

Understanding Optimizer Statistics
With Oracle Database 12c Release 2

O R A C L E W H I T E P A P E R | M A R C H 2 0 1 7

UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Table of Contents

Introduction 1

What are Optimizer Statistics? 2

Statistics on Partitioned Tables 12

Managing Statistics 16

Other Types of Statistics 22

Conclusion 27

References 28

1 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Introduction

When the Oracle database was first introduced, the decision of how to execute a SQL statement was

determined by a Rule Based Optimizer (RBO). The Rule Based Optimizer, as the name implies,

followed a set of rules to determine the execution plan for a SQL statement.

In Oracle Database 7, the Cost Based Optimizer (CBO) was introduced to deal with the enhanced

functionality being added to the Oracle Database at this time, including parallel execution and

partitioning, and to take the actual data content and distribution into account. The Cost Based

Optimizer examines all of the possible plans for a SQL statement and picks the one with the lowest

cost, where cost represents the estimated resource usage for a given plan. The lower the cost, the

more efficient an execution plan is expected to be. In order for the Cost Based Optimizer to accurately

determine the cost for an execution plan, it must have information about all of the objects (tables and

indexes) accessed in the SQL statement, and information about the system on which the SQL

statement will be run.

This necessary information is commonly referred to as optimizer statistics. Understanding and

managing optimizer statistics is critical for achieving optimal SQL execution. This whitepaper is the first

in a two part series on optimizer statistics and describes the core concepts of what statistics are and

what types are statistics are used by the Oracle Optimizer. The second paper in the series (Best

Practices for Gathering Optimizer Statistics with Oracle Database 12c) covers how to keep optimizer

statistics up-to-date so that they accurately represent the data that’s stored in the database.

2 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

What are Optimizer Statistics?

Optimizer statistics are a collection of data that describe the database and the objects in the database. These

statistics are used by the optimizer to choose the best execution plan for each SQL statement. Statistics are stored

in the data dictionary and can be accessed using data dictionary views such as USER_TAB_STATISTICS.

Figure 1: Optimizer Statistics stored in the data dictionary are used by the Oracle Optimizer to determine execution plans

Most types of optimizer statistics need be gathered or refreshed periodically to ensure that they accurately reflect the

nature of the data that’s stored in the database. If, for example, the data in the database is highly volatile (perhaps

there are tables that are rapidly and continuously populated) then it will be necessary to gather statistics more

frequently than if the data is relatively static. Database administrators can choose to use manual or automatic

processes to gather statistics and this topic is covered in the second paper of this series1.

Table and Column Statistics

Table statistics include information such as the number of rows in the table, the number of data blocks used for the

table, as well as the average row length in the table. The optimizer uses this information, in conjunction with other

statistics, to compute the cost of various operations in an execution plan, and to estimate the number of rows the

operation will produce. For example, the cost of a table access is calculated using the number of data blocks

combined with the value of the parameter DB_FILE_MULTIBLOCK_READ_COUNT. You can view table statistics in

the dictionary view USER_TAB_STATISTICS.

Column statistics include information on the number of distinct values in a column (NDV) as well as the minimum

and maximum value found in the column. You can view column statistics in the dictionary view

USER_TAB_COL_STATISTICS. The optimizer uses the column statistics information in conjunction with the table

statistics (number of rows) to estimate the number of rows that will be returned by a SQL operation. For example, if

a table has 100 records, and the table access evaluates an equality predicate on a column that has 10 distinct

values, then the optimizer, assuming uniform data distribution, estimates the cardinality – the number of rows

1 Oracle White Paper: Best Practices for Gathering Optimizer Statistics with Oracle Database 12c Release 2

3 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

returned - to be the number of rows in the table divided by the number of distinct values for the column or 100/10 =

10.

Figure 2: Cardinality calculation using basic table and column statistics

Additional Column Statistics

Basic table and column statistics tell the optimizer a great deal, but they don’t provide a mechanism to tell the

optimizer about the nature of the data in the table or column. For example, these statistics can’t tell the optimizer if

there is a data skew in a column, or if there is a correlation between columns in a table. This type of information can

be gathered by using extensions to basic statistics. These extensions are histograms, column groups, and

expression statistics. Without them, the optimizer will assume uniform data value distribution and no correlations

between columns values.

Histograms

Histograms tell the optimizer about the distribution of data within a column. By default (without a histogram), the

optimizer assumes a uniform distribution of rows across the distinct values in a column. As described above, the

optimizer calculates the cardinality for an equality predicate by dividing the total number of rows in the table by the

number of distinct values in the column used in the equality predicate. If the data distribution in that column is not

uniform (i.e., a data skew) then the cardinality estimate will be incorrect. In order to accurately reflect a non-uniform

data distribution, a histogram is required on the column. The presence of a histogram changes the formula used by

the optimizer to estimate a more accurate cardinality, and allows it therefore to generate a more accurate execution

plan.

Oracle automatically determines the columns that need histograms based on the column usage information

(SYS.COL_USAGE$), and the presence of a data skew. For example, Oracle will not automatically create a

histogram on a unique column if it is only seen in equality predicates.

There are four types of histograms: frequency, top-frequency, or height-balanced and hybrid. The appropriate

histogram type is chosen automatically by the Oracle database. This decision is based on the number of distinct

values in the column. From Oracle Database 12c onwards, height-balance histograms will be replaced by hybrid

histograms2. The data dictionary view user_tab_col_statistics has column called “histogram”. It reports what type of

histogram is present on any particular table column.

2 Assuming the parameter ESTIMATE_PERCENT parameter is “AUTO_SAMPLE_SIZE” in the DBMS_STATS.GATHER_*_STATS command used to

gather the statistics. This is the default.

4 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Frequency Histograms

Frequency histograms are created when the number of distinct values in the column is less than the maximum

number of buckets allowed. This is 254 by default, but it can be modified using DBMS_STATS procedures up to a

maximum of 2048 (beginning with Oracle Database 12c).

