

SQL Plan Management
with Oracle Database 12c Release 2

O R A C L E W H I T E P A P E R | J A N U A R Y 2 0 1 7

SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C RELEASE 2

Table of Contents

Introduction 1

SQL Plan Management 2

Interaction with Other Performance Features 12

SQL Plan Management Use-Cases 16

Conclusion 20

References 21

1 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Introduction

The performance of any database application heavily relies on consistent query execution. While the

Oracle Optimizer is perfectly suited to evaluate the best possible plan without any user intervention, a

SQL statement’s execution plan can change unexpectedly for a variety of reasons including re-

gathering optimizer statistics, changes to the optimizer parameters or schema/metadata definitions.

The lack of a guarantee that a changed plan will always be better leads some customers to freeze their

execution plans (using stored outlines) or lock their optimizer statistics. However, doing so prevents

them from ever taking advantage of new optimizer functionality (like new access paths), that would

result in improved plans. An ideal solution to this conundrum would preserve the current execution

plans amidst environment changes, yet allow changes only for better plans.

SQL Plan Management (SPM) provides such a framework and allows for complete controlled plan

evolution. With SPM the optimizer automatically manages execution plans and ensures that only

known or verified plans are used. When a new plan is found for a SQL statement, it will not be used

until it has been verified to perform better than the current plan.

This paper provides an in-depth explanation of how SPM works and why it should be a critical part of

every DBAs toolkit. The paper is divided into three sections. The first section describes the

fundamental aspects of SPM and how they work together to provide plan stability and controlled plan

evolution. It then discusses how SPM interacts with other Oracle Database features that influence the

optimizer plan selection. The final section provides a more step-by-step guide on how to use SPM to

ensure consistent database and application performance during some of the more daunting tasks of a

DBA, including upgrades.

2 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

SQL Plan Management

Introduction

SQL plan management (SPM) ensures that runtime performance will not degrade due to execution plan changes.

To guarantee this, only accepted execution plans are used; any plan evolution that does occur is tracked and

evaluated at a later point in time, and only accepted if the new plan shows a noticeable improvement in runtime.

SQL Plan Management has three main components:

» Plan Capture:

» Creation of SQL plan baselines that store accepted execution plans for all relevant SQL statements. SQL

plan baselines are stored in the SQL management base in the SYSAUX tablespace.

» Plan Selection:

» Ensures only accepted execution plans are used for statements with a SQL plan baseline and records any

new execution plans found for a statement as unaccepted plans in the SQL plan baseline.

» Plan Evolution:

» Evaluate all unaccepted execution plans for a given statement, with only plans that show a performance

improvement becoming accepted plans in the SQL plan baseline.

SQL Management Base

The SQL management base (SMB) is a logical repository in the data dictionary, physically located in the SYSAUX

tablespace. In the context of SPM, it stores the following structures:

» SQL Plan History

» The SQL plan history is the set of SQL execution plans generated for SQL statements over time.

» The history contains both SQL plan baselines and unaccepted plans.

» SQL Plan Baselines

» A SQL plan baseline is an accepted plan that the optimizer is allowed to use for a SQL statement. In the

typical use case, the database accepts a plan into the plan baseline only after verifying that the plan

performs well.

» SQL Statement Log

» A series of query signatures used to identify queries that have been executed more than once during

automatic plan capture (see below).

Plan Capture

For SPM to become active, the SQL management base must be seeded with a set of acceptable execution plans,

which will become the SQL plan baseline for the corresponding SQL statements. There are two different ways to

populate the SQL management base: automatically or manually.

Automatic Plan Capture

Automatic plan capture is enabled by setting the init.ora parameter

OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES to TRUE (default FALSE). When enabled, a SQL plan baseline

will be automatically created for any repeatable SQL statement provided it doesn’t already have one. Repeatable

statements are SQL statements that are executed more than once during the capture period. To identify repeatable

SQL statements, the optimizer logs the SQL signature (a unique SQL identifier generated from the normalized SQL

text) of each SQL statement executed the first time it is compiled. The SQL signatures are stored in the SQL

statement log in the SQL management base.

3 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

If the SQL statement is executed again, the presence of its signature in the statement log will signify it to be a

repeatable statement. A SQL plan baseline is created for the repeatable statements, which includes all of the

information needed by the optimizer to reproduce the current cost-based execution plan for the statement, such as

the SQL text, outline, bind variable values, and compilation environment. This initial plan will be automatically

marked as accepted. If some time in the future a new plan is found for this SQL statement, the execution plan will be

added to the SQL plan baseline but will be marked unaccepted.

