ORACLE

DATABASE

An Oracle White Paper
January 2012

Understanding Optimizer Statistics

ORACLE



Understanding Optimizer Statistics

INEFOAUCTION ... 1
What are Optimizer StatiStiCS? .......ccovvvviiiiiiiie e, 2
Table and Column SEAtISHICS ........uvvuuriiiiiiiiiiiiiiiiiiiiieeaees 2
Additional column StatiStiCS.........cevvvieeiiiiiie e 3
INAEX SEALISTICS ..vuuiieeeei e e 10
Gathering StatiStiCS .......uvviiii i 11
GATHER _TABLE_STATS ...oiiiiiiiiiiiiiiiiiieiiiiieisniieernenneeneeennnnnnnnnns 11
Changing the default value for the parameters in
DBMS_STATS.GATHER_* STATS ..o, 13
Automatic Statistics Gathering JOb ........cccocoeeiiiiiiiiiiieie e, 15
Improving the efficiency of Gathering StatistiCs .............ccccccvvviiinnis 18
Concurrent StatistiC gatNering...............ueeevuieiiiiiiiiiiiiiiieiii. 18
Gathering Statistics on Partitioned tables .............cccevvvviicieneeenn. 20
Managing StatiStICS ........c.covvuiiiiiii e 22
RESIONNG StatiStICS.....cciivviiiiei e 22
Pending StatiStiCS .......cooeeeeeeeeeeeee e 23
Exporting / Importing StatiStiCS ...........coovevieeiieeeen 23
Copying Partition STAtiStICS ........uuvuvrreieiiiiiiiiiiiiiiiiiiiiiiiiieiieeieeieeenns 25
Comparing StatiStiCS......ciiiieieiiiiiiiie e 26
LOCKING StatiStICS.....ccceiiieeiiiiiei e 27
Manually setting StatiStiCS ..........cooevvevieiiee e, 29
Other Types Of StatiStiCS .........ccovvviiiiiiiiiiiiii 29
Dynamic Sampling........cooooeeiiiioiee 29
SYStem StAtiSHICS.....ccvviiiii i 31
Statistics on Dictionary Tables.............coooiviiiiiiiiceeee e, 32
Statistics 0N Fixed ODJECES .......uuvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeneeneeeaes 32

CONCIUSION e 33



Understanding Optimizer Statistics

Introduction

When the Oracle database was first introduced the decision of how to execute a SQL
statement was determined by a Rule Based Optimizer (RBO). The Rule Based Optimizer, as
the name implies, followed a set of rules to determine the execution plan for a SQL statement.
The rules were ranked so if there were two possible rules that could be applied to a SQL
statement the rule with the lowest rank would be used.

In Oracle Database 7, the Cost Based Optimizer (CBO) was introduced to deal with the
enhanced functionality being added to the Oracle Database at this time, including parallel
execution and partitioning, and to take the actual data content and distribution into account.
The Cost Based Optimizer examines all of the possible plans for a SQL statement and picks
the one with the lowest cost, where cost represents the estimated resource usage for a given
plan. The lower the cost the more efficient an execution plan is expected to be. In order for the
Cost Based Optimizer to accurately determine the cost for an execution plan it must have
information about all of the objects (tables and indexes) accessed in the SQL statement, and
information about the system on which the SQL statement will be run.

This necessary information is commonly referred to as Optimizer statistics. Understanding
and managing Optimizer statistics is key to optimal SQL execution. Knowing when and how to
gather statistics in a timely manner is critical to maintaining acceptable performance. This
whitepaper is the first in a two part series on Optimizer statistics, and describes in detail, with
worked examples, the different concepts of Optimizer statistics including;

« What are Optimizer statistics

Gathering statistics
« Managing statistics

« Additional types of statistics



Understanding Optimizer Statistics

What are Optimizer Statistics?

Optimizer statistics are a collection of data that describe the database, and the objects in the database.
These statistics are used by the Optimizer to choose the best execution plan for each SQL statement.
Statistics are stored in the data dictionaty, and can be accessed using data dictionary views such as
USER_TAB_STATISTICS. Optimizer statistics are different from the performance statistics visible
through v$ views. The information in the V§ views relates to the state of the system and the SQL
workload executing on it.

Optimizer
DATA DICTIOMARY
ﬂ OPTIMIZER STATISTICS

Index Table Column System

oo Loovo e | oo o |
1 Preme_1 = 15-MOV-98
2 Proma_1 31-DEC-98 ) 7 R
PROMONEKIndex PROMOTIONS Tahle Execution pla

Figure 1. Optimizer Statistics stored in the data dictionary used by the Optimizer to determine execution plans

Table and Column Statistics

Table statistics include information on the number of rows in the table, the number of data blocks
used for the table, as well as the average row length in the table. The Optimizer uses this information,
in conjunction with other statistics, to compute the cost of various operations in an execution plan,
and to estimate the number of rows the operation will produce. For example, the cost of a table access
is calculated using the number of data blocks combined with the value of the parameter

DB _FILE MULTIBLOCK READ COUNT. You can view table statistics in the dictionary view

USER TAB STATISTICS.

Column statistics include information on the number of distinct values in a column (NDV) as well as
the minimum and maximum value found in the column. You can view column statistics in the
dictionary view USER TAB COL STATISTICS. The Optimizer uses the column statistics information

in conjunction with the table statistics (number of rows) to estimate the number of rows that will be



Understanding Optimizer Statistics

returned by a SQL operation. For example, if a table has 100 records, and the table access evaluates an
equality predicate on a column that has 10 distinct values, then the Optimizer, assuming uniform data

distribution, estimates the cardinality to be the number of rows in the table divided by the number of

distinct values for the column or 100/10 = 10.

SOL» SELECT counti*)
2 FROWM  tab_with_100_rows
2 where col_nde_10 = 22

COUNT(*)
10
| Id | Operation 1 Mame | Rows | Bytes | Cost (ECPUNI Time |
| 0 | SELECT STATEMEMT | | | | ER T |
I 11 S5ORT AGGREGHTE | | 31 | |
I* 21 TABLE ACCESS STORAGE FULLI TAB_WITH_100_ROWS | 10 1 a0 | 3 (03 000001 |

Predicate Information (identified by operation id):

2 - storage("COL_NIV_10"2) Cardinality estimate of 10 is calculated
Filter("EDL_NDV_iU'EE) l:l‘!r di\o‘idil‘lg NUM_ROWS I:IDD] fur thE
table by NUM_DISTINCT (10) for the
column

Figure 2. Cardinality calculation using basic table and column statistics

Additional column statistics

Basic table and column statistics tell the optimizer a great deal but they don’t provide a mechanism to
tell the Optimizer about the nature of the data in the table or column. For example, these statistics
can’t tell the Optimizer if there is a data skew in a column, or if there is a correlation between columns
in a table. Information on the nature of the data can be provided to the Optimizer by using extensions

to basic statistics like, histograms, column groups, and expression statistics.

Histograms

Histograms tell the Optimizer about the distribution of data within a column. By default (without a
histogram), the Optimizer assumes a uniform distribution of rows across the distinct values in a
column. As described above, the Optimizer calculates the cardinality for an equality predicate by
dividing the total number of rows in the table by the number of distinct values in the column used in
the equality predicate. If the data distribution in that column is not uniform (i.e., a data skew) then the
cardinality estimate will be incorrect. In order to accurately reflect a non-uniform data distribution, a
histogram is required on the column. The presence of a histogram changes the formula used by the

Optimizer to estimate the cardinality, and allows it to generate a more accurate execution plan.

Oracle automatically determines the columns that need histograms based on the column usage
information (SYS.COL_USAGES), and the presence of a data skew. For example, Oracle will not

automatically create a histogram on a unique column if it is only seen in equality predicates.

There are two types of histograms, frequency or height-balanced. Oracle determines the type of

histogram to be created based on the number of distinct values in the column.



Understanding Optimizer Statistics

Frequency Histograms

Frequency histograms are created when the number of distinct values in the column is less than 254.
Oracle uses the following steps to create a frequency histogram.

1. Let’s assume that Oracle is creating a frequency histogram on the PROMO_CATEGORY ID
column of the PROMOTIONS table. The first step is to select the PROMO _CATEGORY ID from
the PROMOTIONS table ordered by PROMO CATEGORY ID.

2. Each PROMO CATEGORY ID is then assigned to its own histogram bucket (Figure 3).
PROMO CATEGORY 1D

Bucket 1 has end point 2

Bucket 2 has end point 3
Bucket 3 has end point3

Bucket 115 has end point3

Bucket 417 has end point9

Bucket 483 hasend point9
Bucket 484 has end point 10

Bucket 502 has end point 10
Bucket 503 has end point 10

[0}
o OO0 @ @ OO

Figure 3. Step 2 in frequency histogram creation

3. At this stage we could have more than 254 histogram buckets, so the buckets that hold the
same value are then compressed into the highest bucket with that value. In this case, buckets 2
through 115 are compressed into bucket 115, and buckets 484 through 503 are compressed
into bucket 503, and so on until the total number of buckets remaining equals the number of
distinct values in the column (Figure 4). Note the above steps are for illustration purposes.