Figure 3 demonstrates how the data distribution of the column “COL1” can be encoded and represented using

frequency histograms. Chart 1 (on the left) has a column or “bucket” for each value and the height of the column

represents the COUNT of that particular value. Oracle’s frequency histograms refer to the buckets as “endpoint

values” and the cumulative frequency is stored as the “endpoint number” (see Chart 2). In this case, the “40”

endpoint stores 10. Next, the “51” endpoint stores 10+1 (11) followed by “52”, which stores 11+2 (13) and so on.

Figure 3: Representing data distributions using histograms

Figure 4 shows how this histogram can be viewed in the data dictionary. Compare the ENDPOINT_VALUE and

ENDPOINT_NUMBER with Chart 2 and FREQUENCY with Chart 1.

Figure 4: Viewing histograms in the data dictionary.

Note that endpoint values are numeric, so histograms on columns with non-numeric datatypes have their values

encoded to a number.

Once the histogram has been created, the optimizer can use it to estimate cardinalities more accurately. For

example, if there is a predicate “WHERE val = 53”, it is easy to see that the histogram can be used to establish

(using endpoint value “53”) that the cardinality will be 3. Predicates for values that aren’t present in the frequency

histogram (such as “WHERE val=41”) will have an estimated cardinality of 1. That is the lowest possible number

chosen by the Optimizer for cost calculations, chosen for both “one row returned” and “zero rows returned”.

5 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Height Balanced Histograms

Prior to Oracle Database 12c, height-balanced histograms are created when the number of distinct values is greater

than the maximum number of buckets allowed (this is 254 by default, but it can be modified using DBMS_STATS

procedures). Frequency histograms become less useful for larger distinct value counts because they store a single

value per histogram bucket and the system overhead of storing, using and maintaining histograms becomes more

significant as the number of histogram buckets increase. Oracle Database 12c creates hybrid histograms instead of

height-balanced histograms in most cases. Hybrid histograms will be discussed in a later section.

Consider a table with a column, “COL1” that has values ranging from 1 to 1000. Figure 5 shows how we could

represent the data distribution by dividing up the range 1 to 1000 into a set of identical ranges (10 ranges, each

representing a range of 100 values). There are 1,000 rows with values between 1 and 100 and a spike in row count

(3,000) for values between 201 and 300:

Figure 5: A frequency histogram

We can encode exactly the same information in Figure 5 using a “height-balanced” histogram, shown in Figure 6. By

adjusting the size of the ranges we can contrive to make each range represent a similar number of rows. In other

words, each of the vertical “bars” has a similar height. For example, the range 1-200 has 2,000 rows. The next range

has to be narrower (201-267) to keep the row count at around 2,000 because there a more rows with values 201 to

300 (as can be seen more easily, above).

Figure 6: A height-balanced histogram created using the same data as Figure 5

6 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

The details of the histogram can be queried from the data dictionary. This example is slightly contrived because the

number of buckets was chosen to be 6, but this was simply to keep the following listings short. See Figure 7 and

note the presence of endpoint number “0”, indicating the minimum column value of “1”:

Figure 7: Viewing height-balanced histogram details.

In many cases, the endpoint numbers will not be continuous. This is because the optimizer may choose to reduce

the total number of buckets by “compressing” multiple buckets into a single bucket. In the following example,

endpoint number 3 is not present (values 500 and 501 are very common):

Figure 8: Compressing buckets.

If a column value in the table is very common, it may span multiple histogram buckets. The reason for this is that, for

this type of histogram, all buckets must contain approximately the same number of rows but a common or “popular”

column value may be so common that its frequency exceeds the maximum number of rows per bucket. Column

values like this are, in fact, called popular values and they are handled differently by the optimizer to make

allowances for their popularity. However, in some cases, a value may span nearly two buckets, and these are called

almost popular values. The costing for nearly popular values can be inaccurate, which is the reason why Oracle

Database 12c introduced hybrid histograms (covered later) to address this limitation.

Top-Frequency Histograms

Traditionally, if a column has more distinct values than the number of buckets available (254 by default), a height-

balanced or hybrid histogram would be created. However, there are situations where most of the rows in the table

have a small number of distinct values, and remaining rows (with a large number of distinct values) make up a very

small proportion of the total. In these circumstances, it can be appropriate to create a frequency histogram for the

majority of the rows in the table and ignore the statistically insignificant set of rows (the ones with low cardinality and

a high number of distinct values). To choose a frequency histogram, the database must decide if “n” histogram

buckets is enough to calculate cardinality accurately even though the number of distinct values in the column

exceeds “n”. It does this by counting how many distinct values there in the top 99.6% of rows in the table for the

column in question (99.6% is the default, but this value is adjusted to take into account the number of histogram

7 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

buckets available). If there are enough histogram buckets available to accommodate the top-n distinct values, then a

frequency histogram is created for these popular values.

A top-frequency histogram is only created if the ESTIMATE_PERCENT parameter of the gather statistics command

is set to AUTO_SAMPLE_SIZE (the default), because all values in the column must be seen in order to determine

if the necessary criteria are met (99.6% of rows have 254 or fewer distinct values).

Take, for example, a PRODUCT_SALES table, which contains sales information for a Christmas ornaments

company. The table has 1.78 million rows and 632 distinct TIME_IDs. But the majority of the rows in

PRODUCT_SALES have less than 254 distinct TIME_IDs, as the majority of Christmas ornaments are sold in

December each year. A histogram is necessary on the TIME_ID column to make the optimizer aware of the data

skew in the column. In this case, a top-frequency histogram is created containing 254 buckets.

Figure 9 illustrates the idea behind a top-frequency histogram. You can see in principle that it is possible to identify

the most significant data (within the dotted lines) and use it to construct a frequency histogram with those values.

Figure 9: A Top-Frequency Histogram

Hybrid Histograms

One prominent problem with height balanced histograms is that a popular value might span two buckets, but it may

only appear as the end point value of one bucket. This is the “almost popular value” scenario described above in the

“height-balanced histograms” section.