Automatic plan capture is not enabled by default as it would result in a SQL plan baseline being created for every

repeatable SQL statement executed on the system, including all monitoring and recursive SQL statements. On an

extremely busy system this could potentially flood the SYSAUX tablespace with unnecessary SQL plan baselines.

Note also that the first plan captured for each statement is automatically accepted, even if it isn’t the most

performant plan. Automatic plan capture should therefore only be enabled when the default plans generated for

critical SQL statements are performing as expected.

Oracle Database 12c Release 2 adds the capability to limit which SQL statements are captured using filters. For

example, Figure 1 shows how to target a specific database schema and view the configuration settings in

DBA_SQL_MANAGEMENT_CONFIG:

Figure 1: Setting and viewing the SPM configuration information

Manual Plan Capture

Manually loading plans into SPM is the most common method to populate SQL plan baselines and is especially

useful when a database is being upgraded from a previous version, or when a new application is being deployed.

Manual loading can be done in conjunction with or instead of automatic plan capture, and can be done for a single

statement or all of the SQL statements in an application. Execution plans that are manually loaded are automatically

accepted to create new SQL plan baselines, or added to existing SQL plan baselines as accepted plans. Plans can

be manually loaded from four different sources, using either the functions in the DBMS_SPM package or through

Oracle Enterprise Manager (EM):

» From a SQL Tuning Set

» From the cursor cache

» From the AWR repository (new to Oracle Database 12c Release 2)

» Unpacked from a staging table

» From existing stored outlines

From a SQL Tuning Set

A SQL tuning set (STS) is a database object that includes one or more SQL statements, their execution statistics

and execution context (which can include the execution plan). You can also export SQL tuning sets from a database

and import them into another. One or more plans can be loaded into SPM from an STS using the PL/SQL procedure

DBMS_SPM.LOAD_PLANS_FROM_SQLSET. The plans manually loaded from the STS will be automatically

accepted.

4 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

From the Cursor Cache

Plans can be loaded directly from the cursor cache into SQL plan baselines. By applying a filter on the SQL

statement text, module name, SQL_ID or parsing schema, a SQL statement or set of SQL statements can be

identified and their plans captured using the PL/SQL procedure

DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE.

From the AWR Repository

Oracle Database 12c Release 2 adds the capability to capture SQL plan baselines directly from the AWR repository

using the PL/SQL procedure DBMS_SPM.LOAD_PLANS_FROM_AWR. Plans can be loaded between a specified

begin and end AWR snapshot and, in common with the other manual approaches, filters can be used to limit which

SQL statements are selected to be stored as SQL plan baselines.

Copying SQL Plan Baselines Using a Staging Table

Just as it is possible to transfer optimizer statistics from one database system to another, it is possible to transfer

SQL plan baselines via a staging table. SQL plan baselines can be packed into a staging table, on the source

system, using the PL/SQL procedure DBMS_SPM.PACK_STGTAB_BASELINE. The staging table can then be

exported from one system and imported into another, using a database utility like Data Pump. Once the staging

table is imported, the SQL plan baselines can be unpacked from the staging table using the PL/SQL procedure

DBMS_SPM.UNPACK_STGTAB_BASELINE. Once unpacked, the SQL plan baselines will be active and will be

used the next time the corresponding SQL statements are executed.

Figure 2: Copying SQL plan baselines from one database to another.

From Existing Stored Outlines

In earlier releases of Oracle Database, stored outlines were the only mechanism available to preserve an execution

plan. With stored outlines, only one plan could be used for a given SQL statement, and no plan evolution was

possible. Stored outlines were deprecated in Oracle Database 11g, and it is strongly recommended that any existing

stored outlines be migrated to SPM.

5 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Stored outlines can be migrated to SQL plan baselines using the PL/SQL procedure

DBMS_SPM.MIGRATE_STORED_OUTLINE. You can specify stored outlines to be migrated based on their name,

category, or associated SQL text, or you can simply migrate all stored outlines in the system.

Capturing Additional Plans for Existing Baselines

Regardless of which method you use to initially create a SQL plan baseline, any subsequent new plan found for that

SQL statement will be added to the plan baseline as an unaccepted plan. This behavior is not dependent on the

initialization parameter OPTIMIZER_CAPTURE_SQL_PLAN_ BASELINES and will occur even if this parameter is

set to FALSE (the default). These newly added plans will not be used until the plan has been verified to perform

better than the best existing accepted plan in the SQL plan baseline.

