
ORAAH 2.8.0 Formula and Data
Preprocessing

May 14, 2018

1 Introduction

ORAAH 2.8.0 introduces new scalable data preprocessing algorithms to facil-
itate machine learning model building and deployment. ORAAH includes its
own high performance Java implementation of the R formula to create par-
allel distributed model matrices, which serve as input for machine learning
and statistical algorithms.

In this document we mainly use R to illustrate functionality. Please keep
in mind, that both ORAAH Data Preprocessing and Formula engines are
readily accessible from Java, Python, C++, R, Scala and other programming
languages.

R formula is a remarkably powerful mechanism to define and create sta-
tistical and machine learning models. It is used to specify response and
explanatory variables, nonlinear transformations, and interactions.

Here is a simple example

1

Y ~ X1 + X2

where Y is a dependent variable (target), and X1, X2 are predictors (fea-
tures). The tilde operator ∼ separates response (left-hand side) from ex-
planatory terms (right-hand side of the formula).

Consider a table tab with three columns Y, X1, and X2. Y is a binary
variable (only takes two values). We can fit (train) a logistic regression
model as follows

fit <- orch.glm2(formula = Y ~ X1 + X2, data = tab)

Omitting the response (empty left-hand side) is used to define and create
unsupervised models.

~ X1 + X2

With this specification, we can train a k-means model:

fit <- orch.ml.kmeans(formula = ~ X1 + X2, data = tab)

Operations allowed in a formula object fall into two main categories:

1. Set-theoretic. In our earlier example X1 + X2, the plus operator +

means to include variables as predictors to the algorithm for model
building; there is no arithmetic summation here of any kind; the oper-
ation is precisely equivalent to how one adds elements (variables) to a
set (model).

2. Arithmetic (e.g., add a number to each element of the column), where
plus +, minus -, and multiply * operators are used in their classi-
cal arithmetic sense. The divide operator / can be used only in an
arithmetic context. The places where these operators are understood
in their arithmetic sense are function arguments (the most common
case), response, and boolean expressions.

2 R Formula Syntax

+ plus operator when used in set-theoretic sense means to include the vari-
able as a predictor to the algorithm for model building (into the set).
To reiterate, there is no arithmetic summation here of any kind. For
instance,

2

Y ~ A + B + C

here Y is our target (response); and we also include three predictors
(data columns) A, B, and C into the model.

- minus operator removes the corresponding variable from the model.

() parenthesis are used to group variables.

(X + Y + Z)

creates a subset, which comprises three variables X, Y, and Z.

. dot-character stands for all variables in the training data, except the re-
sponse variable. For instance

Y ~ . - (X20 + X50)

will include all variables (notice the dot-character), except X20 and
X50. Alternatively, you can use Y ~ . - X20 - X50.

: colon operator generates and includes the interaction between the two
variables.

A : B

* asterisk operator includes both the main effects, and the interactions be-
tween them; A * B is equivalent to

A + B + A : B

It is perfectly fine to generate interactions between two groups of vari-
ables, for instance (A + B) * (X + Y), is equivalent to A * X + A *

Y + B * X + B * Y. Both colon and asterisk operators are of higher
precedence than add (plus) and remove (minus).

3

(A1 + A2 + ... + Ak)^n include the variables and generate all interac-
tions up to n-way. Example: Y ∼ (. - A)^3. One more example

Y ~ (log(A) + B : Z)^2

is equivalent to

Y ~ log(A) + B : Z + log(A) : B : Z

I() identity function. Its argument will be treated in the arithmetic sense. A
handy function whenever you need to scale, or carry out any nonlinear
transformation. Everything between the parentheses will be treated in
the arithmetic sense. For instance

I(log(A / 10) * B + C)

will create a new column, whose row elements will be

log(A[row] / 10) * B[row] + C[row]

Here all arithmetic operators are understood in their traditional arith-
metic sense. * means simple element-wise multiplication.

sin(), cos(), log(), exp(), ... math functions (see next sections). Ex-
ample:

log(A) ~ exp(B)

relational operators traditional operators, & is a synonym for &&; simi-
larly, | is a synonym for ||.