To resolve this limitation, Oracle Database 12c introduces a hybrid histogram that is similar to the traditional height-

balanced histogram, as it is created when the number of distinct values in a column is greater than 254. However,

that’s where the similarities end. With a hybrid histogram, no value will be the endpoint of more than one bucket,

thus allowing the histogram to have more endpoint values, or effectively more buckets, than a height-balanced

histogram. So, how does a hybrid histogram indicate a popular value? The frequency of each endpoint value is

recorded (in a new column endpoint_repeat_count), thus providing an accurate indication of the popularity of each

endpoint value.

8 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Figure 10 shows how the hybrid histogram has characteristics of both frequency and height-balanced histograms; a

bucket can contain multiple values and the endpoint number stores the cumulative frequency.

Figure 10: Hybrid histogram.

The endpoint repeat count indicates how many times the endpoint value is repeated. For example, compare the

following results with endpoint values in Figure 10:

Figure 11: Understanding the endpoint repeat count.

As mentioned earlier, hybrid histograms are the new default histogram type for columns with greater than 254

distinct values as long as the statistics are gathered using the default estimate percent setting (ESTIMATE_PERCENT

=> DBMS_STATS.AUTO_SAMPLE_SIZE).

Extended Statistics

In Oracle Database 11g, extensions to column statistics were introduced. Extended statistics encompass two

additional types of statistics; column groups and expression statistics.

Column Groups

In real-world data, there is often a relationship (correlation) between the data stored in different columns of the same

table. For example, in the CUSTOMERS table, the values in the CUST_STATE_PROVINCE column are influenced by

the values in the COUNTRY_ID column, as the state of California is only going to be found in the United States.

Using only basic column statistics, the optimizer has no way of knowing about these real-world relationships, and

could potentially miscalculate the cardinality if multiple columns from the same table are used in the where clause of

a statement. The optimizer can be made aware of these real-world relationships by having extended statistics on

these columns as a group.

By creating statistics on a group of columns, the optimizer can compute a better cardinality estimate when several

the columns from the same table are used together in a where clause of a SQL statement. You can use the function

DBMS_STATS.CREATE_EXTENDED_STATS to define a column group you want to have statistics gathered on as a

9 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

group. Once a column group has been created, Oracle will automatically maintain the statistics on that column group

when statistics are gathered on the table, just like it does for any ordinary column (Figure 12).

Figure 12: Creating a column group on the CUSTOMERS table

After creating the column group and re-gathering statistics, you will see an additional column, with a system-

generated name, in the dictionary view USER_TAB_COL_STATISTICS. This new column represents the column

group (Figure 13).

Figure 13: System generated column name for a column group in USER_TAB_COL_STATISTICS

To map the system-generated column name to the column group and to see what other extended statistics exist for

a user schema, you can query the dictionary view USER_STAT_EXTENSIONS:

Figure 14: Information about column groups is stored in USER_STAT_EXTENSIONS

10 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

The optimizer will now use the column group statistics for predicates like country_id='US' and

cust_state_province='CA' when they are used together in where clause predicates. Not all of the columns in

the column group need to be present in the SQL statement for the optimizer to use extended statistics; only a subset

of the columns is necessary.

Auto Column Groups Detection

Although column group statistics are extremely useful and often necessary to achieve an optimal execution plan it

can be difficult to know what column group statistics should be created for a given workload.

Auto column group detection automatically determines which column groups are beneficial for a table based on a

given workload. Please note this functionality does not create extended statistics for function wrapped columns it is

only for column groups. Auto Column Group detection is a simple three-step process:

Step1: Seed Column Usage

Oracle must observe a representative workload in order to determine the appropriate column groups. The workload

can be provided in a SQL Tuning Set or by monitoring a running system. The procedure,

DBMS_STATS.SEED_COL_USAGE, should be used it indicate the workload and to tell Oracle how long it should

observe that workload. The following example turns on monitoring for 5 minutes or 300 seconds for the current

system.

begin
 dbms_stats.seed_col_usage(null,null,300);
end;
/

The monitoring procedure records different information from the traditional column usage information you see in

sys.col_usage$ and stores it in sys.col_group_usage$. Information is stored for any SQL statement that is

executed or explained during the monitoring window. Once the monitoring window has finished, it is possible to

review the column usage information recorded for a specific table using the new function

DBMS_STATS.REPORT_COL_USAGE. This function generates a report, which lists what columns from the table were

seen in filter predicates, join predicates and group by clauses in the workload:

select dbms_stats.report_col_usage(user,'CUSTOMERS') from dual;

It is also possible to view a report for all the tables in a specific schema by running

DBMS_STATS.REPORT_COL_USAGE and providing just the schema name and NULL for the table name.

11 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Step 2: Create the Column Groups

Calling the DBMS_STATS.CREATE_EXTENDED_STATS function for each table will automatically create the

necessary column groups based on the usage information captured during the monitoring window. Once the

extended statistics have been created, they will be automatically maintained whenever statistics are gathered on the

table.

select dbms_stats.create_extended_stats(user,'CUSTOMERS') from dual;

Alternatively, the column groups can be manually creating by specifying the group as the third argument in the

DBMS_STATS.CREATE_EXTENDED_STATS function.

Step 3: Re-gather Statistics

The final step is to re-gather statistics on the affected tables so that the newly created column groups will have

statistics created for them:

exec dbms_stats.gather_table_stats(null,'CUSTOMERS')

SQL Plan Directives and Column Groups

SQL plan directives3 are not only used to optimizer SQL execution plans, they are used by Oracle to determine if

column groups would be useful to resolve cardinality misestimates. If a SQL plan directive is created, and the

optimizer decides that a cardinality misestimate would be resolved with a column group, then Oracle Database

Release 1 will automatically create the column group the next time statistics are gathered on the appropriate table.