Plan Selection

Each time a SQL statement is compiled, the optimizer first uses the traditional cost-based search method to build a

best-cost plan. If the initialization parameter OPTIMIZER_USE_SQL_PLAN_BASELINES is set to TRUE (the default

value), then before the cost based plan is executed the optimizer will check to see if a SQL plan baseline exists for

this statement. SQL statements are matched to SQL plan baselines using the signature of the SQL statement. A

signature is a unique SQL identifier generated from the normalized SQL text (uncased and with whitespaces

removed). This is the same technique used by SQL profiles and SQL patches. This comparison is done as an in-

memory operation, thus introducing no measurable overhead to any application.

If any accepted SQL plan baselines exists for the SQL statement, the generated cost-based plan is compared to

plans in the SQL plan baseline (a match is detected using plan hash values). If a match is found, and the SQL plan

baseline is in an accepted state, the optimizer proceeds with this plan. Otherwise, if no match is found, the newly

generated plan is added to the SQL plan baseline as an unaccepted plan. It will have to be verified before it can be

accepted. Instead of executing the newly generated plan, the optimizer will cost each of the accepted plans for the

SQL statement and pick the one with the lowest cost (note that a SQL plan baseline can have more than one

accepted plan for a given statement). However, if a change in the system (such as a dropped index) causes all of

the accepted plans to become non-reproducible, the optimizer will use the newly generated cost-based plan and will

store this plan in the SQL plan history as an unaccepted plan.

Figure 3: Flowchart of how plan selection works.

6 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

It is also possible to influence the optimizer’s choice when it is selecting from the plans in a SQL plan baseline. One

or more plans in the SQL plan baseline can be marked as fixed. Fixed plans indicate to the optimizer that they are

preferred. The optimizer will select the fixed plan with the lowest cost unless none of the fixed plans are

reproducible. In that case, the optimizer will cost the remaining (accepted and non-fixed) plans in the SQL plan

baselines, and select the one with the lowest cost.

Note that costing an existing plan is not nearly as expensive as a full cost-based optimization. The optimizer is not

looking at all possible alternatives, but at specific ones indicated by the plan, like a given access path.

You should also be aware that no new plans are added to a SQL plan baseline that contains a fixed plan, even if a

new cost-based plan is found at parse.

Plan Evolution

When the optimizer finds a new plan for a SQL statement, the plan is added to the SQL plan baseline as an

unaccepted plan that needs to be verified before it can become an accepted plan. Verification is the process of

comparing the execution performances of the non-accepted plan and the best accepted plan (plan with the lowest

cost). The execution is performed using the conditions (e.g., bind values, parameters, etc.) in effect at the time the

unaccepted plan was added to the SQL plan baseline. If the unaccepted plan's performance is better, it will be

automatically accepted otherwise it will remain unaccepted but its LAST_VERIFIED attribute will be updated with

the current timestamp. Automatic plan evolution in Oracle Database 12c (see below) will consider the plan again if

at least 30 days has passed since it was last verified (and as long as the SQL is still being executed). You can

prevent this by disabling the plan with dbms_spm.alter_sql_plan_baseline, but it is recommended that you leave it

enabled and continue to allow automatic evolution to prioritize which execution plans to verify. After all, if changes

are made to a system then an alternative plan may prove to be beneficial.

The performance criteria used by the evolve process are the same as those used by the SQL Tune Advisor and

SQL Performance Analyzer. An aggregate performance statistic is calculated for each test execution based the

elapse time, CPU time and buffer gets. The performance statistics are then compared and if the new plan shows a

performance improvement of 1.5 over the existing accepted plan, then it will be accepted.

7 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

The results of the evolve process are recorded in the data dictionary and can be viewed any time using the

DBMS_SPM.REPORT_EVOLVE_TASK function.

Figure 4: Example evolve report

An evolve report describes which plans were tested with the actions performed, and a side-by-side comparison of

the performance criteria of each execution. It also has a findings section that clearly explains what happened during

the verification process and whether or not the new plan should be accepted. Finally, there is a recommendations

section that gives detailed instructions on what to do next, including the necessary syntax. In the evolve report

shown in Figure 4, the unaccepted test plan performed more than 1.5 times better than the current accepted plan

and the recommendation is therefore to accept this plan so that it will be stored as a new SQL plan baseline.

As with plan capture, plan evolution can be done automatically or manually.

