADHOC
 -r sid3, sid4

Figure 3: Controlling Parallel execution with services

It is also possible to limit the parallel server to just the node the statement is issued on by setting
PARALLEL_FORCE_LOCAL to TRUE.

Workload Monitoring

In order to have an overall view of what is happening on your system and to establish a baseline in
expected performance you should take hourly AWR or statspack reports. However, when it comes to
real-time system monitoring it is best to start by checking whether the system is using a lot of CPU
resources or whether it is waiting on a particular resource and if so, what is that resource. You can find
this information by using the V$ performance views such as V$session or by looking at the main
performance screen in Oracle Enterprise Manager Express or Grid Control, which shows a graph of
wait events over time. If a significant portion of the workload consists of SQL statements executing in
parallel then it is typical to see a high CPU utilization and/or significant user IO waits. Figure 4 shows
an Oracle Enterprise Manager Database Control screenshot of the performance page focused on the
graph with wait events. The parallel execution workload shows a lot of IO waits and not a very high
CPU utilization on this system.

Figure 4 Oracle Enterprise Manager wait events graph

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

5

If you were to look at an AWR or statspack report for the same time period as shown in Figure 4 it is
likely you would see PX wait events on the top or near the top of the wait event list. The most
common PX events deal with the message (data) exchange between the parallel servers themselves and
with the query coordinator. You will most likely see wait events such as PX Deq Credit: send blkd,
which is due to one set of parallel servers (the producers or data readers) waiting for consumers
(another set of parallel servers) to accept data. Or PX Deq Credit: need buffer, which is caused by
consumers waiting for producers to produce data. The PX wait events are unavoidable to a large extent
and don't really hurt performance as these wait events fall in the “idle” wait class. Generally it is not
parallel execution specific wait events that may cause slow system performance but rather waits
introduced by the workload running in parallel, such as IO waits, or high CPU utilization. An increase
in the number of the idle PX events can often be considered a symptom of a performance problem
rather than the cause. For example, an increase in PX Deq Credit: need buffer waits (consumers
waiting for producers to produce data) is likely to indicate an IO bottleneck or performance problem,
as producer operations tend to involve disk IO (e.g. a parallel full table scan).

Figure 5: Detailed I/O page in Oracle Enterprise Manager for a parallel DML workload

Almost all SQL statements executing in parallel will read data directly from disk rather than going
through the buffer cache. As a result parallel statements can be very IO intensive. Oracle Enterprise
Manager Grid Control provides IO throughput information on the main performance page under the
“IO tab”, as well as on the detailed IO pages.

The example in Figure 5 shows the IO page for a parallel DML workload. Looking at the IOs per
second, you can see the majority of them are coming from the database writer, who is doing small
single block IOs but a significant portion of the throughput is coming from large multi-block IOs. In a
predominantly parallel query environment you expect the majority of the throughput (in MB/s or
GB/s) to come from large reads. If parallel SQL operations are bottlenecked by IO then it is usually

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

6

because the maximum throughput (MB/s) has been reached rather than the maximum I/O operations
per second (IOPS).

Oracle Enterprise Manager Grid Control provides monitoring capabilities useful from a parallel
execution perspective. The parallel execution monitoring section helps you to identify whether the
system is running a large number of statements in parallel and whether the majority of the resources
are used for few statements running at a large DOP versus a large number of statements running at a
lower DOP. Figure 6 shows a screenshot of the Parallel Execution tab on the performance page in
Oracle Enterprise Manager Grid Control

Figure 6 Parallel Execution tab in Oracle Enterprise Manager

The dynamic view GV$SQL_MONITOR enables real-time monitoring of long-running SQL statements
and all parallel SQL statements without any overhead. The SQL Monitoring screen in Oracle
Enterprise Manager shows the execution plan of a long-running statement or a statement that is
running in parallel, in near real-time (the default refresh cycle is 5 seconds). You can monitor which
step in the execution plan is being worked on and if there are any waits.

The SQL Monitor output is extremely valuable to identify which parts of an execution plan are
expensive throughout the total execution of a SQL statement. The SQL Monitoring screens also
provide information about the parallel server sets and work distribution between individual parallel
servers on the “Parallel” tab (see Figure 8) .

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

7

Figure 7 SQL Monitoring Screen in Oracle Enterprise Manager

Ideally you see an equal distribution of work across the parallel servers. If there is a skew in the
distribution of work between parallel servers in one parallel server set then you have not achieved
optimal performance. The statement will have to wait for the parallel server performing most work to
complete.

Figure 8 Parallel server sets activity shown on the SQL Monitoring screen in Oracle Enterprise
Manager

The third tab in the SQL Monitoring interface shows the activity for the statement over time in near
real-time (see Figure 9). Use this information to identify at statement level what resources are used
most intensely.

