
Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes i

Oracle R Advanced Analytics for Hadoop 2.7.1 Release
Notes



Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes iii

Contents

1 Introduction 1

2 What’s new in ORAAH release 2.7.1 1

3 What’s new in ORAAH since release 2.7.0 2

4 Known issues in ORAAH release 2.7.1 3

5 Parallelization Packages in R Compared to Those in ORAAH 3

6 Architecture 3

7 Working With the ORAAH Hadoop Interface 5

8 Working with ORAAH Hive Interface 6

9 Native Analytic Functions 6

10 Copyright Notice 7



Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes 1 / 7

1 Introduction

Oracle R Advanced Analytics for Hadoop (ORAAH) is a collection of R packages that enable big data analytics from the R
environment. With ORAAH, Data Scientists and Data Analysts who are comfortable within R gain the benefit of a broad reach
from the R environment into data resident across multiple platforms (HDFS, Hive, Oracle Database, and local files). This gain
is boosted by the power to leverage the massively distributed Hadoop computational infrastructure to analyze potentially rich
cross-platform datasets.

ORAAH provides some big advantages for big data analytics:

1. A general computation framework where you can use the R language to write custom logic as mappers or reducers.
These execute in a distributed, parallel manner using the compute and storage resources available within a Hadoop cluster.
Support for binary RData representation of input data enables R-based MapReduce jobs to match the I/O performance of
pure Java-based MapReduce programs.

2. Tools ready for work “right out of the box” to provide predictive analytic techniques for linear regression, generalized linear
models, neural networks, matrix completion using low rank matrix factorization, non-negative matrix factorization, k-
means clustering, principal components analysis and multivariate analysis. While all of these techniques have R interfaces,
they have been implemented either in Java, or, in R as distributed, parallel MapReduce jobs that leverage all the nodes of
your Hadoop cluster. This enables these analytics tools to work with big data.

3. Support for Apache Spark MLlib functions, Oracle Formula support, and Distributed Model Matrix data structure. New
predictive analytic functions from MLlib are exported as R functions and are fully integrated with ORAAH platform.
MLlib R functions can be executed either on a Hadoop cluster using YARN to dynamically form a Spark cluster, or
on a dedicated standalone Spark cluster. One can switch Spark execution on or off with the new spark.connect() and
spark.disconnect() functions. For more information about Apache Spark refer to https://spark.apache.org/.

ORAAH’s architecture and approach to big data analytics is to leverage the cluster compute infrastructure for parallel, distributed
computation. ORAAH does this while shielding the R user from Hadoop’s complexity through a small number of easy-to-use
APIs.

2 What’s new in ORAAH release 2.7.1

1. Support for Cloudera Distribution of Hadoop (CDH) release 5.11.0. Both “classic” MR1 and YARN MR2 APIs are
supported.

2. ORAAH 2.7.1 extends support for Apache Spark. Select predictive analytic functions can be executed on a Hadoop
cluster using YARN to dynamically form a Spark cluster on a dedicated standalone Spark cluster. Users can switch Spark
execution on or off using new spark.connect() and spark.disconnect() functions. For more information
about Spark, refer to https://spark.apache.org/.

3. In addition to Distributed Model Matrix (DMM) that can be saved in Comma-Separated Values (CSV) format on HDFS
via a call to hdfs.write(), in release 2.7.1 hdfs.write() now adds support for writing Spark DataFrame objects
as well.

4. ORAAH 2.7.1 is fully compatible with OAAgraph package and introduces tight integration with Oracle’s Parallel Graph
AnalytiX (PGX) in-memnory database. Supported PGX version 2.4.1 and up. See http://www.oracle.com/technetwork/-
oracle-labs/parallel-graph-analytix for more information.

5. ORAAH 2.7.1 can now connect to Oracle Databases running in Multitenant Container Database (CDB) mode. A new
parameter pdb can be used to specify the service name of the Pluggable database (PDB) to which the connection has to be
established.