Automatic Plan Evolution

From Oracle Database 12c Release 1 onward, automatic plan evolution is done by the SPM Evolve Advisor. The

SPM Evolve Advisor is an AutoTask (SYS_AUTO_SPM_EVOLVE_TASK), which operates during the nightly

maintenance window and automatically runs the evolve process for unaccepted plans in SPM. The AutoTask ranks

all unaccepted plans in SPM (newly found plans ranking highest) and then runs the evolve process for as many

plans as possible before the maintenance window ends.

All of the unaccepted plans that perform better than the existing accepted plan in their SQL plan baseline are

automatically accepted. However, any unaccepted plans that fail to meet the performance criteria remain

unaccepted and their LAST_VERIFIED attribute will be updated with the current timestamp. The AutoTask will not

attempt to evolve an unaccepted plan again for at least another 30 days and only then if the SQL statement is active

(LAST_EXECUTED attribute has been updated). The results of the nightly evolve task can be viewed using the

DBMS_SPM.REPORT_AUTO_EVOLVE_TASK function.

Manual Plan Evolution

Alternatively, it is possible to evolve an unaccepted plan manually using Oracle Enterprise Manager or the supplied

package DBMS_SPM. From Oracle Database 12c Release 1 onwards, the original SPM evolve function

(DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE) has been deprecated in favor of a new API that calls the SPM

8 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

evolve advisor. Figure 5 shows the steps needed to invoke the SPM evolve advisor. It is typically a three step

processes beginning with the creation of an evolve task. Each task is given a unique name, which enables it to be

executed multiple times. Once the task has been executed, you can review the evolve report by supplying the task

name and execution name to the DBMS_SPM.REPORT_EVOLVE_TASK function.

Figure 5: Invoking the SPM evolve advisor manually

When the SPM evolve advisor is manually invoked, the unaccepted plan(s) is not automatically accepted even if it

meets the performance criteria. The plans must be manually accepted using the

DBMS_SPM.ACCEPT_SQL_PLAN_BASELINE procedure. The evolve report contains detailed instructions,

including the specific syntax, to accept the plans.

Figure 6: Manually accepting a plan

Note that the ‘Administer SQL Management Object’ privilege is required to manually evolve plans.

9 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Managing and Monitoring SQL Plan Baselines

All aspects of managing and monitoring SQL plan baselines can be done through Oracle Enterprise Manager or the

PL/SQL packages DBMS_SPM, DBMS_XPLAN and the DBA view DBA_SQL_PLAN_BASELINES.

Oracle Enterprise Manager

To get to the SQL plan baseline page:

» Access the Database Home page in Enterprise Manager.

» At the top of the page, click on the performance tab and select the SQL Plan Control from the drop down list.

» The SQL Plan Control page appears.

» At the top of the page, click on the SQL Plan Baseline table to display the SQL plan baseline subpage.

Figure 7: SPM home page in Oracle Enterprise Manager

10 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Initialization Parameters

There are two init.ora parameters that control SPM.

OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES Controls the automatic creation of new SQL plan baselines for

repeatable SQL statements. This parameter is set to FALSE by default. Note it is not necessary for this parameter to

be set to TRUE in order to have a newly found plan added to an existing SQL plan baseline.

If a SQL statement has multiple plans then all of them will be captured, but only the first will be accepted. If you do

not which to use plan baselines during auto capture, you can set optimizer_use_sql_plan_baselines to FALSE.

OPTIMIZER_USE_SQL_PLAN_BASELINES controls the use of SQL plan baselines. When enabled, the optimizer

checks to see if the SQL statement being compiled has a SQL plan baseline before executing the cost-based plan

determined during parse. If a SQL plan baseline is found and the cost-based plan is an accepted plan in that

baseline, then the optimizer will go ahead and use that plan. However, if a SQL plan baseline is found and the cost-

based plan is not an accepted plan in that baseline, then it will be added to the SQL plan baseline but not executed.

The optimizer will cost each of the accepted plans in the SQL plan baseline and pick the one with the lowest cost.

This parameter is TRUE by default. When set to FALSE the optimizer will only use the cost-based plan determined

during parse (SQL plan baselines will be “ignored”) and no new plans will be added to existing SQL plan baselines.

These parameter values can be changed on the command line either at a session or system level using an alter

session or alter system command. It is also possible to adjust the parameter setting on the upper left hand

side of the main SQL plan baseline page (the Settings section) in Enterprise Manager.