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

8

Figure 9 Wait activity show on the SQL Monitoring screen in Oracle Enterprise Manager

Monitoring the benefits of Exadata storage

The Exadata storage provides several unique performance-enhancing feature including smart scan,
storage indexes and Exadata Hybrid Columnar Compression. Monitoring these features can be easily
done via the Gv$ performance views or Oracle Enterprise Manager.

Exadata Smart Scan

With the Smart Scan processing less data needs to be shipped from the storage layer to the database
servers. Queries that perform table scans can be processed within Exadata with only the required
subset of data returned to the database server. Row filtering, column filtering and some join processing
(among other functions) are performed within the Exadata storage cells. This ability to return only
relevant rows to the server will greatly improve database performance. This performance enhancement
also applies as queries become more complicated, so the same benefits also apply to complex queries,
including those with subqueries.

Figure 10 Exadata Smart Scan processing

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

9

Figure 10 shows the different steps that happen during a smart scan:

1. The client issues a SELECT statement with a predicate to filter and return only rows of
interest.

2. The database kernel determines that Exadata storage is available and constructs an iDB
command representing the SQL command issued and sends it the Exadata storage.

3. The CELLSRV component of the Exadata software scans the data blocks to identify those
rows and columns that satisfy the SQL issued. Only the rows satisfying the predicate and the
requested columns are read into memory. The database kernel consolidates the result sets
from across the Exadata cells.

4. Lastly, the rows are returned to the client.

Smart scans are transparent to the application and no application or SQL changes are required.
However, an EXPLAIN PLAN shows when Exadata smart scan is used. You will see in the key word
STORAGE in the access method description in the Operations column of the execution plan and in
the note section indicating what where clause predicates got offloaded to the storage (see Figure 11).

Figure 11 Explain plan showcasing Smart scan offload

You can also check if smart scan offloading has taken place or not and how much data got reduced by
querying either the V$ views or by using the SQL Monitoring capabilities of Enterprise Manager. For
example you can query IO_CELL_OFFLOAD_ELIGIBLE_BYTES from V$SQL to see if you query is
eligible for query offload.

Figure 12 Find Smart can offload using the V$ views

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

10

Figure 13 Find Smart can offload efficiency using SQL Monitor screens in Enterprise manager

Figure 13 illustrates where to find the cell offload efficiency on the SQL Monitoring screen in
Enterprise Manager.

You can also determine the cell offload efficiency by querying the session smart scan efficiency statistic
from session stat view. The efficiency is the ratio between the amount of data pushed to the cell, and
the amount of data returned. If there is no offloading the ratio will be 1. The formula is

(cell IO uncompressed bytes + cell physical IO bytes save by storage index) /cell physical IO
interconnect bytes returned by smart scan

Figure 14 Find Smart can offload efficiency using v$ views

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

11

Storage Indexes

Storage Indexes are a very powerful capability provided in Exadata storage that helps avoid I/O
operations. The Exadata Storage Server Software creates and maintains a Storage Index in Exadata
memory. The Storage Index keeps track of minimum and maximum values of columns for tables
stored on that cell.

Figure 25 Storage index automatically created and maintained on Exadata storage

When a query specifies a WHERE clause predicate, but before any I/O is done, the Exadata software
examines the Storage Index to determine if rows with the specified column value exists in the Exadata
Storage by comparing the column value to the minimum and maximum values maintained in the
Storage Index. If the column value is outside the minimum and maximum range, scan I/O for that
query is avoided. Many SQL Operations will run dramatically faster because large numbers of I/O
operations are automatically replaced by a few in-memory lookups. To minimize operational overhead,
Storage Indexes are created and maintained transparently and automatically by the Exadata Storage
Server Software.

You can check if the storage index is being used by querying Cell Physical IO bytes saved by storage
index in the v$sysstat view. (See Figure 26)

Figure 26 checking the benefit of storage indexes

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

12

Database Resource Manager

The Oracle Database Resource Manager (DBRM) enables you to prioritize work within an Oracle
database. It is highly recommended to use DBRM if a system is CPU bound, as it will protect high
priority users or jobs from being impacted by lower priority work. It provides this protection by
allocating CPU time to different jobs based on their priority. In order to use DBRM you will need to
create consumer groups, which are groups of users based on a given characteristics, for example
username or role. You then create a resource plan that specifies how the resources are to be distributed
among various consumer groups. The resources include percentages of CPU time, number of active
sessions, and amount of space available in the undo tablespace. You can also restrict parallel execution
for users within a consumer group. DBRM is the ultimate deciding factor in determining the maximum
degree of parallelism, and no user in a consumer group (using a specific resource plan) will ever be able
to run with a higher DOP than the resource group's maximum. For example, if your resource plan has
a policy of using a maximum DOP of 4 and you request a DOP of 16 via a hint, your SQL will run
with a DOP of 4.