The DBMS_STATS package has been optimized to build compressed histograms directly.



Understanding Optimizer Statistics

PROMO CATEGORY 1ID

2 ® Bucket1 hasend point2

3 ' Bucket 115 has end point 3
9 ' Bucket 483 has end point9
10 ' Bucket 503 has end point 10

Figure 4. Step 3 in frequency histogram creation: duplicate buckets are compressed

The Optimizer now accurately determines the cardinality for predicates on the

PROMO CATEGORY ID column using the frequency histogram. For example, for the predicate
PROMO CATEGORY ID =10, the Optimizer would first need to determine how many buckets
in the histogram have 10 as their end point. It does this by finding the bucket whose endpoint
is 10, bucket 503, and then subtracts the previous bucket number, bucket 483, 503 - 483 = 20.
Then the cardinality estimate would be calculated using the following formula (number of
bucket endpoints / total number of bucket) X NUM_ROWS, 20/503 X 503, so the number
of rows in the PROMOTOINS table where PROMO CATEGORY ID =10 is 20.

Height balanced Histograms

Height-balanced histograms are created when the number of distinct values in the column is greater

than 254. In a height-balanced histogram, column values are divided into buckets so that each bucket

contains approximately the same number of rows. Oracle uses the following steps to create a height-

balanced histogram.

1.

Let’s assume that Oracle is creating a height-balanced histogram on the CUST CITY ID
column of the CUSTOMERS table because the number of distinct values in the CUST CITY ID
column is greater than 254. Justlike with a frequency histogram, the first step is to
select the CUST CITY ID from the CUSTOMERS table ordered by CUST CITY ID.

There are 55,500 rows in the CUSTOMERS table and there is 2 maximum of 254 buckets in a
histogram. In order to have an equal number of rows in each bucket, Oracle must put 219
rows in each bucket. The 219t CUST CITY ID from step one will become the endpoint for
the first bucket. In this case that is 51043. The 438 cUST CITY ID from step one will
become the endpoint for the second bucket, and so on until all 254 buckets are filled (Figure
5).



Understanding Optimizer Statistics

Rowcount CUST_CITY_ID

1 51040

2 51040

219 51043 ' Bucket 1 has end point 51043
438 51044 ® Bucket 2 has end point 51044
5256 51166 ' Bucket 24 has end point 51166
5475 51166 ' Bucket 25 has end point 51166
55500 52531 ™ Bucket 254 has end point 51531

Figure 5. Step 2 of height-balance histogram creation: put an equal number of rows in each bucket

3. Once the buckets have been created Oracle checks to see if the endpoint of the first bucket is

the minimum value for the CUST CITY ID column. Ifitis not, a “zero” bucket is added to

the histogram that has the minimum value for the CUST CITY ID column as its end point

(Figure 06).
Rowcount CUST_CITY_ID
1 51040 > Bucket 0 has end point 51040
2 51040
219 51043 ' Bucket 1 has end point 51043
438 51044 ® Bucket 2 has end point 51044
5256 51166 > Bucket 24 has end point 51166
5475 51166 ' Bucket 25 has end point 51166
55500 52531 ® Bucket 254 has end point51531

Figure 6. Step 3 of height-balance histogram creation: add a zero bucket for the min value

4. Just as with a frequency histogram, the final step is to compress the height-balanced

histogram, and remove the buckets with duplicate end points. The value 51166 is the end



Understanding Optimizer Statistics

point for bucket 24 and bucket 25 in our height-balanced histogram on the CUST CITY ID
column. So, bucket 24 will be compressed in bucket 25 (Figure 7).

Rowcount CUST_CITY_ID

1 51040 ' Bucket 0 has end point 51040

2 51040

I219 51043 ' Bucket 1 has end point 51043
-;5,38 51044 ' Bucket 2 has end point 51044
:5475 :51166 ’ Bucket 25 has end point51166
55500 52531 ' Bucket 254 has end point51531

Figure 7. Step 4 of height-balance histogram creation

The Optimizer now computes a better cardinality estimate for predicates on the

CUST CITY ID column by using the height-balanced histogram. For example, for the
predicate CUST CITY ID =51800, the Optimizer would first check to see how many buckets
in the histogram have 51806 as their end point. In this case, the endpoint for bucket
136,137,138 and 139 is 51806(info found in USER_HISTOGRAMS). The Optimizer then uses

the following formula:
(Number of bucket endpoints / total number of buckets) X number of rows in the table

In this case 4/254 X 55500 = 874

| Id | Operation | Hame | Rows | Bytes | Cost (ECPUDI Time |
| @ | SELECT STATEMEWT | | I I 408 (1007 |
| 1| SORT AGGREGATE I | 11 51 | |
[* 2 | TABLE ACCESS FULLI CUSTOHERS 1 4370 1 406 (A1 000001 |

Yedicate Information (identified by operation id): Estimated determined
--------———--—+ using formula [{num

2 - Filter("CUST_CITY_ID"=51806) endpoints / total num
. buckets) X num_rows

Figure 8. Height balanced histogram used for popular value cardinality estimate

However, if the predicate was CUST_CITY ID =52500, which is not the endpoint for any
bucket then the Optimizer uses a different formula. For values that are the endpoint for only
one bucket or are not an endpoint at all, the Optimizer uses the following formula:

DENSITY X number of rows in the table



Understanding Optimizer Statistics

where DENSITY is calculated ‘on the fly’ during optimization using an internal formula based
on information in the histogram. The value for DENSITY seen in the dictionary view
USER_TAB COL_STATISTICS is not the value used by the Optimizer from Oracle Database
10.2.0.4 onwards. This value is recorded for backward compatibility, as this is the value used
in Oracle Database 91 and earlier releases of 10g. Furthermore, if the parameter

OPTIMIZER FEATURES ENABLE is set to version release earlier than 10.2.0.4, the value for
DENSITY in the dictionary view will be used.

| Id | Operation | Mame | Rows | Bytes | Cost (ECPUDI Time I

SELECT STATEMENT | I 405 (1007 |

ol I I I
I 11 SORT AGGREGATE I I I 51 I I
I* 21 TABLE ACCESS FULLI CUSTOMERS | BRI 340 1 405 (1)1 00300301 |

Predicate Information (identified by operation idis. Estimated determined
using formula (density

2 - filter("CUST_CITY_ID"=52500) . Xnum_rows)

.y

Figure 9. Height balanced histogram used for non- popular value cardinality estimate

Extended Statistics

In Oracle Database 11g, extensions to column statistics were introduced. Extended statistics

encompasses two additional types of statistics; column groups and expression statistics.
Column Groups

In real-world data, there is often a relationship (correlation) between the data stored in different
columns of the same table. For example, in the CUSTOMERS table, the values in the

CUST_STATE PROVINCE column are influenced by the values in the COUNTRY ID column, as the state
of California is only going to be found in the United States. Using only basic column statistics, the
Optimizer has no way of knowing about these real-world relationships, and could potentially
miscalculate the cardinality if multiple columns from the same table are used in the where clause of a
statement. The Optimizer can be made aware of these real-world relationships by having extended
statistics on these columns as a group.

By creating statistics on a group of columns, the Optimizer can compute a better cardinality estimate
when several the columns from the same table are used together in a where clause of a SQL statement.
You can use the function DBMS_STATS.CREATE EXTENDED STATS to define a column group you
want to have statistics gathered on as a group. Once a column group has been created, Oracle will
automatically maintain the statistics on that column group when statistics are gathered on the table, just
like it does for any ordinary column (Figure 10).



Understanding Optimizer Statistics

SOL» SELECT DEMS_STATS,CREATE_EXTENMDED_STATS(rull,'customers', '(country_id, cust_state_province)')
2 FROM  dual:

DEMS_STATS.CREATE_EXTENDED_STATS{NULL, "CUSTOHERS' , " (COUNTRY_ID,CUST_STATE_PROVINCE) ')

SYS_STUJGWLRVHSUSYIUSXNYS_TRe#4

SO
S0L> Exec DEMS_STATS.GATHER_THELE_STATS(null,'customers'}:

FLASOL procedure successfully completed,

Figure 10. Creating a column group on the CUSTOMERS table

After creating the column group and re-gathering statistics, you will see an additional column, with a
system-generated name, in the dictionary view USER TAB COL_ STATISTICS. This new column
represents the column group (Figure 11).