Managing the space consumption of SQL Management Base

The statement log and all SQL plan baselines are stored in the SQL Management Base. The SQL Management

Base is part of the database dictionary, stored in the SYSAUX tablespace; this is the tablespace for all internal

persistent information outside the dictionary and cannot be changed. By default, the space limit for the SQL

Management Base is no more than 10% of the size of the SYSAUX tablespace. However, it is possible to change the

limit to any value between 1% and 50% using the PL/SQL procedure DBMS_SPM.CONFIGURE or Enterprise

Manager. A weekly background process measures the total space occupied by the SQL Management Base, and

when the defined limit is exceeded, the process will generate a warning in the alert log, for example:

SPM: SMB space usage (99215979367) exceeds 10.000000% of SYSAUX size (1018594954366).

Reaching the limit will not prevent new plans from being added to existing SQL plan baselines or new SQL plan

baselines from being added to the SQL Management Base.

There is also a weekly scheduled purging task (operated by MMON) that manages the disk space used by SPM

inside the SQL Management Base. The task runs automatically and purges any plans that have not been used for

more than 53 weeks, by running the DBMS_SPM.DROP_SQL_PLAN_BASELINE function on each one. It is

possible to change the unused plan retention period using either using DBMS_SPM.CONFIGURE or Enterprise

Manager; its value can range from 5 to 523 weeks (a little more than 10 years).

The SQL Management Base is stored entirely within the SYSAUX tablespace, so SPM will not be used if this

tablespace is not available.

11 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Monitoring SQL plan baselines

The view DBA_SQL_PLAN_BASELINES displays information about the current SQL plan baselines in the

database. The same information is displayed at the bottom of the SQL plan baseline page in Oracle Enterprise

Manager.

Figure 8: Monitoring SQL plan baselines using the dictionary view DBA_SQL_PLAN_BASELINES

In the example in Figure 8, the same SQL statement has two plans in its SQL plan baseline. Both plans were

automatically captured but only one of the plans (SQL_PLAN_c2bg7p288wk7b18498f6e) will be used by the

optimizer, as it is the only plan that is both enabled and accepted. The other plan is an unaccepted plan, which

means it won’t be used until it has been verified.

To check the detailed execution plan for any SQL plan baseline, click on the plan name on the SQL plan baseline

page in Enterprise Manager or use the procedure DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE. In Oracle

Database 11g, executing this function will trigger a compilation of the SQL statement using the information stored

about the plan in the SQL Management Base. This is also the case in Oracle Database 12c if the plan was created

in Oracle Database 11g. From Oracle Database 12c Release 1 onwards, Oracle captures the actual plan rows

when adding a new plan to SPM. This means that in Oracle Database 12c, the DISPLAY_SQL_PLAN_BASELINE

will display the actual plan recorded when the plan was added to the SQL plan baseline.

Capturing the actual execution plans ensures that if a SQL plan baseline is moved from one system to another, the

plans in the SQL plan baseline can still be displayed even if some of the objects used in it or the parsing schema

itself does not exist on the new system. This means that a plan can still be displayed even if it cannot be

reproduced.

Figure 9 shows the execution plan for the accepted plan from Figure 8. The plan shown is the actual plan that was

captured when this plan was added to the SQL plan baseline because the attribute ‘Plan rows’ is set to ‘From

dictionary’. For plays displayed based on an outline, the attribute ‘Plan rows’ is set to ‘From outline’.

Figure 9: Displaying one of the accepted plans from a SQL plan baseline

12 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

It is also possible to check whether a SQL statement is using a SQL plan baseline by looking in V$SQL. If the SQL

statement is using a SQL plan baseline, the plan_name, from the SQL plan baseline, will appear in the

sql_plan_baseline column of V$SQL. You can join the V$SQL view to the DBA_SQL_PLAN_BASELINES view

using the plan_name columns or use the exact_matching_signature column.

Figure 10: Joining V$SQL to DBA_SQL_PLAN_BASELINES

Interaction with Other Performance Features

SPM is not the only feature in the Oracle Database that influences the optimizer’s choice of execution plan. This

section describes in detail how SPM interacts with the other plan-influencing features in the Oracle Database. Bear

in mind that SPM is a very conservative approach for guaranteeing plan stability and that level of conservatism

doesn’t always allow other features to fully exert themselves.

SQL Plan Baselines and Adaptive Plans

Adaptive plans, introduced in Oracle Database 12c, enable the optimizer to defer the final plan decision for a

statement until execution time. The optimizer instruments its chosen plan (the default plan) with statistics collectors

so that it can detect at runtime, if its cardinality estimates differ greatly from the actual number of rows seen by the

operations in the plan. If there is a significant difference, then the plan or a portion of it will be automatically adapted

to avoid suboptimal performance on the first execution of a SQL statement.