4

A >= B

A <= B

A > B

A < B

A == B

A != B

A && B

A & B

A || B

A | B

+1 adds intercept.

-1 removes intercept.

-0 adds intercept, synonym for +1.

+0 removes intercept, synonym for -1.

as.factor(X) allows treating a numerical column X (often integer) as a
factor. For instance, consider the classical Airline on-time performance
dataset, which has among others the following columns

• Cancelled, whether the flight was cancelled, binary integer col-
umn.

• Year, integer column.

• DayOfWeek, integer column.

• DepDelay departure delay in minutes, integer column.

We can train a logistic regression model as follows:

Cancelled ~ as.factor(Year) + as.factor(DayOfWeek) +

DepDelay

The above formula will create three predictors: Year as a factor vari-
able, DayOfWeek as a factor variable, and DepDelay as numeric. In
ORAAH you can also use a shortcut F(x), which means exactly the
same thing as as.factor(x), it is just a little less to type.

5

3 Arithmetic Functions in ORAAH Formula

Recall, functions treat their arguments in an arithmetic sense, similar to the
identity function I(x).

The argument x can be a number, an arithmetic expression that evaluates
to number, or a column expression that is evaluated in the arithmetic sense.
For instance

log(Y) ~ I(X * Z * 0.1) + tan(Z)

in the I(X * Z * 0.1) expression above, the formula creates a new column
whose row elements are the result of multiplication X[row] * Z[row] * 0.1.

Table 1: Arithmetic functions in ORAAH formula

abs(x) absolute value
acos(x) arc cosine
asin(x) arc sine
atan(x) arc tangent
cbrt(x) cube root
ceil(x) ceiling function. The smallest integer value (returned as

double) that is greater than or equal to the argument.
Returns the argument, if is already a whole number (in-
teger).

cos(x) trigonometric cosine
cosh(x) hyperbolic cosine
exp(x) exponent ex

expm1(x) ex − 1
floor(x) ceiling function, the largest integer value (returned as

double) that is less than or equal to the argument. Re-
turns the argument, if is already a whole number (inte-
ger).

log(x) natural logarithm, ln(x)
log10(x) the base 10 logarithm
log1p(x) ln(1 + x)
log2(x) base 2 logarithm
rint(x) integer, closest to the argument
round(x) integer, closest to the argument

6

signum(x) signum function

+1 if x < 0

0 if x = 0
−1 if x > 0

sin(x) trigonometric sine
sinh(x) hyperbolic sine
sqrt(x) square root
tan(x) trigonometric tangent
tanh(x) hyperbolic tangent
toDegrees(x) converts an angle measured in radians to an approxi-

mately equivalent angle measured in degrees
toRadians(x) converts an angle measured in degrees to an approxi-

mately equivalent angle measured in radians.

4 Statistical Functions in ORAAH Formula

Statistical and special functions (described in the next section) can be very
helpful to create new features, add noise to a dataset, etc.

Arguments x, p, q below must be column expressions, evaluated in an
arithmetic sense. The remaining parameters (alpha, beta) must be numbers
(or expressions which evaluate to numbers).

Table 2: Statistical functions in ORAAH formula

Beta distribution
alpha > 0, beta > 0

density dbeta(x, alpha, beta)

cumulative density pbeta(q, alpha, beta)

quantile qbeta(p, alpha, beta)

random deviates rbeta(alpha, beta)

Binomial distribution
nTrials > 0 integer, 0 <= probability <= 1

density dbinom(x, nTrials, probability)

cumulative density pbinom(q, nTrials, probability)

quantile qbinom(p, nTrials, probability)

7

random deviates rbinom(nTrials, probability)

Cauchy distribution
scale > 0

density dcauchy(x, median, scale)

cumulative density pcauchy(q, median, scale)

quantile qcauchy(p, median, scale)

random deviates rcauchy(median, scale)