SOL> SELECT column_name, num_distinct, num_nulls, histogram
2 FROM  user_tab_col_statistics
3 WHERE table_name='CUSTOMERS':

COLUMM_HAHE NUM_DISTINCT  MUM_NULLS HISTOGRAM
¥S_STUJGYLRVHSUSYDUSKENY4 _IR#4 145 0 _NONE
CUST_ID 55500 0 NONE
CUST_FIRST_NAME 1300 0 NOME
CUST_LAST_NAME 908 0 NONE
CUST_GENDER 2 0 NONE
CUST_YEAR_OF _BIRTH 79 0 NONE
CUST_MARITAL_STATUS 11 17428 NONE
CUST_STREET_ADDRESS 43300 0 NOWE
CUST_POSTAL_CODE 623 0 NOME
CUST_CITY 620 0 NONE
CUST_CITY_ID 620 0 HEIGHT BALANCED
CUST_STATE_PROVINCE 145 0 FREQUENCY
CUST_STATE_PROVINCE_ID 145 0 FREQUENCY
COUNTRY_ID 18 0 FREQUENCY
CUST_MAIN_PHONE _NUMBER 51344 0 NONE
CUST_INCOME_LEVEL 12 41 NONE
CUST_CREDIT_LIMIT 8 0 NONE
CUST_EMAIL 1693 0 NONE
CUST_TOTAL 1 0 NOWE
CUST_TOTAL_ID 1 0 FREQUENCY
CUST_SRC_ID 0 55500 NONE
CUST_EFF _FROM 1 0 NONE
CUST_EFF_TO 0 55500 NONE
CUST_VALID 2 0 NONE

Figure 11. System generated column name for a column group in USER_TAB_COL_STATISTICS

To map the system-generated column name to the column group and to see what other extended
statistics exist for a user schema, you can query the dictionary view USER_STAT EXTENSIONS (Figure
12).

SOL> SELECT table_name, extension_name, extenzion
2 FROM  user_stat_extenzions
3 WHERE creator = 'USER':

TABLE_NAME EXTENSTON_MAME EXTENSION
CUSTOMERS SYS_STUJGYLRYHSUSYIUSHNA _TR#4 {"COUMTRY _ID","CUST_STHTE_PROVIMCE" )
SALES SYS_STUOSKSOZATEZHFHTUUKELWICLL {"PROD_ID","CUST_ID"}

Figure 12. Information about column groups is stored in USER_STAT_EXTENSIONS

The Optimizer will now use the column group statistics, rather than the individual column statistics
when these columns are used together in where clause predicates. Not all of the columns in the column



Understanding Optimizer Statistics

group need to be present in the SQL statement for the Optimizer to use extended statistics; only a

subset of the columns is necessary.

Expression Statistics

It is also possible to create extended statistics for an expression (including functions), to help the
Optimizer to estimate the cardinality of a where clause predicate that has columns embedded inside
expressions. For example, if it is common to have a where clause predicate that uses the UPPER
function on a customer’s last name, UPPER (CUST_LAST NAME) =:B1, then it would be beneficial to
create extended statistics for the expression UPPER (CUST LAST NAME) (Figure 13).

SOL> SELECT DBMS_STATS,CREATE_EXTENIED_STATS(null,'CUSTOMERS'. ' (UPPER{CUST _LAST_NAMEI}')
2 FROM  dual:

DBMS_STATS,CREATE_EXTENDED_STATSCMULL . 'CUSTOMERS' . ' (UPPERCCUST_LAST_NAMED) ')

SY5_STUSKCCIESMWEITBWTEPABA4LY

Figure 13. Extended statistics can also be created on expressions

Just as with column groups, statistics need to be re-gathered on the table after the expression statistics
have been defined. After the statistics have been gathered, an additional column with a system-
generated name will appear in the dictionary view USER TAB COL STATISTICS representing the
expression statistics. Just like for column groups, the detailed information about expression statistics
can be found in USER STAT EXTENSIONS.

Restrictions on Extended Statistics

Extended statistics can only be used when the where the clause predicates are equalities or in-lists.
Extended statistics will not be used if there are histograms present on the undetlying columns and

there is no histogram present on the column group.

Index Statistics

Index statistics provide information on the number of distinct values in the index (distinct keys), the
depth of the index (blevel), the number of leaf blocks in the index (leaf_blocks), and the clustering
factor!. The Optimizer uses this information in conjunction with other statistics to determine the cost
of an index access. For example the Optimizer will use b-level, leaf_blocks and the table statistics
num_rows to determine the cost of an index range scan (when all predicates are on the leading edge of
the index).

! Chapter 11 of the Oracle® Database Performance Tuning Guide

10


http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/optimops.htm

Understanding Optimizer Statistics

Gathering Statistics

For database objects that are constantly changing, statistics must be regularly gathered so that they
accurately describe the database object. The PL/SQL package, DBMS_STATS, is Oracle’s preferred
method for gathering statistics, and replaces the now obsolete ANALYZE? command for collecting
statistics. The DBMS_STATS package contains over 50 different procedures for gathering and managing
statistics but most important of these procedures are the GATHER * STATS procedutes. These
procedures can be used to gather table, column, and index statistics. You will need to be the owner of
the object or have the ANALYZE ANY system privilege or the DBA role to run these procedures. The
parameters used by these procedutes are neatly identical, so this paper will focus on the

GATHER TABLE STATS procedure.

GATHER_TABLE_STATS

The DBMS_STATS.GATHER_TABLE_STATS procedure allows you to gather table, partition, index, and
column statistics. Although it takes 15 different parameters, only the first two or three parameters need

to be specified to run the procedure, and are sufficient for most customers;
e The name of the schema containing the table
e The name of the table
e A specific partition name if it’s a partitioned table and you only want to collect statistics for a

specific partition (optional)

30L» BEGIM
2 dbms_stats.gather_table_stats{'SH', 'SALES'):
3 END:
4

LASOL procedure successful ly completed,

Figure 14. Using the DBMS_STATS.GATHER_TABLE_STATS procedure

The remaining parameters can be left at their default values in most cases. Out of the remaining 12

parameters, the following are often changed from their default and warrant some explanation here.

ESTIMATE_PERCENT parameter

The ESTIMATE PERCENT parameter determines the percentage of rows used to calculate the statistics.
The most accurate statistics are gathered when all rows in the table are processed (i.e., 100% sample),
often referred to as computed statistics. Oracle Database 11g introduced a new sampling algorithm
that is hash based and provides deterministic statistics. This new approach has the accuracy close to a

2 ANALYZE command is still used to VALIDATE or LIST CHAINED ROWS.

11



Understanding Optimizer Statistics

100% sample but with the cost of, at most, a 10% sample. The new algorithm is used when
ESTIMATE PERCENT is set to AUTO_SAMPLE SIZE (the default) in any of the

DBMS STATS.GATHER * STATS procedures. Historically, customers have set the

ESTIMATE PRECENT parameter to a low value to ensure that the statistics will be gathered quickly.
However, without detailed testing, it is difficult to know which sample size to use to get accurate
statistics. It is highly recommended that from Oracle Database 11g onward you let

ESTIMATE PRECENT default (i.e., not set explicitly).

METHOD_OPT parameter

The METHOD OPT parameter controls the creation of histograms during statistics collection.
Histograms are a special type of column statistic created when the data in a table column has a non-
uniform distribution, as discussed in the previous section of this paper. With the default value of FOR
ALL COLUMNS SIZE AUTO, Oracle automatically determines which columns require histograms and
the number of buckets that will be used based on the column usage information
(DBMS_STATS.REPORT COL_USAGE) and the number of distinct values in the column. The column
usage information reflects an analysis of all the SQL operations the database has processed for a given
object. Column usage tracking is enabled by default.

A column is a candidate for a histogram if it has been seen in a where clause predicate, e.g., an equality,
range, LIKE, etc. Oracle also verifies if the column data is skewed before creating a histogram, for
example a unique column will not have a histogram created on it if it is only seen in equality predicates.
It is strongly recommended you let the METHOD OPT parameter default in the GATHER * STATS

procedures.

DEGREE parameter

The DEGREE parameter controls the number of parallel server processes that will be used to gather the
statistics. By default Oracle uses the same number of parallel server processes specified as an attribute
of the table in the data dictionary (Degtee of Parallelism). By default, all tables in an Oracle database
have this attribute set to 1, so it may be useful to set this parameter if statistics are being gathered on a
large table to speed up statistics collection. By setting the parameter DEGREE to AUTO DEGREE, Oracle
will automatically determine the appropriate number of parallel server processes that should be used to
gather statistics, based on the size of an object. The value can be between 1 (serial execution) for small
objects to DEFAULT DEGREE (PARALLEL THREADS PER CPU X CPU_COUNT) for larger objects.

GRANULARITY parameter

The GRANULARITY parameter dictates the levels at which statistics are gathered on a partitioned table.
The possible levels are table (global), partition, or sub-partition. By default Oracle will determine which
levels are necessary based on the table’s partitioning strategy. Statistics are always gathered on the first
level of partitioning regardless of the pattitioning type used. Sub-partition statistics are gathered when
the subpartitioning type is LIST or RANGE. This parameter is ignored if the table is not partitioned.

12



Understanding Optimizer Statistics

CASCADE parameter

The CASCADE parameter determines whether or not statistics are gathered for the indexes on a table.
By default, AUTO CASCADE, Oracle will only re-gather statistics for indexes whose table statistics are
stale. Cascade is often set to false when a large direct path data load is done and the indexes are
disabled. After the load has been completed, the indexes are rebuilt and statistics will be automatically
created for them, negating the need to gather index statistics when the table statistics are gathered.

NO_INVALIDATE parameter

The NO_INVALIDATE parameter determines if dependent cursors (cursors that access the table whose
statistics are being re-gathered) will be invalidated immediately after statistics are gathered or not. With
the default setting of DBMS STATS.AUTO INVALIDATE, cursors (statements that have already been
parsed) will not be invalidated immediately. They will continue to use the plan built using the previous
statistics until Oracle decides to invalidate the dependent cursors based on internal heuristics. The
invalidations will happen gradually over time to ensure there is no performance impact on the shared
pool or spike in CPU usage as there could be if you have a large number of dependent cursors and all

of them were hard parsed at once.