More detail can be found in Reference 1, Optimizer with Oracle Database 12c Release 2.

13 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

SPM Plan Capture and Adaptive Plans

When automatic plan capture is enabled and a SQL statement that has an adaptive plan is executed, only the final

plan used will be captured in the SQL plan baseline.

However, if the optimizer finds a new adaptive plan for a SQL statement that has an existing SQL plan baseline,

then only the initial or default plan will be recorded in the SQL plan baseline. The recorded plan will be marked

adaptive, so the optimizer can take that into consideration during the evolve process.

Figure 11: DBA_SQL_PLAN_BASELINES shows a newly added plan with the adaptive attribute set to TRUE

SPM Plan Selection and Adaptive Plans

Accepted plans in a SQL plan baseline are never adaptive. Thus, the plan selected for a SQL statement with a SQL

plan baseline will never be adaptive.

SPM Plan Evolution and Adaptive Plans

When evolving a plan that has been marked adaptive, the optimizer determines all of the possible subplans before

the test executions begin. Once executing, the optimizer will decide which subplan to use based on the execution

statistics recorded in the statistics collectors. The performance of the final plan used during the test execution is

compared to the existing accepted plan, in the SQL plan baseline. If the final plan performs better than the existing

accepted plan, it will be added to the plan baseline as an accepted plan, and will replace the non-accepted adaptive

plan that was verified. Since the newly added plan is the final plan, it is no longer marked adaptive.

SQL Plan Baselines and Adaptive Cursor Sharing

Since Oracle Database 11g, the optimizer has allowed multiple execution plans to be used for a single statement

with bind variables at the same time. This functionality is called Adaptive Cursor Sharing (ACS)1and relies on the

monitoring of execution statistics to ensure the correct plan is used for each bind value.

On the first execution the optimizer will peek the bind value(s) and determine the execution plan based on the bind

value’s selectivity. The cursor will be marked bind sensitive if the optimizer believes the optimal plan may depend

on the value of the bind variable (for example, a histogram is present on the column or the predicate is a range, or <,

>). When a cursor is marked bind sensitive, Oracle monitors the behavior of the cursor using different bind values,

to determine if a different plan is called for.

Oracle’s adaptive cursor sharing is built on an optimistic approach: if a different bind value is used in a subsequent

execution, the optimizer will use the existing cursor and execution plan because Oracle initially assumes the cursor

can be shared. However, the execution statistics for the new bind value will be recorded and compared to the

execution statistics for the previous value. If Oracle determines that the new bind value caused the data volumes

1 More information on Adaptive Cursor Sharing can be found in Closing the Query Loop in Oracle 11g

http://www.vldb.org/pvldb/1/1454178.pdf

14 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

manipulated by the query to be significantly different it “adapts” and hard parses based on the new bind value on its

next execution and the cursor is marked bind-aware. Each bind-aware cursor is associated with a selectivity range

of the bind so that the cursor is only shared for a statement when the bind value in the statement is believed to fall

within the range.

When another new bind value is used, the optimizer tries to find a cursor it thinks will be a good fit, based on

similarity in the bind value's selectivity. If it cannot find such a cursor, it will create a new one. If the plan for the new

cursor is the same as an existing cursor, the two cursors will be merged to save space in the shared pool. And the

selectivity range for that cursor will be increased to include the selectivity of the new bind.

If a SQL plan baseline exists for a SQL statement that benefits from ACS, then all possible execution plans for that

SQL statement should be accepted and enabled in the SQL plan baseline. Otherwise the presence of the SQL plan

baseline may prevent the SQL statement from taking full advantage of ACS. Below is a brief description of how the

different aspects of SPM interact with ACS.

SPM Plan Capture and Adaptive Cursor Sharing

When automatic plan capture is enabled and a SQL statement that benefits from ACS is executed twice, then only

one of the possible plans for that statement will be captured initially. Any additional plans found for the statement

won’t be used because they will not be accepted. Note, new plans are only added to the SQL plan baseline at hard

parse and ACS will not trigger additional hard parses for a SQL statement that has only one accepted plan in its

SQL plan baseline. (See SPM plan selection and Adaptive Cursor Sharing section below for more details).