6. The performance of ore.create() for Hive has been improved significantly in this release. Also, users can create
a table in another Hive database instead of the one they are connected to, if needed. For example, if user is connected
to default database and wants to create a table sample in hivedb1 database, the ore.create table parameter should be
"hivedb1.sample". Also a new parameter append for ore.create lets you append an ore.frame or data.frame
to an existing Hive table specified by the table parameter. If the table does not exist, and append=TRUE, the warning is
reported and a new table is created.

https://spark.apache.org/
https://spark.apache.org/
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix


Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes 2 / 7

7. ORAAH 2.7.1 now supports a new environment configuration variable ORCH_CLASSPATH. You can set the CLASSPATH
used by ORAAH using this variable. ORCH_CLASSPATH can be set for the shell or in Renviron.site file to make it
available for R and ORAAH. rJava does not support wildcard characters in CLASSPATH environment variable. This
led to users adding exact jar files in the CLASSPATH before they could use Apache Spark analytics. Now ORAAH
2.7.1 resolves this issue and will support the wildcards in path. For example, having a path /usr/lib/hadoop/lib/*.jar in
CLASSPATH adds all jars from /usr/lib/hadoop/lib to rJava CLASSPATH. This makes the process of getting started with
ORAAH’s Spark features easier and faster. You can use wildcards with ORCH_CLASSPATH too, if you are going to use
ORCH_CLASSPATH instead of CLASSPATH for ORAAH configuration.

8. This version adds new features to distributed model matrix and distributed formula and improves its performance and
support in all ORAAH and Spark MLlib-based functionality of ORAAH. See "Change List" document for more details.

9. Note that the new MKL is added to the installer package: Intel® Math Kernel Library Version 2017 for Intel® 64 archi-
tecture applications.

10. This version of ORAAH comes with improved installers and un-installers for both ORAAH server and client. The installer
now will check your environemnt and run a set of validation checks to make sure all pre-requisits are available and minimal
requirements for running ORAAH are met. Uninstallation procedure has been improved as well and will work better with
co-existing Oracle R Enterprise and 3rd party installed packages. See "Install Guide" and "Change List" document for
more details on improvements and new features.

11. Bug fixes and updates across the platform improve stability and ease-of-use. For more information see the "Change List"
document.

3 What’s new in ORAAH since release 2.7.0

1. Since 2.7.0 version of ORAAH we have introduced support for selected algorithms from Apache MLlib with support of
our proprietary optimized data transformation and data storage algorithms built on top of Apache Spark and designed to
improve performance and interoperability of MLlib and ORAAH machine learning functionality with R.

2. ORAAH 2.7.0 has introduced distributed model matrix and distributed formula that are used in all Spark MLlib-based
functionality to greaty improve performance and enhance functional compatibility with R. Machine learning and statis-
tical algorithms require a Distributed Model Matrix (DMM) for their training phase. For supervised learning algorithms
DMM captures a target variable and explanatory terms; for unsupervised learning DMM captures explanatory terms only.
Distributed Model Matrices has its own implementation of R formula, which closely follows R formula syntax, and much
more efficient from performance perspective. Internally Distributed Model Matrices are stored as Spark RDDs (Resilient
Distributed Datasets).

3. New functions orch.save.model and orch.load.model were added that allows to save and load models created using Apache
Spark MLlib in ORAAH to HDFS for scoring/prediction later on. It also enables model sharing amongst different users if
the other users have access to the path where models are saved.

4. Since 2.7.0 release Distributed Model Matrix (DMM) can be saved in Comma-Separated Values (CSV) format on HDFS
via a call to hdfs.write(). For instance, the below example solves a linear regression model, generates predictions, and
saves them on HDFS in CSV format.

5. Since 2.7.0 release ORAAH supports HiveServer2 in the Hive transparency layer. ORAAH uses JDBC/Thrift connection
to communicate with Hive and execute Hive queries on a remote or local Hadoop cluster. This overhaul of connectivity to
Hive replaces the error-prone and unstable CLI execution layer used in previous versions of ORAAH. You will find great
improvement in the performance of the Hive transparency layer as well as lower latency in Hive queries. These changes
provide a fluent and robust integration of ORAAH/R with Apache Hive. For more information about Apache Hive refer to
https://hive.apache.org/.