Changing the default value for the parameters in DBMS_STATS.GATHER_* STATS

You can specify a particular non-default parameter value for an individual

DBMS STATS.GATHER * STATS command, or override the default value for your database. You can
override the default parameter values for DBMS STATS.GATHER * STATS procedures using the
DBMS STATS.SET * PREFS procedures. The list of parameters that can be changed are as follows:

AUTOSTATS TARGET (SET GLOBAL PREFS only as it relates to the auto stats job)
CONCURRENT (SET_GLOBAL PREFS only)
CASCADE

DEGREE

ESTIMATE PERCENT

METHOD_ OPT

NO_INVALIDATE

GRANULARITY

PUBLISH

INCREMENTAL

STALE_PERCENT

You can override the default settings for each parameter at a table, schema, database, or global level
using one of the following DBMS STATS.SET * PREFS procedures, with the exception of
AUTOSTATS TARGET and CONCURRENT which can only be modified at the global level.

SET TABLE PREFS

SET SCHEMA PREFS
SET DATABASE PREFS
SET GLOBAL_ PREFS

13



Understanding Optimizer Statistics

The SET TABLE PREFS procedure allows you to change the default values of the parameters used by
the DBMS STATS.GATHER * STATS procedures for the specified table only.

The SET SCHEMA PREFS procedure allows you to change the default values of the parameters used by
the DBMS STATS.GATHER * STATS procedures for all of the existing tables in the specified schema.
This procedure actually calls the SET TABLE PREFS procedure for each of the tables in the specified
schema. Since it uses SET _TABLE PREFS, calling this procedure will not affect any new objects
created after it has been run. New objects will pick up the GLOBAL preference values for all parameters.

The SET DATABASE PREFS procedure allows you to change the default values of the parameters used
by the DBMS STATS.GATHER * STATS procedures for all of the user-defined schemas in the database.
This procedure actually calls the SET TABLE PREFS procedure for each table in each user-defined
schema. Since it uses SET TABLE PREFS this procedure will not affect any new objects created after it
has been run. New objects will pick up the GLOBAL preference values for all parameters. It is also
possible to include the Oracle owned schemas (sys, system, etc) by setting the ADD SYS parameter to
TRUE.

The SET GLOBAL_ PREFS procedure allows you to change the default values of the parameters used by
the DBMS STATS.GATHER * STATS procedures for any object in the database that does not have an
existing table preference. All parameters default to the global setting unless there is a table preference
set, or the parameter is explicitly set in the GATHER * STATS command. Changes made by this
procedure will affect any new objects created after it has been run. New objects will pick up the
GLOBAL_PREFS values for all parameters.

With SET GLOBAL_ PREFS it is also possible to set a default value for two additional parameters,
AUTOSTAT TARGET and CONCURRENT. AUTOSTAT TARGET controls what objects the automatic
statistic gathering job (that runs in the nightly maintenance window) will look after. The possible values
for this parameter are ALL, ORACLE, and AUTO. The default value is AUTO. A more in-depth discussion
about the automatic statistics collection can be found in the statistics management section of this
papet.

The CONCURRENT parameter controls whether or not statistics will be gathered on multiple tables in a
schema (or database), and multiple (sub)parttitions within a table concurrently. It is a Boolean
parameter, and is set to FALSE by default. The value of the CONCURRENT parameter does not
impact the automatic statistics gathering job, which always does one object at a time. A more in-depth
discussion about concutrent statistics gathering can be found in the Improving the efficiency of
Gathering Statistics section of this paper.

The DBMS_STATS.GATHER_* STATS procedures and the automatic statistics gathering job obeys the
following hierarchy for parameter values; parameter values explicitly set in the command overrule
everything else. If the parameter has not been set in the command, we check for a table level
preference. If there is no table preference set, we use the GLOBAL preference.

14



Understanding Optimizer Statistics

DBMS_STAT.GATHER_*_STATS
parameter hierarchy

i

Figure 15. DBMS_STATS.GATHER_*_STATS hierarchy for parameter values

If you are unsure of what preferences have been set, you can use the DBMS_STATS.GET PREFS
function to check. The function takes three arguments; the name of the parameter, the schema name,
and the table name. In the example below (figure 16), we first check the value of STALE PRECENT on
the SH. SALES table. Then we set a table level preference, and check that it took affect using

DBMS STATS.GET PREFS.

SOL>» SELECT dbms_stats,get_prefs('STALE_PERCENT', 'SH', 'SALES') stale_percent
2 FEOM  dual:

STALE_PERCENT

10

S0L> 1

SOL> BEGIN
5" dbms_stats,set_table_prefs('SH', 'SALES', 'STALE_PERCENT', 'ES'):
2 END:
4/

PLASOL procedure successfully completed,

S

SOL> SELECT dbms_stats,get_prefs('STALE_PERCEMT', 'SH', 'SALES') stale_percent
2 FROM  dual:

STALE_PERCENT

Bo

Figure 16. Using DBMS_STATS.SET_PREFS procedure to change the parameter stale_percent for the sales table

Automatic Statistics Gathering Job

Oracle will automatically collect statistics for all database objects, which are missing statistics or have
stale statistics by running an Oracle AutoTask task during a predefined maintenance window (10pm to
2am weekdays and 6am to 2am at the weekends).

This AutoTask gathers Optimizer statistics by calling the internal procedure
DBMS_ STATS.GATHER DATABASE STATS JOB PROC. This procedure operates in a very similar

15



Understanding Optimizer Statistics

fashion to the DBMS STATS.GATHER DATABASE STATS procedure using the GATHER AUTO option.
The primary difference is that Oracle internally prioritizes the database objects that require statistics, so
that those objects, which most need updated statistics, are processed first. You can verify that the
automatic statistics gathering job exists by querying the DBA AUTOTASK CLIENT JOB view ofr through
Enterprise Manager (Figure 17). You can also change the maintenance window that the job will run in
through Enterprise Manager.

CRACLE Enterprise Manager Mg
Datahase Control

Cluster Database: DBM > Automated Maintenance Tasks >

Automated Maintenance Tasks Conﬁguration
Global Status (5 Enabled O Disabled

Task Settings
IGpiimizer Statistics Gathering & Enabled O Disabledl Configure |
Segment Advisor &) Enabled O Disabled
Autornatic SQL Tuning O Enabled @ Disabled |_Configure

Maintenance Window Group Assignment

I Edit Window Group I
Window Optimizer Statistics Gathering Segment Advisor Automatic SOL Tuning
Select All| Select Mone Select All| Select Mone Select All|Select Mone

THURSDAY WINDOW
FRIDAY WINDOW
SATURDAY WINDOW
SUNDAY WINDOW
MONDAY _WWINDOWY
TUESDAY_WINDOW
WEDNESDAY_WINDOW

Figure 17. Checking that the automatic statistics gathering job is enabled

Statistics on a table are considered stale when more than STALE PERCENT (default 10%) of the rows
are changed (total number of inserts, deletes, updates) in the table. Oracle monitors the DML activity
for all tables and records it in the SGA. The monitoring information is periodically flushed to disk, and
is exposed in the * TAB MODIFICATIONS view.

16



Understanding Optimizer Statistics

SOL> SELECT table_name, inserts, updates, deletes
2 FROM USER_TAB_MODIFICATIONS
32 WHERE table_name='PRODUCTSZ':

TABLE_NAME INSERTS  UPDATES  DELETES

PRODUCTS2 766 1532 38

Figure 18. Querying USER_TAB_MODIFICATIONS view to check DML activity on the PRODUCTS2 table

It is possible to manually flush this data by calling the procedure

DBMS_ STATS.FLUSH DATABASE MONITORING INFO if you want to get up-to-date information at
query time (internally the monitoring data is flushed before all statistics collection operations). You can
then see which tables have stale statistics by querying the STALE STATS column in the

USER_TAB STATISTICS view.

SOL» connect hrdhr
Connected,

SOL> SELECT table_name, stale_stats

2 FROM uzer_tab_statiztics:
TABLE_MNAME STALE_STATS
COUMTRIES MO
TIEPERTHEMTS 1]
EMPLOYEES 1]
JOBS
JOB_HISTORY 1]
LOCATIONS MO
REGIONS YES

Figure 19. Querying USER_TAB_STATISTICS to see if any tables have stale statistics

Tables where STALE_STATS is set to NO, have up to date statistics. Tables where STALE STATS is set
to YES, have stale statistics. Tables where STALE STATS is not set are missing statistics altogether.

If you already have a well-established statistics gathering procedure or if for some other reason you
want to disable automatic statistics gathering for your main application schema, consider leaving it on
for the dictionary tables. You can do this by changing the value of AUTOSTATS TARGET to ORACLE
instead of AUTO using DBMS STATS.SET GLOBAL PREFS procedure.