Chi-squared distribution
degreesOfFreedom > 0

density dchisq(x, degreesOfFreedom)

cumulative density pchisq(q, degreesOfFreedom)

quantile qchisq(p, degreesOfFreedom)

random deviates rchisq(degreesOfFreedom)

Exponential distribution
rate > 0

density dexp(x, rate)

cumulative density pexp(q, rate)

quantile qexp(p, rate)

random deviates rexp(rate)

F-distribution
numeratorDF > 0, denominatorDF > 0

density df(x, numeratorDF, denominatorDF)

cumulative density pf(q, numeratorDF, denominatorDF)

quantile qf(p, numeratorDF, denominatorDF)

random deviates rf(numeratorDF, denominatorDF)

Gamma distribution
shape > 0, scale > 0

density dgamma(x, shape, scale)

cumulative density pgamma(q, shape, scale)

quantile qgamma(p, shape, scale)

random deviates rgamma(shape, scale)

Geometric distribution

8

0 < probability <= 1

density dgeom(x, probability)

cumulative density pgeom(q, probability)

quantile qgeom(p, probability)

random deviates rgeom(probability)

Hypergeometric distribution
populationSize > 0

0 <= nSuccesses <= populationSize

0 < sampleSize <= populationSize

density dhyper(x, populationSize, nSuccesses, sampleSize)

cumulative density phyper(q, populationSize, nSuccesses, sampleSize)

quantile qhyper(p, populationSize, nSuccesses, sampleSize)

random deviates rhyper(populationSize, nSuccesses, sampleSize)

Log-normal distribution
shape > 0

density dlnorm(x, scale, shape)

cumulative density plnorm(q, scale, shape)

quantile qlnorm(p, scale, shape)

random deviates rlnorm(scale, shape)

Normal distribution
sd > 0

density dnorm(x, mean, sd)

cumulative density pnorm(q, mean, sd)

quantile qnorm(p, mean, sd)

random deviates rnorm(mean, sd)

Poisson distribution
mean > 0

density dpois(x, mean)

cumulative density ppois(q, mean)

quantile qpois(p, mean)

random deviates rpois(mean)

Student t-distribution
degreesOfFreedom > 0

9

density dt(x, degreesOfFreedom)

cumulative density pt(q, degreesOfFreedom)

quantile qt(p, degreesOfFreedom)

random deviates rt(degreesOfFreedom)

Triangular distribution
lower <= mode <= upper

density dtriangular(x, lower, mode, upper)

cumulative density ptriangular(q, lower, mode, upper)

quantile qtriangular(p, lower, mode, upper)

random deviates rtriangular(lower, mode, upper)

Uniform distribution
lower < upper

density dunif(x, lower, upper)

cumulative density punif(q, lower, upper)

quantile qunif(p, lower, upper)

random deviates runif(lower, upper)

Weibull distribution
alpha > 0, beta > 0

density dweibull(x, alpha, beta)

cumulative density pweibull(q, alpha, beta)

quantile qweibull(p, alpha, beta)

random deviates rweibull(alpha, beta)

Pareto distribution
scale > 0, shape > 0

density dpareto(x, scale, shape)

cumulative density ppareto(q, scale, shape)

quantile qpareto(p, scale, shape)

random deviates rpareto(scale, shape)

10

5 Special Functions

Arguments of the special functions are treated in a numerical sense, and they
can be numbers, expressions that evaluate to numbers, or column expressions.

Table 3: Special functions in ORAAH formula

gamma(x) gamma function Γ(x)
lgamma(x) natural logarithm of the gamma function ln(Γ(x))
digamma(x) digamma function, d

dx
ln(Γ(x))

trigamma(x) trigamma function, d2

dx2 ln(Γ(x))
lanczos(x) Lanczos approximation of the gamma function
factorial(x) factorial n!
lfactorial(x) natural logarithm of the factorial function ln(n!)

lbeta(a, b) natural logarithm of the Beta function ln
(

Γ(a)Γ(b)
Γ(a+b)

)
lchoose(n, k) natural logarithm of the binomial coefficient ln

(
n!

k!(n−k)!