This behavior has changed in Oracle Database 12c Release 2. Automatic column group creation is OFF by default

and is controlled by a DBMS_STATS preference called AUTO_STAT_EXTENSIONS. This is how the preference is

used:

SQL plan directives will not be used to create column groups automatically (this is the default):

exec dbms_stats.set_global_prefs ('AUTO_STAT_EXTENSIONS', 'OFF');

SQL plan directives will be used to create column groups automatically:

exec dbms_stats.set_global_prefs ('AUTO_STAT_EXTENSIONS', 'ON');

The DBMS_STATS preference is available in Oracle Database 12c Release 2 as standard, but patch 21171382 can

be applied to Oracle Database 12c Release 1 to add the preference to this release.

3 See Oracle white paper: Optimizer with Oracle Database 12c Release 2

12 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Expression Statistics

It is possible to create extended statistics for an expression (including functions), to help the optimizer to estimate

the cardinality of a where clause predicate that has columns embedded inside expressions. For example, if it is

common to have a where clause predicate that uses the UPPER function on a customer’s last name,

UPPER(CUST_LAST_NAME)=:B1, then it would be beneficial to create extended statistics for the expression

UPPER(CUST_LAST_NAME):

select dbms_stats.create_extended_stats(NULL,'CUSTOMERS','UPPER(CUST_LAST_NAME))')
from dual;

Figure 15: Extended statistics can also be created on expressions

Just as with column groups, statistics need to be re-gathered on the table after the expression statistics have been

defined. After the statistics have been gathered, an additional column with a system-generated name will appear in

the dictionary view USER_TAB_COL_STATISTICS representing the expression statistics. Just like for column

groups, the detailed information about expression statistics can be found in USER_STAT_EXTENSIONS.

Restrictions on Extended Statistics

Extended statistics can only be used when the where clause predicates are equalities or in-lists. Extended statistics

will not be used if there are histograms present on the underlying columns and there is no histogram present on the

column group.

Index Statistics

Index statistics provide information on the number of distinct values in the index (distinct keys), the depth of the

index (blevel), the number of leaf blocks in the index (leaf_blocks), and the clustering factor. The optimizer uses this

information in conjunction with other statistics to determine the cost of an index access. For example, the optimizer

will use b-level, leaf_blocks and the table statistics num_rows to determine the cost of an index range scan (when all

predicates are on the leading edge of the index).

Statistics on Partitioned Tables

Statistics on partitioned tables must be calculated at both the table level and partition level. Prior to Oracle Database

11g, adding a new partition or modifying data in a few partitions required scanning the entire table to refresh table-

level statistics. If you skipped gathering the global level statistics, the optimizer would extrapolate the global level

statistics based on the existing partition level statistics. This approach is accurate for simple table statistics such as

number of rows – by aggregating the individual rowcount of all partitions - but other statistics cannot be determined

accurately. For example, it is not possible to accurately determine the number of distinct values for a column (one of

the most critical statistics used by the optimizer) based on the individual statistics of all partitions.

Oracle Database 11g enhanced the statistics collection for partitioned tables with the introduction of incremental

global statistics. If the INCREMENTAL preference for a partitioned table is set to TRUE, the

DBMS_STATS.GATHER_*_STATS parameter GRANULARITY includes GLOBAL, and ESTIMATE_PERCENT

is set to AUTO_SAMPLE_SIZE, Oracle will gather statistics on the new partition, and accurately update all global

level statistics by scanning only those partitions that have been added or modified, and not the entire table.

13 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Incremental global statistics works by storing a synopsis for each partition in the table. A synopsis is statistical

metadata for that partition and the columns in the partition. Each synopsis is stored in the SYSAUX tablespace.

Global statistics are then generated by aggregating the partition level statistics and the synopses from each partition,

thus eliminating the need to scan the entire table to gather table level statistics (see Figure 16). When a new

partition is added to the table, you only need to gather statistics for the new partition. The global statistics will be

automatically and accurately updated using the new partition synopsis and the existing partitions’ synopses.

Figure 16: Incremental statistics gathering on a range partitioned table.

Note that INCREMENTAL statistics does not apply to the sub-partitions. Statistics will be gathered as normal on the

sub-partitions and on the partitions. Only the partition statistics will be used to determine the global or table level

statistics. Below are the steps necessary to use incremental global statistics.

Begin by switching on incremental statistics:

BEGIN
 DBMS_STATS.SET_TABLE_PREFS('SH', 'SALES', 'INCREMENTAL', 'TRUE');
END;
/

Gather statistics on the object(s) as normal, using the default ESTIMATE_PERCENT and GRANULARITY parameters.

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('SH', 'SALES');
END;
/

To check the current setting of INCREMENTAL for a given table, use DBMS_STATS.GET_PREFS.

SELECT DBMS_STATS.GET_PREFS('INCREMENTAL', 'SH', 'SALES')
FROM dual;

Incremental Statistics and Staleness

In Oracle Database 11g, if incremental statistics were enabled on a table and a single row changed in one of the

partitions, then statistics for that partition were considered stale and had to be re-gathered before they could be

used to generate global level statistics.

14 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

 In Oracle Database 12c a new preference called INCREMENTAL_STALENESS allows you to control when partition

statistics will be considered stale and not good enough to generate global level statistics. By default,

INCREMENTAL_STALENESS is set to NULL, which means partition level statistics are considered stale as soon as

a single row changes (same as 11g).

Alternatively, it can be set to USE_STALE_PERCENT or USE_LOCKED_STATS. USE_STALE_PERCENT means

the partition level statistics will be used as long as the percentage of rows changed is less than the value of the

preference STALE_PRECENTAGE (10% by default). USE_LOCKED_STATS means if statistics on a partition are

locked, they will be used to generate global level statistics regardless of how many rows have changed in that

partition since statistics were last gathered.

Incremental Statistics and Partition Exchange Loads

One of the benefits of partitioning is the ability to load data quickly and easily, with minimal impact on the business

users, by using the exchange partition command. The exchange partition command allows the data in a non-

partitioned table to be swapped into a specified partition in the partitioned table. The command does not physically

move data; instead it updates the data dictionary to exchange a pointer from the partition to the table and vice versa.