BEGIN

DBMS STATS.SET GLOBAL PREFS (‘AUTOSTATS TARGET’,’ ORACLE’);
END;
/

To disable the task altogether:

BEGIN
DBMS AUTO TASK ADMIN.DISABLE (
client name => 'auto optimizer stats collection',
operation => NULL,
window name => NULL) ;
END;
/

17



Understanding Optimizer Statistics

Improving the efficiency of Gathering Statistics

Once you define the statistics you are interested in, you want to ensure to collect these statistics in a
timely manner. Traditionally people have sped up statistics gathering by using parallel execution as
discussed above. However, what if all of the objects a schema were small and didn’t warrant parallel

execution, how could you speed up gathering statistics on that schema?

Concurrent Statistic gathering

In Oracle Database 11g Release 2 (11.2.0.2), a concurrent statistics gathering mode was introduced to
gather statistics on multiple tables in a schema (or database), and multiple (sub)partitions within a table
concurrently. Gathering statistics on multiple tables and (sub)partitions concurrently can reduce the
overall time it takes to gather statistics by allowing Oracle to fully utilize a multi-processor

environment.

Concurrent statistics gathering is controlled by the global preference, CONCURRENT, which is set to
either TRUE or FALSE. By default it is set to FALSE. When CONCURRENT is set to TRUE, Oracle
employs Oracle Job Scheduler and Advanced Queuing components to create and manage multiple

statistics gathering jobs concurrently.

Calling DBMS STATS.GATHER TABLE STATS on a partitioned table when CONCURRENT is set to TRUE,
causes Oracle to create a separate statistics gathering job for each (sub)pattition in the table. How
many of these jobs will execute concurrently, and how many will be queued is based on the number of
available job queue processes (JOB_QUEUE PROCESSES initialization parameter, per node on a RAC
environment) and the available system resources. As the currently running jobs complete, more jobs

will be dequeued and executed until all of the (sub)partitions have had their statistics gathered.

If you gather statistics using DBMS_STATS.GATHER DATABASE_STATS,
DBMS_STATS.GATHER SCHEMA STATS, or DBMS_ STATS.GATHER DICTIONARY STATS, then Oracle
will create a separate statistics gathering job for each non-partitioned table, and each (sub)partition for
the partitioned tables. Each partitioned table will also have a coordinator job that manages its
(sub)partition jobs. The database will then run as many concurrent jobs as possible, and queue the
remaining jobs until the executing jobs complete. However, to prevent possible deadlock scenarios
multiple partitioned tables cannot be processed simultaneously. Hence, if there are some jobs running
for a partitioned table, other partitioned tables in a schema (or database or dictionary) will be queued

until the current one completes. There is no such restriction for non-partitioned tables.

The following figure illustrates the creation of jobs at different levels, when a
DBMS STATS.GATHER SCHEMA STATS command has been issued on the SH schema. Oracle will
create a statistics gathering job (Level 1 in Figure 20) for each of the non-partitioned tables;

CHANNELS,
COUNTRIES,
CUSTOMERS,
PRODUCTS,
PROMOTIONS,
TIMES

18



Understanding Optimizer Statistics

And, a coordinator job for each partitioned table, i.c., SALES and COSTS, it in turn creates a statistics
gathering job for each of partition in SALES and COSTS tables, respectively (Level 2 in Figure 20).

GATHER_SCHEMA_STATS

Job1 Job3 Jobs ‘
Global y w Job7 Global
LEVEL 2

LEVEL 1
Figure 20. List of the statistics gathering job created when Concurrent Statistics Gathering occurs on the SH schema

Let’s assume that the parameter JOB_QUEUE PROCESSES is set to 32, the Oracle Job Scheduler would
allow 32 statistics gathering jobs to start, and would queue the rest (assuming that there are sufficient
system resources for 32 jobs). Suppose that the first 29 jobs (one for each partition plus the
coordinator job) for the COSTS table get started, then three non-partitioned table statistics gathering
jobs would also be started. The statistics gathering jobs for the SALES table will be automatically
queued, because only one partitioned table is processed at any one time. As each job finishes, another
job will be dequeued and started, until all 64 jobs (6 level 1 jobs and 58 level 2 jobs) have been
completed. Each of the individual statistics gathering job can also take advantage of parallel execution

as describes above under the parameter DEGREE.

Configuration and Settings

In Oracle Database 11.2.0.2, the concurrency setting for statistics gathering is turned off by default. It
can be turned on using the following command.

BEGIN

DBMS STATS.SET GLOBAL PREFS ('CONCURRENT', 'TRUE') ;
END;

/

You will also need some additional privileges above and beyond the regular privileges required to
gather statistics. The user must have the following Job Scheduler and AQ privileges:

CREATE JOB
MANAGE SCHEDULER
MANAGE ANY QUEUE

19



Understanding Optimizer Statistics

The sYSAUX tablespace should be online, as the Job Scheduler stores its internal tables and views in
SYSAUX tablespace. Finally the JOB_ QUEUE PROCESSES parameter should be set to fully utilize all of
the system resources available (or allocated) for the statistics gathering process. If you don't plan to use
parallel execution you should set the JOB_ QUEUE PROCESSES to 2 X total number of CPU cores (this
is a per node parameter in a RAC environment). Please make sute that you set this parameter system-
wise (ALTER SYSTEM ... ot in init.ora file) rather than at the session level (ALTER SESSION).

If you are going to use parallel execution as part of concurrent statistics gathering you should disable

the PARALLEL ADAPTIVE MULTI USER initialization parameter. That is;
ALTER SYSTEM SET parallel_adaptive_multi_user=false;

It is also recommended that you enable parallel statement queuing. This requires Resource Manager to
be activated (if not already), and the creation of a temporary resource plan where the consumer group
"OTHER GROUPS" should have queuing enabled. By default, Resource Manager is activated only during
the maintenance windows. The following script illustrates one way of creating a temporary resource

plan (pqq_test), and enabling the Resource Manager with this plan.

BEGIN
dbms_resource_manager.create_pending_area();
dbms_resource_manager.create_plan('pqq_test’, 'paq_test');
dbms_resource_manager.create_plan_directive(
'paq_test’,
'OTHER_GROUPS',
'OTHER_GROUPS directive for pqq’,
parallel_target_percentage=>90);
dbms_resource_manager.submit_pending_areal);
END;
/
ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'pqq_test' SID="*";

Figure 21. Steps required to setup Resource Manager and parallel statement queuing for concurrent statistics
gathering executed in parallel

You should note that the automatic statistics gathering job does not currently take advantage of
concurrency. Setting CONCURRENT to TRUE will have no impact on the automatic statistics gathering
job.

Gathering Statistics on Partitioned tables

Gathering statistics on partitioned tables consists of gathering statistics at both the table level and
partition level. Prior to Oracle Database 11g, adding a new partition or modifying data in a few
partitions required scanning the entire table to refresh table-level statistics. If you skipped gathering the
global level statistics, the Optimizer would extrapolate the global level statistics based on the existing

20



Understanding Optimizer Statistics

partition level statistics. This approach is accurate for simple table statistics such as number of rows —
by aggregating the individual rowcount of all partitions - but other statistics cannot be determined
accurately: for example, it is not possible to accurately determine the number of distinct values for a
column (one of the most critical statistics used by the Optimizer) based on the individual statistics of
all partitions.

Oracle Database 11g enhances the statistics collection for pattitioned tables with the introduction of
incremental global statistics. If the INCREMENTAL preference for a partitioned table is set to TRUE, the
DBMS STATS.GATHER * STATS parameter GRANULARITY includes GLOBAL, and

ESTIMATE PERCENT is setto AUTO SAMPLE SIZE, Oracle will gather statistics on the new partition,
and accurately update all global level statistics by scanning only those partitions that have been added
or modified, and not the entire table.

Incremental global statistics works by storing a synopsis for each partition in the table. A synopsis is
statistical metadata for that partition and the columns in the partition. Each synopsis is stored in the
SYSAUX tablespace. Global statistics are then generated by aggregating the partition level statistics and
the synopses from each partition, thus eliminating the need to scan the entire table to gather table level
statistics (see Figure 22). When a new partition is added to the table, you only need to gather statistics
for the new partition. The global statistics will be automatically and accurately updated using the new
partition synopsis and the existing partitions’ synopses.

1. Partition level stats are
gathered & synopsis
created

— \ 2. Global stats generated by
aggregating partition level
EE— statistics and synopsis
—)
b Global
— | 54 Statistic
——
—

Sales Table

Sysaux Tablespace
Figure 22. Incremental Statistics gathering on a range partitioned table
Below are the steps necessary to use incremental global statistics.

Begin by switching on incremental statistics at either the table or the global level.

BEGIN

DBMS STATS.SET TABLE PREFS(‘SH’,’SALES’, ‘INCREMENTAL’,’TRUE’);
END;

/

21



Understanding Optimizer Statistics

Gather statistics on the object(s) as normal, letting the ESTIMATE PERCENT and GRANULARITY
parameters default.

BEGIN

DBMS STATS.GATHER TABLE STATS(‘SH’,’SALES’);
END;

/

To check the current setting of INCREMENTAL for a given table, use DBMS STATS.GET PREFS.