6. R’s base predict() function was extended to support prediction on Spark when a model generated by GLM on Spark or by
MLlib-base analytics functions is used.

7. Since 2.7.0 release new implementations on Spark for GLM, LM and Neural networks were added. Because these new
functions are not compatible with the currently available functions on Hadoop API, they are implemented as orch.glm2(),
orch.lm2() and orch.neural2(), separate functions that can only be executed when ORAAH is connected to Spark.

https://hive.apache.org/


Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes 3 / 7

8. Additinal options to control JVM -Xmx and XX:MaxPermSize options were added in ORAAH 2.7.0 - ORCH_JAVA_XMX
and ORCH_JAVA_MAX_PERM. Both are exposed as environment variables and can be set in user’s shell before starting
ORAAH in order to force ORAAH to use non-default Java options.

9. Since ORAAH 2.5.0 release support for data load to Spark cache from HDFS files was introduced. This is provided by
the function hdfs.toRDD(). ORAAH dfs.id objects were also extended to support data residing in both HDFS and in Spark
memory.

10. Neural network analytical function (orch.neural) now supports execution on Spark in addition to previously available
Hadoop mapReduce execution support, which dramatically improves its performance. There are no changes to the neural
network APIs, its functionality transparently switched to Spark execution facilities once ORAAH is connected to Spark
(see spar.connect()). Details are available in orch.neural() documentation.

4 Known issues in ORAAH release 2.7.1

There are a few known issues in this release.

1. Attaching an HDFS folder that contains only 0-sized data files results in an exception. To work around this, prior to using
the hdfs.attach() API on such files, use the hdfs.size() function to check if the size is 0.

2. Executing a MapReduce job that produces no output at all may result in exception that stops script execution. Set the
parameter cleanup=TRUE to avoid this exception.

3. Ensure all categorical columns are explicitly converted into factors (as.factor(categorical column)) in the formula before
using such columns in orch.neural().

4. Working with Spark requires that all necessary Spark and Hadoop Java libraries are included in CLASSPATH environment
variable. Otherwise, connections to Spark will fail. See the installation guide for detailed information about configuring
ORAAH and the system environment.

5. Only text-based HDFS objects can be loaded into Spark distributed memory and used for Spark-based analytics. Binary
RData HDFS objects are not supported in Spark.

6. The hdfs.fromHive function still uses CLI to interact with the Hive metastore. This may cause issues if the Hive client
is not installed or is misconfigured on the client host.

5 Parallelization Packages in R Compared to Those in ORAAH

ORAAH is often compared/contrasted with other options available in the R ecosystem, in particular, with the popular open
source R package called “parallel”. The parallel package provides a low-level infrastructure for “coarse-grained” distributed and
parallel computation. While it is fairly general, it tends to encourage an approach that is based on using the aggregate RAM in the
cluster as opposed to using the file system. Specifically, it lacks data and resource management components, a task scheduling
component, and an administrative interface for monitoring. Programming, however, follows the broad MapReduce paradigm.

The crux of ORAAH is read parallelization and robust methods over parallelized data. Efficient parallelization of reads is the
single most important step necessary for big data analytics because it is either expensive or impractical to load all available data
into memory addressable by a single process. The rest of this document explains the architecture, design principles and certain
implementation details of the technology.

6 Architecture

ORAAH is built upon the Hadoop streaming utility. Hadoop streaming enables creation and execution of MapReduce jobs with
any executable or script as mapper and/or reducer. ORAAH automatically builds the logic required to transform an input stream
of data into an R data frame object that can be readily consumed by user-provided snippets of mapper and reducer logic written
in R.



Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes 4 / 7

ORAAH is designed for R users to work with Hadoop cluster in a client-server configuration. Client configurations must conform
to the requirements of the Hadoop distribution that ORAAH is deployed against. This is because ORAAH uses command line
interfaces to communicate from the client node to HDFS and HIVE running on Hadoop cluster.