In previous releases, it was not possible to generate the necessary statistics on the non-partitioned table to support

incremental statistics during the partition exchange operation. Instead statistics had to be gathered on the partition

after the exchange had taken place, in order to ensure the global statistics could be maintained incrementally.

In Oracle Database 12c, the necessary statistics (synopsis) can be created on the non-partitioned table prior to the

exchange, so that statistics exchanged during a partition exchange load can be used to maintain incrementally

global statistics automatically. The new DBMS_STATS table preference INCREMENTAL_LEVEL can be used to

identify a non-partitioned table that will be used in partition exchange load. By setting the INCREMENTAL_LEVEL to

TABLE (default is PARTITION), Oracle will automatically create a synopsis for the table when statistics are

gathered. This table level synopsis will then become the partition level synopsis after the load the exchange.

For example:

exec dbms_stats.set_table_prefs ('SH','EXCHANGETAB','INCREMENTAL','TRUE')
exec dbms_stats.set_table_prefs ('SH','EXCHANGETAB','INCREMENTAL_LEVEL','TABLE')

Synopsis Enhancements

Incremental maintenance is a huge time saver for data warehouse applications with large partitioned tables.

However, the performance gains of incremental can come with the price of a measurable increase in disk storage:

the synopses information is stored in the SYSAUX tablespace. More storage is required for synopses for tables with

a high number of partitions and a large number of columns, particularly where the number of distinct values (NDV) is

high. As well as consuming storage space, you might incur a performance overhead for maintaining such very large

synopsis information.

From Oracle Database 12.2, DBMS_STATS provides new algorithm of gathering NDV information which results in

much smaller synopses with a level of accuracy that is similar to the previous algorithm.

A new DBMS_STATS preference called APPROXIMATE_NDV_ALGORITHM is used to control what type of synopses is

created. The default value is REPEAT OR HYPERLOGLOG, which means that the existing adaptive sampling

algorithm will be preserved for existing synopses but new synopses will be created using the new HYPERLOGLOG

algorithm. It is possible to use a mixture of old and new-style synopses in the same table.

When upgrading a pre-Oracle Database 12.2 system (that is using incremental statistics), there are three options:

15 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Option 1 – Continue to use the pre-12.2 format

Change the DBMS_STATS preference to “adaptive sampling”. For example:

EXEC dbms_stats.set_database_prefs ('approximate_ndv_algorithm', 'adaptive sampling')

Option 2 – Immediately replace the old format with the new

Statistics will be re-gathered on all partitions.

EXEC dbms_stats.set_database_prefs ('approximate_ndv_algorithm', 'hyperloglog')
EXEC dbms_stats.set_database_prefs ('incremental_staleness', NULL)

Option 3 - Gradually replace the old format with the new

Old synopses are not immediately deleted and new partitions will have synopses in new format. Mixed

formats will potentially yield less accurate statistics but taking this option will mean that there is no need to

re-gather all statistics in the foreground because the statistics auto job will re-gather statistics on partitions

with old synopses so that they will use the new format. Eventually, all synopses will be in the new format

and statistics will be accurate.

EXEC dbms_stats.set_database_prefs ('approximate_ndv_algorithm', 'hyperloglog')
EXEC dbms_stats.set_database_prefs ('incremental_staleness', 'allow_mixed_format')

For new implementations in Oracle Database 12c, the recommendation is to use the default preference value -

REPEAT OR HYPERLOGLOG so that new format synopses will be used.

16 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Managing Statistics

In addition to collecting appropriate statistics, it is equally important to provide a comprehensive framework for

managing them. Oracle offers a number of methods to do this, including the ability to restore statistics to a previous

version, the option to transfer statistics from one system to another, or even manually setting the statistics values

yourself. These options are extremely useful in specific cases, but are not recommended to replace standard

statistics gathering methods using the DBMS_STATS package.

Restoring Statistics

When you gather statistics using DBMS_STATS, the original statistics are automatically kept as a backup in

dictionary tables, and can be easily restored by running DBMS_STATS.RESTORE_TABLE_STATS if the newly

gathered statistics lead to any kind of problem. The dictionary view DBA_TAB_STATS_HISTORY contains a list of

timestamps when statistics were saved for each table.

The example below restores the statistics for the table SALES to what they were yesterday, and automatically

invalidates all of the cursors referencing the SALES table in the SHARED_POOL. We want to invalidate all of the

cursors; because we are restoring yesterday’s statistics and want them to impact any cursor instantaneously. The

value of the NO_INVALIDATE parameter determines if the cursors referencing the table will be invalidated or not.

BEGIN
 DBMS_STATS.RESTORE_TABLE_STATS(ownname => ‘SH’,
 tabname => ‘SALES’,
 as_of_timestamp => SYSTIMESTAMP-1
 force => FALSE,
 no_invalidate => FALSE);
END;
/

Pending Statistics

By default, when statistics are gathered, they are published (written) immediately to the appropriate dictionary tables

and instantaneously used by the optimizer. Beginning in Oracle Database 11g, it is possible to gather optimizer

statistics but not have them published immediately; and instead store them in an unpublished, ‘pending’ state.

Instead of going into the usual dictionary tables, the statistics are stored in pending tables so that they can be tested

before they are published. These pending statistics can be enabled for individual sessions, in a controlled fashion,

which allows you to validate the statistics before they are published. To activate pending statistics collection, you

need to use one of the DBMS_STATS.SET_*_PREFS procedures to change value of the parameter PUBLISH

from TRUE (default) to FALSE for the object(s) you wish to create pending statistics for.