It is highly recommended that all possible plans for a SQL statement that benefits from ACS are manually loaded in

to a SQL plan baseline directly from the cursor cache (in the shared pool). This ensures that all of the plans will be

automatically accepted and available for use. Figure 12 shows a SQL statement that has been executed multiple

times, using different bind variable values, that has two distinct plans (child cursor 1 & 2) in the cursor cache. The

procedure DBMS_SPM.LOAD_PLANS_FROM_CACHE is then used to capture both plans as accepted plans in the

SQL plan baseline.

Figure 12: Manual capture of multiple plans found by ACS for a SQL statement

15 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

SPM Plan Selection and Adaptive Cursor Sharing

When a SQL statement that is a candidate for ACS has a SQL plan baseline, which contains all desirable plans for

the statement and they are all accepted, then ACS will behave as expected. The correct plan will be used for the

different bind variables used in the statement.

However, if the SQL plan baseline has only one accepted plan, then ACS is automatically disabled for this

statement. Recall that a cursor will be marked bind sensitive only if the optimizer believes the optimal plan may

depend on the value of the bind variable. If SPM allows only one plan to be chosen for the query, then the cursor

will not be marked bind sensitive.

SQL Plan Baselines versus SQL Profiles

A SQL profile contains auxiliary information that prevents a sub-optimal plan from otherwise being chosen due to

defects in the usual inputs (statistics, bind variable values etc.) used by the optimizer . SQL profiles don't constrain

the optimizer to any specific plan, which is why they can be shared. SQL plan baselines, on the other hand,

constrain the optimizer to only select from a set of accepted plans. The cost-based approach is still used to choose

a plan, but only within this set of plans. SQL plan baselines are a more conservative plan selection strategy than

SQL profiles.

The presence of a SQL profile affects all three components of SPM. Below is a brief description of each of these

interactions.

SPM Plan Capture and SQL Profiles

When a SQL statement is executed it will be hard parsed and a cost based plan will be generated. This plan will be

influenced by the SQL profile. Once the cost based plan is determined it will be compared to the plans that exist in

the SQL plan baseline. If the plan matches one of the accepted plans in the SQL plan baseline, the optimizer will

use it. However, if the cost based plan doesn't match any of the accepted plans in the SQL plan baseline it will be

added to the plan baseline as an unaccepted plan.

SPM Plan Selection and SQL profiles

When a SQL statement with a SQL plan baseline is parsed, the accepted plan with the best cost will be chosen.

This process uses the optimizer’s cost model. The presence of a SQL profile will affect the estimated cost of each

of these plans and thus potentially the plan that is finally selected.

SPM Plan evolution and SQL profiles

The evolution process test-executes the unaccepted plan against the best of the accepted plans. The best accepted

plan is selected based on cost. If a SQL profile exists for the statement, it will influence the estimated cost and thus

the accepted plan chosen for comparison against the unaccepted plan.

SQL Plan Baselines versus Stored Outlines

Stored outlines were the predecessors to SQL plan baselines and due to this they share some similarities. A stored

outline consists of a set of hints that specifies the execution plan to generate for a particular SQL statement. When a

SQL statement with a stored outline is executed, the optimizer uses the hints in the outline to reproduce the plan,

rather than using the standard cost-based approach.

Stored outlines were deprecated in Oracle Database 11g in favor of SQL plan baselines and are no longer

supported.

16 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Integration with Automatic SQL Tuning Advisor

From Oracle Database 11g onwards, the SQL Tuning Advisor automatically runs during the maintenance window.

This automatic SQL tuning task targets high-load SQL statements. These statements are identified by the execution

performance data collected in the Automatic Workload Repository (AWR) snapshots. If the SQL Tuning Advisor

finds a better execution plan for one of the high-load SQL statements, it will recommend a SQL profile for that

statement.

If a SQL profile recommendation made by the automatic SQL tuning task is implemented, and the SQL statement

already has a SQL plan baseline, then the execution plan found by the SQL Tuning Task will be added as an

accepted plan in the SQL plan baseline.

The SQL Tuning Advisor can also be invoked manually, by creating a SQL Tuning Set for a given SQL statement. If

the SQL Tuning Advisor recommends a SQL profile for the statement and it is manually implemented then the tuned

plan will be added as an accepted plan to the SQL statement’s plan baseline if one exists.

SQL Plan Management Use-Cases

The controlled plan evolution offered by SPM can be extremely useful when dealing with some of the more daunting

tasks a DBA must face on a production database environment. This final section of the whitepaper describes, with

the use of clear how-to examples, how SPM can be used to tackle database upgrades, new application or module

roll-outs, and the correction of regressed SQL statements.