SELECT DBMSisTATS.GETiPREFS(‘INCREMENTAL’,‘SH',’SALES’)
FROM dual;

Note that INCREMENTAL will not be applied to the sub-partitions. Statistics will be gathered as normal
on the sub-partitions and on the partitions. Only the partition statistics will be used to determine the
global or table level statistics.

Managing statistics

In addition to collect appropriate statistics, it is equally important to provide a comprehensive
framework for managing them. Oracle offers a number of methods to do this including the ability to
restore statistics to a previous version, the option to transfer statistic from one system to another, or
even manually setting the statistics values yourself. These options are extremely useful in specific cases,
but are not recommended to replace standard statistics gathering methods using the DBMS STATS
package.

Restoring Statistics

From Oracle Database 10g onwards, when you gather statistics using DBMS _STATS, the original
statistics are automatically kept as a backup in dictionary tables, and can be easily restored by running
DBMS STATS.RESTORE TABLE STATS if the newly gathered statistics lead to any kind of problem.
The dictionary view DBA TAB STATS HISTORY contains a list of timestamps when statistics were
saved for each table.

The example below restores the statistics for the table SALES to what they were yesterday, and
automatically invalidates all of the cursors referencing the SALES table in the SHARED POOL. We want
to invalidate all of the cursors; because we are restoring yesterday’s statistics and want them to impact
any cursor instantaneously. The value of the NO INVALIDATE parameter determines if the cursors

referencing the table will be invalidated or not.

BEGIN

DBMS_ STATS.RESTORE TABLE_ STATS (ownname => ‘SH',
tabname => ‘SALES’,
as_of timestamp => SYSTIMESTAMP-1
force => FALSE,
no invalidate => FALSE) ;

END; n

22



Understanding Optimizer Statistics

Pending Statistics

By default when statistics are gathered, they are published (written) immediately to the appropriate
dictionary tables and begin to be used by the Optimizer. In Oracle Database 11g, it is possible to
gather Optimizer statistics but not have them published immediately; and instead store them in an
unpublished, ‘pending’ state. Instead of going into the usual dictionary tables, the statistics are stored in
pending tables so that they can be tested before they are published. These pending statistics can be
enabled for individual sessions, in a controlled fashion, which allows you to validate the statistics
before they are published. To activate pending statistics collection, you need to use one of the

DBMS STATS.SET * PREFS procedures to change value of the parameter PUBLISH from TRUE
(default) to FALSE for the object(s) you wish to create pending statistics for.

BEGIN

DBMS STATS.SET TABLE PREFS(‘SH’,’SALES’, ‘PUBLISH’,’FALSE') ;
END;

/

Gather statistics on the object(s) as normal.

BEGIN

DBMS STATS.GATHER TABLE STATS(‘SH’,’SALES');
END;

/

The statistics gathered for these objects can be displayed using the dictionary views called

USER_* PENDING STATS. You can tell the Optimizer to use pending statistics by issuing an alter
session command to set the initialization parameter OPTIMIZER USE PENDING STATS to TRUE and
running a SQL workload. For tables accessed in the workload that do not have pending statistics the
Optimizer will use the current statistics in the standard data dictionary tables. Once you have validated
the pending statistics, you can publish them using the procedure

DBMS STATS.PUBLISH PENDING STATS.

BEGIN

DBMS STATS.PUBLISH PENDING STATS(‘SH’,’SALES’);
END;

/

Exporting / Importing Statistics

One of the most important aspects of rolling out a new application or a new part of an existing
application is testing it at scale. Ideally, you want the test system to be identical to production in terms
of hardware and data size. This is not always possible, most commonly due to the size of the
production environments. By copying the Optimizer statistics from a production database to any other
system running the same Oracle version, e.g., a scaled-down test database, you can emulate the
Optimizer behavior of a production environment. The production statistics can be copied to the test
database using the DBMS_STATS.EXPORT * STATS and DBMS STATS.IMPORT * STATS procedures.

Before exporting statistics, you need to create a table to store the statistics using
DBMS STATS.CREATE STAT TABLE. After the table has been created, you can export statistics from
the data dictionary using the DBMS STATS.EXPORT * STATS procedures. Once the statistics have

23



Understanding Optimizer Statistics

been packed into the statistics table, you can then use datadump to extract the statistics table from the
production database, and import it into the test database. Once the statistics table is successfully
imported into the test system, you can import the statistics into the data dictionary using the

DBMS STATS.IMPORT * STATS procedures. The following example creates a statistics table called
TAB1 and exports the statistics from the SH schema into the MYSTATS statistics table.

SOL> CREATE OF REFLACE DIRECTORY stats_dir A5 'vhome/oraclernaria’s

Directory created,

SaL>

SOL> BEGIN
2 [dhnz_stats,create_stat_tablel ol . HTSIATS 5?'
3 Y
4/

PLASOL procedure successfully completed.

501>

SOl BEGIN
2 | doms_stats,export_schema_statslownnang=> "5H' ,stattab=> "MYSTATS )3 )
3 T
4 7

PLASOL procedure successfully completed,

SaL>

SOL> exit

Disconnected from Oracle Database 11g Enterprise Edition Release 11,2,0,2,0 - B4bit Production
With the Partitioning. Real Application Clusters, Automatic Storage Management. OLAP,

Data Mining and Real Application Testing options

[oracle@slcadldbid blogl$
[oracleRsleatldb0d blog]$[expdp shish tables=MYSTATS directory=STATS_DIR dumpfile=sh_schema_stats.dwp logfilesexpdp_sh_stats,lo l

Export: Release 11,2,0,2,0 - Production on Fri Mow 4 15;14:26 2011
Copyright {c) 1982, 2009, Oracle andfor its affiliates. All rights reserved,

Connected to: Oracle Databaze 11g Enterprise Edition Release 11,2,0,2,0 - B4bit Production

With the Partitioning. Real Application Clusters, Automatic Storage Management., OLAP.

Data Mining and Real Application Testing options

Starting "SH"."SYS_EXPORT_TRBLE_O1": sho#*dkkikk ahles=MYSTATS directory=STATS_DIR dumpfile=sh_schema_stats.dwp logfile=expdp_s
. . exported “SH","HYSTATS" 1.684 MBE 16395 rous

Haster table "SH","SYS_EXPORT_TABLE_01" successfully loaded/unloaded

Dump file set for SH,SYS_EXPORT_TABLE_O1 is:
Shoneforaclesmariadsh_schema_stats ,dop

Job "SH","SYS_EXPORT_TABLE_01" successfully completed at 15:15:03

[oraclefzlcalldb0f marial$ cd blog

[oraclefzlca0ldb0d blogl$ cd

[oracleRslcalldbOs maria]$[impdp sh#sh tables=MYSTATS directory=STATS_DIR dumpfile=sh_schema_stats,dmp logfile=impdp_sh_stats,log ]

Import: Release 11,2,0,2,0 - Production on Fri Mow 4 17:21:35 2011
Copyright {c) 1982, 2003, Oracle andfor its affiliates, ALl rights reserved,

Cornected to! Oracle Database 1lg Enterprize Edition Release 11,2,0,2,0 - B4bit Production

With the Partitioning. Real Application Clusters, Automatic Storage Management. OLAP,

Data Mining and Real Application Testing options

Master table "SH","SYS_IMPORT_TABLE_01" succeszsfully loaded/unloaded

Starting "SH","SYS_IMPORT_TRBLE_O1": sh/##sssssd {ahles=MYSTATS directory=STATS_DIR dumpfile=sh_schema_stats,dwp loafile=impdp_sh_stats,log
Job "SH","SYS_IMPORT_TABLE_01" successfully completed at 17:23:51

[oracleRslcatldbds marial$ sqlplus shish
SOL*Plus: Release 11,2,0,2,0 Production on Fri Mow 4 17:24:04 2011

Copyright (c) 1982, 2010, Oracle, All rights reserved,

Connected to

Oracle Database 11g Enterprise Edition Release 11.2,0,2,0 - B4bit Production

With the Partitioning. Real Application Clusters, Automatic Storage Management. OLAP,
Data Mining and Real Application Testing options

SDL LECIH

2 Ldbns_state,inport schens stats{ownane=>' S cstattab=> MISTATS ;)
3 END:

Fa

PLASOL procedure successfully completed,

Figure 23. Exporting the Optimizer statistics for the SH schema

24



Understanding Optimizer Statistics

Copying Partition Statistics

When dealing with partitioned tables the Optimizer relies on both the statistics for the entire table
(global statistics) as well as the statistics for the individual partitions (partition statistics) to select a
good execution plan for a SQL statement. If the query needs to access only a single partition, the
Optimizer uses only the statistics of the accessed partition. If the quety access more than one partition,

it uses a combination of global and partition statistics.

It is very common with range pattitioned tables to have a new partition added to an existing table, and
rows inserted into just that partition. If end-users start to query the newly inserted data before statistics
have been gathered, it is possible to get a suboptimal execution plan due to stale statistics. One of the
most common cases occurs when the value supplied in a whete clause predicate is outside the domain
of values represented by the [minimum, maximum]| column statistics. This is known as an ‘out-of-
range’ error. In this case, the Optimizer prorates the selectivity based on the distance between the
predicate value, and the maximum value (assuming the value is higher than the max), that is, the farther

the value is from the maximum or minimum value, the lower the selectivity will be.