BEGIN
 DBMS_STATS.SET_TABLE_PREFS('SH', 'SALES', 'PUBLISH', 'FALSE');
END;
/

Gather statistics on the object(s) as normal:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('SH', 'SALES');
END;
/

17 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

The statistics gathered for these objects can be displayed using the dictionary views called

USER_*_PENDING_STATS. You can tell the optimizer to use pending statistics by issuing an ALTER SESSION

command to set the initialization parameter OPTIMIZER_USE_PENDING_STATS to TRUE and running a SQL

workload. For tables accessed in the workload that do not have pending statistics, the optimizer will use the current

statistics in the standard data dictionary tables. Once you have validated the pending statistics, you can publish

them using the procedure DBMS_STATS.PUBLISH_PENDING_STATS.

BEGIN
 DBMS_STATS.PUBLISH_PENDING_STATS('SH', 'SALES');
END;
/

Exporting and Importing Statistics

Statistics can be copied from one database to another. For example, in pre-production it is sometimes useful to test

performance on one environment using statistics copied from another. Statistics can be copied from one database to

another using the DBMS_STATS.EXPORT_*_STATS and DBMS_STATS.IMPORT_*_STATS procedures.

Before exporting statistics, you need to create a table to store the statistics using

DBMS_STATS.CREATE_STAT_TABLE. After the table has been created, you can export statistics from the data

dictionary using the DBMS_STATS.EXPORT_*_STATS procedures. Once the statistics have been packed into the

statistics table, you can then use datadump to extract the statistics table from the production database, and import it

into the test database. Once the statistics table is successfully imported into the test system, you can import the

statistics into the data dictionary using the DBMS_STATS.IMPORT_*_STATS procedures.

Copying Partition Statistics

When dealing with partitioned tables, the optimizer relies on both the statistics for the entire table (global statistics)

as well as the statistics for the individual partitions (partition statistics) to select a good execution plan for a SQL

statement. If the query needs to access only a single partition, the optimizer uses only the statistics of the accessed

partition. If the query accesses more than one partition it will make use of global statistics.

It is very common with range partitioned tables to have a new partition added to an existing table, and rows inserted

into just that partition. If end-users start to query the newly inserted data before statistics have been gathered, it is

possible to get a suboptimal execution plan due to stale statistics. One of the most common cases occurs when the

value supplied in a where clause predicate is outside the domain of values represented by the [minimum, maximum]

column statistics. This is known as an ‘out-of-range’ error. In this case, the optimizer prorates the selectivity based

on the distance between the predicate value, and the maximum value (assuming the value is higher than the max),

that is, the farther the value is from the maximum or minimum value, the lower the selectivity will be.

The "Out of Range" condition can be prevented by using the DBMS_STATS.COPY_TABLE_STATS procedure. This

procedure copies the statistics of a representative source [sub] partition to the newly created and empty destination

[sub] partition. It also copies the statistics of the dependent objects: columns, local (partitioned) indexes, etc. The

minimum and maximum values of the partitioning column are adjusted as follows;

» If the partitioning type is HASH the minimum and maximum values of the destination partition are same as that of

the source partition.

» If the partitioning type is LIST and the destination partition is a NOT DEFAULT partition, then the minimum

value of the destination partition is set to the minimum value of the value list that describes the destination

partition. The maximum value of the destination partition is set to the maximum value of the value list that

describes the destination partition

18 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

» If the partitioning type is LIST and the destination partition is a DEFAULT partition, then the minimum value of

the destination partition is set to the minimum value of the source partition. The maximum value of the destination

partition is set to the maximum value of the source partition

» If the partitioning type is RANGE, then the minimum value of the destination partition is set to the high bound of

previous partition and the maximum value of the destination partition is set to the high bound of the destination

partition unless the high bound of the destination partition is MAXVALUE, in which case the maximum value of

the destination partition is set to the high bound of the previous partition

It can also scale the statistics (such as the number of blocks, or number of rows) based on the given scale_factor.

Statistics such as average row length and number of distinct values are not adjusted and are assumed to be the

same in the destination partition.

The following command copies the statistics from SALES_Q3_2011 range partition to the SALES_Q4_2011 partition

of the SALES table and scales the basic statistics by a factor of 2.

BEGIN
 DBMS_STATS.COPY_TABLE_STATS('SH','SALES','SALES_Q3_2002','SALES_Q4_2002', 2);
END;
/

Index statistics are only copied if the index partition names are the same as the table partition names (this is the

default). Global or table level statistics are not updated by default. The only time global level statistics would be

impacted by the DBMS_STATS.COPY_TABLE_STATS procedure would be if no statistics existed at the global

level and global statistics were being generated via aggregation.

19 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Comparing Statistics

One of the key reasons an execution plan can differ from one system to another is because optimizer statistics are

different. For example, statistics may be different in a test environment when compared to production if the data is

not in sync. To identify differences in statistics, the DBMS_STATS.DIFF_TABLE_STATS_* functions can be used to

compare statistics for two different sources (denoted source “A” and source “B”). For example, a table in schema1

can be compared with a table in schema2. It is also possible to compare the statistics of an individual table at two

different points in time or current statistics with pending statistics. For example, comparing current statistics with

yesterday:

select report,
 maxdiffpct
from dbms_stats.diff_table_stats_in_history(user,
 'CUSTOMERS',
 SYSDATE-1,
 SYSDATE,
 2);

Figure 17: Comparing statistics in CUSTOMERS from one day to the next

To compare statistics in APP1.CUSTOMERS on one database to APP1.CUSTOMERS on another:

On System 1:

exec dbms_stats.create_stat_table('APP1','APP1STAT')
exec dbms_stats.export_table_stats('APP1','CUSTOMERS',stattab=>'APP1STAT',statid=>'mystats1')

Export APP1STAT table from System 1, import into System 2 and then on System 2:

select report
from dbms_stats.diff_table_stats_in_stattab('APP1',
 'CUSTOMERS',
 'APP1STAT',
 NULL,
 1,
 'mystats1');

20 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

The “DIFF” functions also compare the statistics of the dependent objects (indexes, columns, partitions), and

displays all the statistics for the object(s) from both sources if the difference between the statistics exceeds a

specified threshold. The threshold can be specified as an argument to the function; the default value is 10%. The

statistics corresponding to the first source will be used as the basis for computing the differential percentage.