)

6 Scaling and Aggregate Functions

Normalization can often be of paramount importance for successful creation
and deployment of machine learning models in practice. In this section we
describe new functions and techniques introduced in ORAAH 2.8.0

Notation:

x data column

m number of observations (e.g. number of rows in a table)

mean(x) =
1

m

m∑
j=1

xj

sd(x) =

√∑m
j=1(xj −mean(x))2

m− 1

range(x) = max(x)−min(x)

midrange(x) =
min(x) + max(x)

2

11

Table 4 lists normalization techniques for the function

orch.df.scale(data, method).

Table 4: Scalable (Parallel-Distributed) Normalization
Techniques

method what it is

"standardization"
x−mean(x)

sd(x)

"unitization"
x−mean(x)

range(x)

"unitization zero minimum"
x−min(x)

range(x)

"normalization"
x−midrange(x)

range(x)/2

"normalization 2"
x−mean(x)

max(|x−mean(x)|)

"normalization 3"
x−mean(x)√∑
(xj −mean(x))2

"quotient sd"
x

sd(x)

"quotient range"
x

range(x)

"quotient max"
x

max(x)

"quotient mean"
x

mean(x)

"quotient sum"
x∑
xj

"quotient sqrt ssq"
x√∑

x2
j

12

Consider an example where we create a Spark data frame from Comma-
Separated Values (CSV) files; then create a summary (which would show us
some basic statistics on the data frame columns); and then scale the columns.

Create a CSV file; use a few columns ("GNP", "Unemployed", and "Employed")

from the Longley’s Economic Regression Data.

require(stats)

head(longley)

data <- subset(longley, select=c("GNP", "Unemployed", "Employed"))

write.csv(data, file="longley.csv", row.names=FALSE)

Now, our CSV dataset is ready. First, create a Spark data frame using
the ORCH function:

orch.df.fromCSV(path, minPartitions= -1L,

headerPresent=TRUE, fieldSeparator=",",

quote="\"", na="NA", verbose=TRUE)

orch.df.fromCSV() can work in a fully automated “disovery” mode, where
both CSV column names, and columns types will be automatically discov-
ered. The CSV data can be read from HDFS, a local file system (in which case
the file must exist on every compute node), or any other Hadoop-compliant
file system.

dataFrame <- orch.df.fromCSV("longley.csv")

produces the following data frame (recall, we saved just a few columns from
the longley dataset):

+-------+----------+--------+

| GNP|Unemployed|Employed|

+-------+----------+--------+

|234.289| 235.6| 60.323|

|259.426| 232.5| 61.122|

|258.054| 368.2| 60.171|

|284.599| 335.1| 61.187|

|328.975| 209.9| 63.221|

|346.999| 193.2| 63.639|

|365.385| 187.0| 64.989|

|363.112| 357.8| 63.761|

|397.469| 290.4| 66.019|

| 419.18| 282.2| 67.857|

|442.769| 293.6| 68.169|

13

|444.546| 468.1| 66.513|

|482.704| 381.3| 68.655|

|502.601| 393.1| 69.564|

|518.173| 480.6| 69.331|

|554.894| 400.7| 70.551|

+-------+----------+--------+

Its summary, calculated by orch.df.summary(dataFrame), is as follows
(some digits were omitted for compactness):

+----------+----------+-----------+-------+-------+---------------+----------+-----------------+

| col_name| col_type|num_missing| min| max| mean| sd|num_factor_levels|

+----------+----------+-----------+-------+-------+---------------+----------+-----------------+

| GNP|DoubleType| 0|234.289|554.894| 387.6...| 99.394...| null|

|Unemployed|DoubleType| 0| 187.0| 480.6|319.33124999...| 93.446...| null|

| Employed|DoubleType| 0| 60.171| 70.551| 65.31700000...|3.51196...| null|

+----------+----------+-----------+-------+-------+---------------+----------+-----------------+