Using SPM for Upgrades

Bulk loading execution plans from a SQL Tuning Set (STS) is an excellent way to guarantee no plan changes as

part of a database upgrade. The following four steps are all it takes:

1. Before upgrading create an STS that includes the execution plan for each of the critical SQL statements in

the current database environment. Note the attribute parameter, of the DBMS_SQLTUNE procedure used

to populate the STS, must be set to ALL to capture the execution plans.

Figure 13: Set attribute parameter to ALL when creating STS to capture the execution plan

17 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

2. Pack the STS into a staging table and export the staging table into a flat file.

3. Import the staging table into latest version of the Oracle Database and unload the STS or simple upgrade

the existing database. An STS will persist across an upgrade.

4. Use EM or DBMS_SPM.LOAD_PLANS_FROM_SQLSET to load the execution plans into the SQL

Management Base

Figure 14: Loading a plan for a SQL Tuning Set into a SQL plan baselines

Using SPM for New Application or Module Deployments

The deployment of a new application module means the introduction of a completely new set of SQL statements into

the database. From Oracle Database 11g onwards, any 3rd party software vendor can ship their application software

along with the appropriate SQL plan baselines for the new SQL being introduced. This guarantees that all SQL

statements that are part of the SQL plan baseline will initially run with the plans that are known to give good

performance under a standard test configuration. Alternatively, if an application is developed or tested in-house, the

correct plans can be exported from the test system and imported into production using the following steps:

1. On the test or development system, create a staging table using the

DBMS_SPM.CREATE_STGTAB_BASELINE procedure.

2. Pack the SQL plan baselines you want to export from the SQL management base into the staging table

using the DBMS_SPM.PACK_STGTAB_BASELINE function.

3. Export the staging table into a flat file using the export command or Oracle Data Pump.

4. Transfer this flat file to the target system.

5. Import the staging table from the flat file using the import command or Oracle Data Pump.

6. Unpack the SQL plan baselines from the staging table into the SQL management base on the target

system using the DBMS_SPM.UNPACK_STGTAB_BASELINE function.

18 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Using SPM to Correct Regressed SQL Statements

Loading plans directly from the cursor cache can be extremely useful if an existing application has to be tuned

manually using hints. It is unlikely the application code can be changed to incorporate the necessary hints, but any

tuned execution plan can be captured as a SQL plan baseline, outside the application context, so you can ensure

that the application SQL will use the desired tuned plan in the future without the need to change the application.

By using the simple steps below you can use SPM to capture the hinted execution plan and associate it with the

non-hinted SQL statement. You begin by capturing a SQL plan baseline for the non-hinted SQL statement.

1. Find the SQL_ID for the statement in the V$SQL view and use it to create a SQL plan baseline for the

statement using DBMS_SPM.LOAD_PLAN_FROM_CURSOR_CACHE.

2. The plan that was captured is the sub-optimal plan and it will need to be disabled using
DBMS_SPM.ALTER_SQL_PLAN_BASELINE. The SQL_HANDLE & PLAN_NAME are required to
disable the plan and can found by looking in DBA_SQL_PLAN_BASELINE view.

3. Now you need to modify the SQL statement using the necessary hints & execute the modified statement.

19 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

4. Find the SQL_ID and PLAN_HASH_VALUE for the hinted SQL statement in the V$SQL view.

5. Using the SQL_ID and PLAN_HASH_VALUE for the modified plan, create a new accepted plan for original

SQL statement by associating the modified plan to the original statement's SQL_HANDLE.

6. Now if you query DBA_SQL_PLAN_BASELINES you will see two plans in the SQL plan baseline, the

original non-hinted plan and the new hinted plan. Only the hinted plan is accepted, so this will be the plan

chosen next time the SQL statement is executed.

20 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Conclusion

The performance of any database application heavily relies on consistent query execution. SQL Plan Management

enables you to preserve the current execution plans for your critical SQL statements amidst environment changes,

only allowing them to change for the better.

 With SPM, the optimizer automatically manages execution plans and uses only known or verified plans. When a

new plan is found for a SQL statement, it will not be used until it has been verified to perform better than the existing

accepted plan.

By taking such a conservative approach, SPM allows DBAs to tackle some of the more daunting tasks they must

face on a production environment, such as upgrades; safe in the knowledge they will have consistent query plans

throughout.

21 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

References

1. Oracle white paper: Optimizer with Oracle Database 12c Release 2

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-12c-1963236.pdf

22 | SQL PLAN MANAGEMENT WITH ORACLE DATABASE 12C

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0117

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