Locking Statistics

In some cases, you may want to prevent any new statistics from being gathered on a table or schema by locking the

statistics. Once statistics are locked, no modifications can be made to those statistics until the statistics have been

unlocked or unless the FORCE parameter of the GATHER_*_STATS procedures has been set to TRUE.

Figure 18: Locking and unlocking table statistics

Statistics can be locked and unlocked at either the table or partition level.

BEGIN
 DBMS_STATS.LOCK_PARTITION_STATS('SH', 'SALES', 'SALES_Q3_2000');
END;

21 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

You should note there is a hierarchy with locked statistics. For example, if you lock the statistic on a partitioned

table, and then unlocked statistics on just one partition in order to re-gather statistics on that one partition, it will fail

with an error ORA-20005. The error occurs because the table level lock will still be honored even though the

partition has been unlocked. The statistics gather for the partition will only be successfully if the FORCE parameter is

set to TRUE.

Figure 19: Hierarchy with locked statistics; table level lock trumps partition level unlock

Manually Setting Statistics

Under rare circumstances, it may be beneficial to manually set the optimizer statistics in the data dictionary. One

such example could be a highly volatile global temporary table (note that while manually setting statistics is

discussed in this paper, it is not generally recommended, because inaccurate or inconsistent statistics can lead to

poor performing execution plans). Statistics can be manually set using DBMS_STATS.SET_*_STATS procedures.

22 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Other Types of Statistics

In addition to basic table, column, and index statistics, the optimizer uses additional information to determine the

execution plan of a statement. This additional information can come in the form of dynamic sampling and system

statistics.

Dynamic Statistics (previously known as dynamic sampling)

Dynamic sampling collects additional statement-specific object statistics during the optimization of a SQL statement.

The most common misconception is that dynamic sampling can be used as a substitute for optimizer statistics. The

goal of dynamic sampling is to augment the existing statistics; it is used when regular statistics are not sufficient to

get good quality cardinality estimates.

In Oracle Database 12c, dynamic sampling has been enhanced to become dynamic statistics. Dynamic statistics

allow the optimizer to augment existing statistics to get more accurate cardinality estimates for not only single table

accesses, but also joins and group-by predicates.

So, how and when will dynamic statistics be used? During the compilation of a SQL statement, the optimizer

decides whether to use dynamic statistics or not by considering whether the available statistics are sufficient to

generate a good execution plan. If the available statistics are not enough, dynamic statistics will be used in addition

to the existing statistics information. It is typically used to compensate for missing or insufficient statistics that would

otherwise lead to a very bad plan. For the case where one or more of the tables in the query does not have

statistics, dynamic statistics are used by the optimizer to gather basic statistics on these tables before optimizing the

statement. The statistics gathered in this case are not as high a quality or as complete as the statistics gathered

using the DBMS_STATS package. This trade off is made to limit the impact on the compile time of the statement.

There are circumstances where you may want to ask the optimizer to make to be more “aggressive” in its use of

dynamic statistics. For example, you might want to use dynamic statistics for statements containing complex

predicate expressions and extended statistics are not available or cannot be used. For example, consider a query

that has non-equality in where clause predicates on two correlated columns. Standard statistics would not be

sufficient and extended statistics cannot be used (because it is not an equality predicate). In the following simple

query against the SALES table, the optimizer assumes that each of the where clause predicates will reduce the

number of rows returned by the query. Based on the standard statistics, it determines the cardinality to be 20,197,

when in fact; the number of rows returned is ten times higher at 210,420.

SELECT count(*)
FROM sh.sales
WHERE cust_id < 2222
AND prod_id > 5;

Figure 20: Execution plan for complex predicates without dynamic sampling

23 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

With standard statistics, the optimizer is not aware of the correlation between the CUST_ID and PROD_ID in the

SALES table. By setting OPTIMIZER_DYNAMIC_SAMPLING to level 6, the optimizer will use dynamic statistics to

gather additional information about the complex predicate expression. The additional information provided by

dynamic statistics allows the optimizer to generate a more accurate cardinality estimate, and therefore a better

performing execution plan.

Figure 21: Execution plan for complex predicates with dynamic sampling level 6

Dynamic sampling is controlled by the parameter OPTIMIZER_DYNAMIC_SAMPLING, which can be set to different

levels (0-11). These levels control two different things; when dynamic statistics kicks in, and how large a sample size

will be used to gather the statistics. The greater the sample size, the bigger impact dynamic sampling has on the

compilation time of a query.

When set to 11 the optimizer will automatically decide if dynamic statistics will be useful and how much data should

be sampled. The optimizer bases its decision to use dynamic statistics on the complexity of the predicates used, the

existing base statistics, and the total execution time expected for the SQL statement. For example, dynamic

statistics will kick in for situations where the optimizer previously would have used a guess. For example, queries

with LIKE predicates and wildcards.

Figure 22: When OPTIMIZER_DYNAMIC_SAMPLING is set to level 11 dynamic sampling will be used instead of guesses

Given these criteria, it’s likely that when set to level 11, dynamic sampling will kick-in more often than it did before.

This will extend the parse time of a statement. In order to minimize the performance impact, the results of the

dynamic sampling queries are cached in the Server Result Cache in Oracle Database 12c Release 1 and (instead)

24 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

in the SQL plan directives repository in Oracle Database 12c Release 2. This allows other SQL statements to share

the statistics gathered by dynamic sampling queries. The existence of persisted dynamic sampling results can be

seen in the database view, DBA_SQL_PLAN_DIRECTIVES, where the TYPE column value is

DYNAMIC_SAMPLING_RESULT (from Oracle Database 12c Release 2 onwards).

Adaptive dynamic sampling (i.e. level-11-style dynamic sampling) can be initiated at parse time even if

OPTIMIZER_DYNAMIC_SAMPLING is not set to 11. This can happen for parallel queries on large tables and for

serial queries that have relevant DYNAMIC_SAMPLING SQL plan directives. This behavior is enabled if the database

parameter OPTIMIZER_DYNAMIC_STATISTICS is set to TRUE (the default is FALSE).