Now, let us scale the dataFrame via technique "normalization 2" (nor-
malization in range [-1,1]):

scaledFrame <- orch.df.scale(dataFrame, "normalization_2")

This produces:

+--------------------+--------------------+--------------------+

| GNP| Unemployed| Employed|

+--------------------+--------------------+--------------------+

| -0.9175449109183148| -0.5192031934271204| -0.9541459686664142|

| -0.7672000116629891| -0.5384257644459941| -0.8014902560183439|

| -0.7754059710765353| 0.3030267798318026| -0.9831868551776869|

| -0.6166397956883576| 0.09777932798511839| -0.7890714558654975|

|-0.35122605302398496| -0.6785645080029448|-0.40045854031333833|

|-0.24342414889151134| -0.7821183583304262| -0.3205961024073378|

|-0.13345711552601774| -0.8205635003681736|-0.06266717615590434|

|-0.14705197394219113| 0.2385381544781617|-0.29728696981276387|

| 0.05843792953536062|-0.17939774444831974| 0.13412304165074493|

| 0.1882918543367441|-0.23024454520792126| 0.4852884982804728|

| 0.32937813466191723| -0.159555090493353| 0.5448987390141369|

| 0.34000640716765423| 0.9224896329884122| 0.22850592281238044|

| 0.568230167591918| 0.3842576444599467| 0.6377531524646537|

| 0.6872345221482776| 0.45742743091888566| 0.8114252961406171|

| 0.7803709652880291| 1.0| 0.7669086740542606|

| 1.0| 0.5045537340619308| 1.0|

+--------------------+--------------------+--------------------+

Its summary is as follows (some digits were omitted for compactness):

+----------+----------+-----------+---------+---+------+--------+-----------------+

|col_name |col_type |num_missing|min |max|mean |sd |num_factor_levels|

+----------+----------+-----------+---------+---+------+--------+-----------------+

|GNP |DoubleType|0 |-0.917...|1.0|-5e-17|0.594...|null |

|Unemployed|DoubleType|0 |-0.820...|1.0| 3e-16|0.579...|null |

|Employed |DoubleType|0 |-0.983...|1.0|-1e-15|0.670...|null |

+----------+----------+-----------+---------+---+------+--------+-----------------+

14

Note: orch.df.scale() preserves the original column names, but it
changes integral column types (byte, short, integer, long), and 32-bit float-
ing point into 64-bit double. In other words, the result of scaling is a 64-bit
double column. Boolean, date, calendar, and timestamp columns are treated
as strings (factor), and remain unchanged.

In addition to the orch.df.scale() users can use the following aggregate
functions, which return a single double floating point value:

Table 5: Formula aggregate functions

function name what it is
(colExpr below stands for column expression)

avg(colExpr) mean (average) value

mean(colExpr) mean value (synonym for avg)

max(colExpr) maximum value

min(colExpr) minimum value

sd(colExpr) standard deviation

stddev(colExpr) standard deviation (synonym for sd)

sum(colExpr) sum

variance(colExpr) variance

var(colExpr) variance (synonym for variance)

kurtosis(colExpr) kurtosis

skewness(colExpr) skewness

Each aggregate function returns a single double floating point value; and
therefore, can only be used inside an arithmetic context. In fact, this is
exactly how formula preprocessor works: it will compute each aggregate
function value, and then literally replace aggregates with their values. For
instance

Kyphosis ~ I(Start / max(Start))

In the above example, I() creates an arithmetic context, where we use
max(Start) as a denominator to scale the Start variable. Formula pre-

15

processor will compute the max(Start) (18.0), and the final formula will
become

Kyphosis ~ I(Start / 18.0)

This value 18.0 will remain fixed (will be used for prediction / scoring).

16