The "Out of Range" condition can be prevented by using the DBMS STATS.COPY TABLE STATS
procedure (available from Oracle Database 10.2.0.4 onwards). This procedure copies the statistics of a
representative source [sub] partition to the newly created and empty destination [sub] partition. It also
copies the statistics of the dependent objects: columns, local (partitioned) indexes, etc. The minimum

and maximum values of the partitioning column are adjusted as follows;

o If the partitioning type is HASH the minimum and maximum values of the destination partition are

same as that of the source partition.

o If the partitioning type is LIST and the destination partition is a NOT DEFAULT pattition then the
minimum value of the destination partition is set to the minimum value of the value list that
describes the destination partition. The maximum value of the destination partition is set to the

maximum value of the value list that describes the destination partition

o If the partitioning type is LIST and the destination partition is a DEFAULT partition, then the
minimum value of the destination partition is set to the minimum value of the source partition. The

maximum value of the destination partition is set to the maximum value of the source partition

o If the partitioning type is RANGE then the minimum value of the destination partition is set to the
high bound of previous partition and the maximum value of the destination partition is set to the
high bound of the destination partition unless the high bound of the destination partition is
MAXVALUE, in which case the maximum value of the destination partition is set to the high bound
of the previous partition

It can also scale the statistics (such as the number of blocks, or number of rows) based on the given
scale_factor. The following command copies the statistics from SALES Q3 2011 range partition to the
SALES_Q4 2011 partition of the SALES table and scales the basic statistics by a factor of 2.

BEGIN

DBMS STATS.COPY TABLE STATS('SH', 'SALES', 'SALES Q3 2002','SALES Q4 2002', 2);

END;
/

25



Understanding Optimizer Statistics

Index statistics are only copied if the index partition names are the same as the table partition names
(this is the default). Global or table level statistics are not updated by default. The only time global level
statistics would be impacted by the DBMS STATS.COPY TABLE STATS procedure would be if no
statistics existed at the global level and global statistics were being generated via aggregation.

Comparing Statistics

One of the key reasons an execution plan can differ from one system to another is because the
Optimizer statistics on each system are different, for example when data on a test system is not 100%
in sync with real production system. To identify differences in statistics, the

DBMS STATS.DIFF TABLE STATS * functions can be used to compare statistics for a table from two
different sources. The statistic sources can be:

o A user statistics table and the current statistics in the data dictionary

A single user statistics table containing two sets of statistics that can be identified using statids
e Two different user statistics tables

» Two points in history

o Current statistics and a point in history

 Pending Statistics with the cutrent statistics in the dictionary

 Pending Statistics with a user statistics table

The function also compares the statistics of the dependent objects (indexes, columns, partitions), and
displays all the statistics for the object(s) from both sources if the difference between the statistics
exceeds a specified threshold. The threshold can be specified as an argument to the function; the
default value is 10%. The statistics corresponding to the first source will be used as the basis for

computing the differential percentage.

In the example below, we compare the current dictionary statistics for the EMP table with the statistics

for EMP in the statistics table TAB1; the SQL statement will generate a report as shown in Figure 24.

SELECT report, maxdiffpct
FROM table (DBMS_STATS . DIFF_TABLE_STATS_IN_STATTAB (YSCOTT’,"EMP’ ,"TAB1" ));

26



Understanding Optimizer Statistics

DBMS_STATS.DIFF_TABLE_STATS IN_STATTAB(NULL,'EMP','TAB1")
HHHH R R R R R
STATISTICS DIFFERENCE REPORT FOR:
TABLE :EMP
OWNER  :SCOTT
SOURCEA :User statisticstable TAB1
: Statid
:Owner  :SCOTT
SOURCEB : Current Statistics in dictionary
PCTTHRESHOLD : 10

P P Pl P P o P Pl 3 P 8 P P P P 3 P 3 3 P 7 P P P 3 3 £ P P P o P o Pl P

COLUMN STATISTICS DIFFERENCE:

COL_NAME SRCNDV DENSITY HISTOGRAMNULLS LEN MIN MAX SIZE

DEPTNO A 3 333333333 NO 0 3 (C10B C11F 14
B 3 .035714285 YES 0 3 (C10B C11F 14

Figure 24. Report output after comparing the statistics for table SCOTT.EMP in the statistics table TAB1 and the
current statistics in the dictionary.

Locking Statistics

In some cases, you may want to prevent any new statistics from being gathered on a table or schema by
locking the statistics. Once statistics are locked, no modifications can be made to those statistics until
the statistics have been unlocked or unless the FORCE parameter of the GATHER * STATS procedures
has been set to TRUE.

SOL> BEGIM
2 dbms_stats,lock_table_stats('SH', 'SALES' )+
2 END:
4 7

FLASOL procedure successfully completed,

SOL> BEGIM
2 dbms_stats,gather_table_stats('SH', 'SALES' )+
2 END:
4 7

BEGIN

*

ERROR at line 1:*

ORA-200052 object statiztics are locked (stattuype = ALLD
ORA-0EG12: at "SYS,DBMS_STATS", line 23104

ORA-OED1Z: at "SYS,DBMS_STATS". line 232059

ORA-0ED1Z: at line 2

SOL>

SOL> BEGIM
2 dbms_stats,gather_table_stats('SH', 'SALES' FORCE=>TRUE)+
3 EMD:
4 7

FLASOL procedure successfully completed,

Figure 25 Locking and unlocking table statistics

27



Understanding Optimizer Statistics

In Oracle Database 11g the DBMS STATS package was expanded to allow statistics to be locked and
unlocked at the partition level. These additional procedures allow for a finer granularity of control.

BEGIN
DBMS STATS.LOCK PARTITION STATS(‘SH’,’SALES’, 'SALES Q3 2000'");
END;

You should note there is a hierarchy with locked statistics. For example, if you lock the statistic on a
partitioned table, and then unlocked statistics on just one partition in order to re-gather statistics on
that one partition it will fail with an error ORA-20005. The error occurs because the table level lock
will still be honored even though the partition has been unlocked. The statistics gather for the partition
will only be successfully if the FORCE parameter is set to TRUE.

S0l exec DBMS_STATS,COPY_TABLE_STATSC'SH'. 'SALES'. 'SALES_03_2002','SALES_O4_2002',20:
PLASOL procedure successfully completed,

SOL>

SOL>

SOL> BEGIN
2 dbms_stats, lock_table_stats('SH','SALES' )+
3 EMD:
4 7

PLASOL procedure successfully completed,

SOL> BEGIN
2 dbme_statz,unlock_partition_stats('SH', 'SALES', 'SALES_04_2002' )z
3 EMD:
4 /7

PLASOL procedure successfully completed,

SOL»  BEGIM
2 dbmz_stats,gather_table_stats('SH', 'SALES', 'SALES_04_2002' ) :
3 END:
4 7
BEGIN
*

ERROR at line 1:

ORA-20005¢ object statistics are locked (stattype = ALL)
ORA-0B512: at “SY¥YS,DBMS_STATS", line 23104

ORA-0BD1Z: at "SYS,DBMS_STATS", line 23204

ORA-0ER1Z2: at line 2

SO BEGIM
2 dbms_stats,gather_table_stats('SH', 'SALES', 'SALES_04_2002' FORCE=>TRUE):
I EMD:
4 7

PLASOL procedure successfully completed,

Figure 26. Hierarchy with locked statistics; table level lock trumps partition level unlock

28



Understanding Optimizer Statistics

Manually setting Statistics

Under rare circumstances it may be beneficial to manually set the Optimizer statistics in the data
dictionary. One such example could be a highly volatile global temporary table (note that while
manually setting statistics is discussed in this paper, it is not generally recommended, because
inaccurate or inconsistent statistics can lead to poor performing execution plans). Statistics can be
manually set using DBMS STATS.SET * STATS procedures.

Other Types of Statistics

In addition to basic table, column, and index statistics, the Optimizer uses additional information to
determine the execution plan of a statement. This additional information can come in the form of

dynamic sampling and system statistics.

Dynamic Sampling

Dynamic sampling was introduced in Oracle Database 9i Release 2 to collect additional statement-
specific object statistics during the optimization of a SQL statement. The most common
misconception is that dynamic sampling can be used as a substitute for Optimizer statistics. The goal
of dynamic sampling is to augment the existing statistics; it is used when regular statistics are not
sufficient to get good quality cardinality estimates.

So, how and when will dynamic sampling be used? During the compilation of a SQL statement, the
Optimizer decides whether to use dynamic sampling or not by considering whether the available
statistics are sufficient to generate a good execution plan. If the available statistics are not enough,
dynamic sampling will be used. It is typically used to compensate for missing or insufficient statistics
that would otherwise lead to a very bad plan. For the case where one or more of the tables in the query
does not have statistics, dynamic sampling is used by the Optimizer to gather basic statistics on these
tables before optimizing the statement. The statistics gathered in this case are not as high a quality or as
complete as the statistics gathered using the DBMS_STATS package. This trade off is made to limit the

impact on the compile time of the statement.