System statistics

System statistics enable the optimizer to more accurately cost each operation in an execution plan by using

information about the actual system hardware executing the statement, such as CPU speed and IO performance.

System statistics are enabled by default, and are automatically initialized with default values. These defaults work

well for most systems (including Oracle Exadata) so, for this reason, it is not usually necessary to gather them

manually. Note that they are not automatically collected as part of the automatic statistics gathering job.

If you wish to gather system statistics manually, the default values will be overridden and this will affect the cost

calculations made by the Oracle Optimizer. This is likely to change SQL execution plans, so it is important to

evaluate the benefit of the change before implementing it on a production system.

To gather system statistics, DBMS_STATS.GATHER_SYSTEM_STATS can be used during a representative

workload time window; ideally at peak workload times. Alternatively, Oracle Databases on Exadata systems have an

Exadata-specific option:

EXEC DBMS_STATS.GATHER_SYSTEM_STATS('EXADATA')

Statistics on Dictionary Tables

Since the Cost Based Optimizer is now the only supported optimizer, all tables in the database need to have

statistics, including all of the dictionary tables (tables owned by SYS, SYSTEM, etc, and residing in the system and

SYSAUX tablespace). Statistics on the dictionary tables are maintained via the automatic statistics gathering job run

during the nightly maintenance window. If you choose to switch off the automatic statistics gathering job for your

main application schema, consider leaving it on for the dictionary tables. You can do this by changing the value of

AUTOSTATS_TARGET to ORACLE instead of AUTO using the procedure DBMS_STATS.SET_GLOBAL_PREFS.

BEGIN
DBMS_STATS.SET_GLOBAL_PREFS('AUTOSTATS_TARGET','ORACLE');
END;
/

Statistics can be manually gathered on the dictionary tables using the

DBMS_STATS.GATHER_DICTIONARY_STATS procedure. You must have both the ANALYZE ANY

DICTIONARY, and ANALYZE ANY system privilege, or the DBA role to update dictionary statistics. It is

recommended that dictionary table statistics be maintained on a regular basis in a similar manner to user schemas.

Statistics on Fixed Objects

You will also need to gather statistics on dynamic performance tables and their indexes (fixed objects). These are

the X$ tables on which the V$ views (V$SQL etc.) are built. Since V$ views can appear in SQL statements like any

other user table or views, it is important to gather optimizer statistics on these tables to help the optimizer generate

25 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

good execution plans. However, unlike other database tables, dynamic sampling is not automatically use for SQL

statement involving X$ tables when optimizer statistics are missing. The optimizer uses predefined default values for

the statistics if they are missing. These defaults may not be representative and could potentially lead to a suboptimal

execution plan, which could cause severe performance problems in your system. It is for this reason that we strongly

recommend you gather fixed objects statistics.

Fixed object statistics are not gathered or maintained by the automatic statistics gathering job prior to Oracle

Database 12c. You can collect statistics manually on fixed objects using the

DBMS_STATS.GATHER_FIXED_OBJECTS_STATS procedure.

BEGIN
 DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;
END;

/

Beginning with Oracle Database 12c, fixed table statistics are gathered by the automatic statistics gathering job if

they are missing. However, it is still advisable to gather them manually once a representative workload is running.

The DBMS_STATS.GATHER_FIXED_OBJECTS_STATS procedure gathers the same statistics as

DBMS_STATS.GATHER_TABLE_STATS except for the number of blocks. Blocks is always set to 0 since the x$

tables are in memory structures only and are not stored on disk. Because of the transient nature of the x$ tables, it is

import that you gather fixed object statistics when there is a representative workload on the system. You must have

the ANALYZE ANY DICTIONARY system privilege or the DBA role to update fixed object statistics. It is

recommend that you re-gather fixed object statistics if you do a major database or application upgrade.

Some fixed tables will not have statistics even if GATHER_FIXED_OBJECTS_STATS has been executed. This is

expected behavior because some of the tables are explicitly skipped for performance reasons.

Expression Statistics

Beginning with Oracle Database 12c Release 2, optimizer expression tracking captures statistics for expressions

that appear in the database workload and persists this information in the data dictionary. The data is maintained by

the Oracle Optimizer and is used by the In-Memory Expressions (IME) feature of Oracle Database In-Memory.

Figure 23 shows how the statistics can be viewed. Notice how column usage information as well as expression

usage is tracked.

Figure 23: Viewing expression statistics.

The statistics are updated automatically every 15 minutes, but the data can be flushed manually (as demonstrated

above). The evaluation count is an estimate and, similarly, the fixed cost is an estimate of the cost of executing the

26 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

expression. Note that aggregate expressions (such as SUM or MAX) are not tracked and expressions that include

columns from more than one table are also not tracked.

The LATEST snapshot presents the latest set of statistics captured and the CUMULATIVE presents the long-term

cumulative values.

27 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Conclusion

In order for the Cost Based Optimizer to accurately determine the cost for an execution plan, it must have

information about all of the objects (table and indexes) accessed in the SQL statement, and information about the

system on which the SQL statement will be run. This necessary information is commonly referred to as optimizer

statistics. Understanding and managing statistics is key to optimal SQL execution. Knowing when and how to gather

statistics in a timely manner is critical to maintaining good performance.

Now that you have been introduced to what type of statistics are maintained by the Oracle Database, you should

consider reading Best Practices for Gathering Optimizer Statistics with Oracle Database 12c Release 2. This white

paper covers how to maintain all types of statistics effectively with minimal management overhead.

28 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

References

1. Oracle white paper: Best Practices for Gathering Optimizer Statistics with Oracle Database 12c Release 2

2. Oracle white paper: Optimizer with Oracle Database 12c Release 2

29 | UNDERSTANDING OPTIMIZER STATISTICS WITH ORACLE DATABASE 12C RELEASE 2

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0317

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