Figure 27 shows an Enterprise Manager Grid Control screenshot restricting parallel execution to a
DOP of 4 for a resource plan named 'DW_USERS'. As I mentioned earlier DBRM can control the
maximum number of active sessions for a given resource group. In this resource plan, the consumer
group 'DW_USERS' has a maximum active sessions limit of 4. This means its possible for the
“DW_USERS” to have a maximum resource consumption of 4 (sessions) x 4 (DOP) x 2 (slave sets) =
32 parallel server processes.

Figure 27 Restricting parallel execution in Oracle Enterprise Manager

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

13

Optimizer Statistics Management

Knowing when and how to gather optimizer statistics has become somewhat of dark art especially in a
data warehouse environment where statistics maintenance can be hindered by the fact that as the data
set increases the time it takes to gather statistics will also increase. By default the DBMS_STATS
packages will gather global (table level), partition level, and sub-partition statistics for each of the tables
in the database. The only exception to this is if you have hash sub-partitions. Hash sub-partitions do
not need statistics, as the optimizer can accurately derive any necessary statistics from the partition
level statistic because the hash partitions are all approximately the same size due to linear hashing
algorithm.

As mentioned above the length of time it takes to gather statistics will grow proportionally with your
data set, so you may now be wondering if the optimizer truly need statistics at every level for a
partitioned table or if time could be saved by skipping one or more levels? The short answer is “no” as
the optimizer will use statistics from one or more of the levels in different situations.

• The optimizer will use global or table level statistics if one or more of your queries touches
two or more partitions.

• The optimizer will use partition level statistics if your queries do partition elimination, such
that only one partition is necessary to answer each query. If your queries touch two or more
partitions the optimizer will use a combination of global and partition level statistics.

• The optimizer will user sub-partition level statistics if your queries do partition elimination,
such that only one sub-partition is necessary. If your queries touch two more sub-partitions
the optimizer will use a combination of sub-partition and partition level statistics.

Global statistics are by far the most important statistics but they also take the longest time to collect
because a full table scan is required. However, in Oracle Database 11g this issue has been addressed
with the introduction of Incremental Global statistics. Typically with partitioned tables, new partitions
are added and data is loaded into these new partitions. After the partition is fully loaded, partition level
statistics need to be gathered and the global statistics need to be updated to reflect the new data. If the
INCREMENTAL value for the partition table is set to TRUE, and the DBMS_STATS GRANULARITY
parameter is set to AUTO, Oracle will gather statistics on the new partition and update the global table
statistics by scanning only those partitions that have been modified and not the entire table. Below are
the steps necessary to do use incremental global statistics.

Incremental Global Stats works by storing a synopsis for each partition in the table. A synopsis is
statistical metadata for that partition and the columns in the partition. Each synopsis is stored in the

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

14

SYSAUX tablespace and takes approximately 10KB. Global statistics are generated by aggregating the
synopses from each partition, thus eliminating the need for the full table scan (see Figure 28) . When a
new partition is added to the table you only need to gather statistics for the new partition. The global
statistics will be automatically updated by aggregating the new partition synopsis with the existing
partitions synopsis.

Figure 28 Incremental Global Statistics

But what if you application is near real time and you can’t afford to gather partition level statistic (not
to mention global statistics) after data is loaded? If this is the case you can use the
DBMS_STATS.COPY_TABLE_STATS procedure to obtain a representative set of statistics until you
can schedule the gather. This procedure enables you to copy statistics from an existing [sub] partition
to the new [sub] partition and will adjust statistics to account for the additional partition of data (for
example the number of blks, number of rows). It sets the new partition’s high bound partitioning value
as the maximum value of the first partitioning column and high bound partitioning value of the
previous partition as the minimum value of the first partitioning column for a range partitioned table.
For a list-partitioned table it will find the maximum and minimum from the list of values.

Frequency of statistics gathering

If you use the automatic stats job or dbms_stats.gather_schema_stats with the option "GATHER
AUTO", Oracle only collect statistics at the global level if the table has changed more than 10% or if
the global statistics have not yet been collected. Partition level statistics will always be gathered if they
are missing. For most tables this frequency is adequate.

Oracle White Paper—Best Practices for a Data Warehouse on Oracle Exadata Database Machine

15

Conclusion

In order to guarantee you will get the optimal performance from your data warehouse and to ensure it
will scale as the data set increases you need to get three fundamental things correct:

• The hardware configuration. It must be balanced and must achieve the necessary IO
throughput required to meet the systems peak load

• The data model. If it is a 3NF it should always achieve partition-wise joins or if it’s a Star
Schema it should use star transformation

• The data loading process. It should be as fast as possible and have zero impact on the
business user

By selecting the Oracle Exadata Database Machine you can ensure the hardware configuration will
perform. Following the best practices for deploying a data warehouse as outlined in this paper will
allow you to seamlessly scale out your EDW without having to constantly tune or tweak your system.

White Paper Title
March 2014

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200

oracle.com

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only, and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in
law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This
document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our
prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0114