The second scenario where dynamic sampling is used is when the statement contains a complex
predicate expression, and extended statistics are not available, or cannot be used. For example, if you
had a query that has non-equality where clause predicates on two correlated columns, standard
statistics would not be sufficient in this case, and extended statistics could not be used. In this simple
query against the SALES table, the Optimizer assumes that each of the where clause predicates will
reduce the number of rows returned by the query, and based on the standard statistics, determines the
cardinality to be 20,197, when in fact, the number of rows returned is ten times higher at 210,420.

SELECT count (*)
FROM sh.Sales
WHERE cust id < 2222

29



Understanding Optimizer Statistics

AND prod id > 5;

| Id | Operation | Mame | Rows | Bytes | Cost (XCPUDI Time |
| 0 | SELECT STATEMENT | | | I G2B (10071 |
|1 | SORT AGCREGATE | | 11 91 | |
|21 PARTITION RAMCGE ALL | | 20497 | AF7KL §28 (201 ooooioF |
1* 31 TABLE ACCESS STORAGE FULLI SALES 1f20197 I A77K1 G238 (231 0000207 |

Predicate Information (identified by operation id):

3 - storagel("CUST_ID"<2222 AND "PROD_ID":E)}
Filter{("CUST_ID"<2222 AND "PROD_ID">H))

Figure 27. Execution plan for complex predicates without dynamic sampling

With standard statistics the Optimizer is not aware of the correlation between the CUST_ID and
PROD_ID in the SALES table. By setting OPTIMIZER DYNAMIC_ SAMPLING to level 6, the Optimizer
will use dynamic sampling to gather additional information about the complex predicate expression.
The additional information provided by dynamic sampling allows the Optimizer to generate a more

accurate cardinality estimate, and therefore a better performing execution plan.

I Id | Operation | Hame | Rows | Bytes | Cost (2CPUDI Time |

01 | I | I 528 (10071
1| SORT AGGREGATE | I 11 91 |
2 | PARTITION RANGE ALL | I 1813K1 528 (2)1 00:00:07
31 TAELE ACCESS STORAGE FULLI SALES | | 208KI| 1813KI 528 (21 0000307

| SELECT STATEMENT
|
|
|

*

3 = storage(("CUST_ID"<2222 AND "PROD_ID">S))
filter{("CUST_ID"<2222 AND "PROD_ID">S))

*Idgnamic: sanpling used for this statement (level=6) I

Figure 28. Execution plan for complex predicates with dynamic sampling level 6

As seen in this example, dynamic sampling is controlled by the parameter

OPTIMIZER DYNAMIC SAMPLING, which can be set to different levels (0-10). These levels control two
different things; when dynamic sampling kicks in, and how large a sample size will be used to gather
the statistics. The greater the sample size, the bigger impact dynamic sampling has on the compilation

time of a query.

From Oracle Database 11g Release 2 onwards, the Optimizer will automatically decide if dynamic
sampling will be useful, and what dynamic sampling level will be used for SQL statements executed in
parallel. This decision is based on the size of the tables in the statement, and the complexity of the
predicates. However, if the OPTIMIZER DYNAMIC SAMPLING parameter is explicitly set to a non-
default value, then that user-specified value will be honored. You can tell if dynamic sampling kicks in
by looking at the ‘note’ section of the execution plan. For example, if the parallel execution was
enabled for the SALES table, and the following query was issued, the Optimizer would automatically

enable dynamic sampling level 4.

30



Understanding Optimizer Statistics

SQLE show parameter optimizer_dynamic_sampling

NAME TYPE YALUE
optimizer_dynamic_sampling integer 2

SaL>

SOL> Explain plan for Select % From Sales HWhere Prod_id=30 find Promo_id=999:
Explained.

saL>

SQL> Select * From table(dbms_xplan.display()):
PLAN_TABLE_OUTPUT

Plan hash value: 3060979429

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)I
I 0 | SELECT STATEMENT | 1 11764 | 333Kl 80 (DI
I 11 PX COORDINATOR | | | | |
I 21 PX SEND QC (RANDOM) | :TQ10000 | 11764 | 333Kl 80 (I
I 31 PX BLOCK ITERATOR 1 1 11764 | 333Kl 80 (I
I» 41 TABLE ACCESS STORAGE FULLI SALES I 11764 | 333Kl 80 ()1

Predicate Information (identified by operation id):

4 - storage("PROD_ID"=30 AND “PROMO_ID"=999)
filter("PROD_ID"=30 AND “PROMO_ID"=999)

—ldgnalic sampling used for this statement (level=4) ]

Figure 29. Execution plan for a SQL statement with complex predicates executed in parallel

For serial SQL statements, the dynamic sampling level will depend on the value of the

OPTIMIZER DYNAMIC SAMPLING parametet, and will not be triggered automatically by the Optimizer.
The reason for this is that serial statements are typically short running, and any overhead at compile
time could have a huge impact on their performance. Whereas parallel statements are expected to be
more resource intensive, so the additional overhead at compile time is worth it to ensure the best

possible execution plan.

System statistics

In Oracle Database 9i, system statistics were introduced to enable the Optimizer to more accurately
cost each operation in an execution plan by using information about the actual system hardware
executing the statement, such as CPU speed and 10 performance.

System statistics are enabled by default, and are automatically initialized with default values; these
values do are representative for most system. When system statistics are gathered they will override
these initial values. To gather system statistics you can use DBMS STATS.GATHER SYSTEM STATS
during a representative workload time window, ideally at peak workload times.

31



Understanding Optimizer Statistics

System statistics need to be gathered only once. System statistics are not automatically collected as part
of the automatic statistics gathering job. You must have GATHER SYSTEM STATISTICS or the DBA
role to update system statistics.

Statistics on Dictionary Tables

Since the Cost Based Optimizer is now the only supported optimizer, all tables in the database need to
have statistics, including all of the dictionary tables (tables owned by ‘SYS’,SYSTEM, etc, and residing
in the system and SYSAUX tablespace). Statistics on the dictionary tables are maintained via the
automatic statistics gathering job run during the nightly maintenance window. If you choose to switch
off the automatic statistics gathering job for your main application schema consider leaving it on for
the dictionaty tables. You can do this by changing the value of AUTOSTATS TARGET to ORACLE instead
of AUTO using the procedure DBMS STATS.SET GLOBAL PREFS.

BEGIN

DBMS STATS.SET GLOBAL PREFS ('AUTOSTATS TARGET', 'ORACLE') ;
END;

/

Statistics can be manually gathered on the dictionary tables using the

DBMS STATS.GATHER DICTIONARY STATS procedure. You must have both the ANALYZE ANY
DICTIONARY, and ANALYZE ANY system privilege, or the DBA role to update dictionary statistics. It is
recommended that dictionary table statistics are maintained on a regular basis in a similar manner to

user schemas.

Statistics on Fixed Objects

You will also need to gather statistics on dynamic performance tables and their indexes (fixed objects).
These are the X$ tables on which the V$ views (V3SQL etc.) are built. Since V§ views can appear in
SQL statements like any other user table or views, it is important to gather optimizer statistics on these
tables to help the optimizer generate good execution plans. However, unlike other database tables,
dynamic sampling is not automatically use for SQL statement involving X$ tables when optimizer
statistics are missing. The Optimizer uses predefined default values for the statistics if they are missing.
These defaults may not be representative and could potentially lead to a suboptimal execution plan,
which could cause severe performance problems in your system. It is for this reason that we strong

recommend you gather fixed objects statistics.

Fixed object statistics are not gathered or maintained by the automatic statistics gathering job. You can
collect statistics on fixed objects using DBMS STATS.GATHER FIXED OBJECTS STATS procedure.

BEGIN

DBMS STATS.GATHER FIXED OBJECTS STATS;
END;

/

The DBMS_STATS.GATHER_FIXED_OBJECTS_STATS procedure gathers the same statistics as
DBMS_STATS.GATHER_TABLE_STATS except for the number of blocks. Blocks is always set to 0

since the x$ tables are in memory structutes only and are not stored on disk. Because of the transient

32



Understanding Optimizer Statistics

nature of the x§ tables it is import that you gather fixed object statistics when there is a representative
workload on the system. You must have the ANALYZE ANY DICTIONARY system privilege or the DBA
role to update fixed object statistics. It is recommend that you re-gather fixed object statistics if you do
a major database or application upgrade.

Conclusion

In order for the Cost Based Optimizer to accurately determine the cost for an execution plan, it must
have information about all of the objects (table and indexes) accessed in the SQL statement, and
information about the system on which the SQL statement will be run. This necessary information is
commonly referred to as Optimizer statistics. Understanding and managing statistics are key to optimal
SQL execution. Knowing when and how to gather statistics in a timely manner is critical to maintaining

good performance.

By using a combination of the automatic statistics gathering job and the DBMS STATS package, a DBA
can maintain an accurate set of statistics for a system, ensuring the Optimizer will have the best

possible source of information to determine the execution plan.

33



ORACLE

Understanding Optimizer Statistics
January 2012
Author: Maria Colgan

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
USA.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200

oracle.com

@ Oracle is committed to developing practices and products that help protect the environment

Copyright © 2011, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd. 1010

Hardware and Software, Engineered to Work Together