ORAAH allows R users to move data from an Oracle Database table/view into HDFS files in Hadoop. To do this, ORAAH uses
the SQOOP utility. Similarly, data can be moved back from an HDFS file into Oracle Database. For the reverse data movement,
a choice of using SQOOP or the Oracle Loader for Hadoop (OLH) utility is available and the choice depends on the size of data
being moved and security requirements for connecting to Oracle Database.

For performance-sensitive analytic workloads, ORAAH supports R’s binary RData representation for both input and output.
Conversion utilities from delimiter-separated representation of input data to/from RData representation is available as part of
ORAAH.

ORAAH includes a Hadoop Abstraction Layer (HAL) which manages the similarities and differences across various Hadoop
distributions. ORCH will auto-detect the Hadoop version at startup but to use ORAAH on a different distribution see the help
regarding ORCH_HAL_VERSION for details.

ORAAH consists of five distinct sets of APIs with the following functionality:

1. Access to HDFS objects: ORCH HDFS APIs map 1:1 to the corresponding HDFS command line interfaces that explore
HDFS files. Additionally, ORAAH exposes new functions to explore contents of HDFS files.

2. Access to HIVE SQL functionality by overloading certain R operations and functions on data frame objects that map to
HIVE tables/views.

3. Launching Hadoop jobs from within a user’s R session using map/reduce functions written in R language. Such functions
can be tested locally (help(orch.dryrun) and help(orch.debug()). ORAAH mimics Hadoop style computation but on the
client’s R environment optionally enabling debugging capability.

4. Native, Hadoop-optimized analytics functions for commonly used statistical and predictive techniques.

5. File movement between local user’s R environment (in-memory R objects), local file system on a user’s client machine,
HDFS/HIVE and Oracle Database. ORAAH can work with the following types of input:

• Delimited text files that are stored in a HDFS directory. (ORAAH recognizes only HDFS directory names as input and
processes all files inside the directory.

• Apache HIVE tables.

• Proprietary binary RData representations.

• Apache Spark RDD objects.

If data that is input to an ORAAH-orchestrated MapReduce computation does not reside in HDFS (for example, a logical HiveQL
query), ORAAH will create a copy of the data in HDFS automatically prior to launching the computation.

Before ORAAH works with delimited text files in a HDFS directory, it determines the metadata associated with the files and
captures this metadata in a separate file named ORCHMETA, which is stored alongside the data files.

ORCHMETA contains the following information:

a. whether the file contains key(s) and if so the delimiter that is the key separator;

b. the delimiter that is the value separator;

c. the number and data types of columns in the file;

d. optional names of columns (which are available in a header line);

e. dictionary information for categorical columns (in R terminology, the levels of a factor column);

f. other ORAAH-specific system data.



Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes 5 / 7

ORAAH runs an automatic metadata discovery procedure on HDFS files as part of hdfs.attach() invocation. When working
with HIVE tables, the ORCHMETA file is auto-created from the HIVE table definition.

ORAAH can optionally convert input data into R’s binary RData representation (See the documentation for hdfs.toRData
and hdfs.fromRData). RData representation is recommended because I/O performance of R-based MapReduce jobs on such
representation is on par with a pure Java based MapReduce implementation.

ORAAH captures row streams from HDFS files and delivers them formatted as a data frame object (or optionally matrix/vec-
tor/list objects generated from the data frame object or "as is" if RData representation is used) to mapper logic written in R. To
accomplish this, ORAAH must recognize the tokens and data types of the tokens that become columns of a data frame. ORAAH
uses R’s facilities to parse and interpret tokens in input row streams. If missing values are not represented using R’s “NA” token,
they can be explicitly identified by the na.strings argument of hdfs.attach().

Delimited text files with the same key and value separator are preferred over files with varying key delimiter and value delimiter.
Read performance of files with the same key and value delimiter is roughly two times better than that of files with different
such delimiters. The key delimiter and the value delimiter can be specified through the key.sep and val.sep arguments of hdfs.
attach(), or when running a MapReduce job for its output HDFS data.

IMPORTANT: Binary RData representation is the most performance efficient representation of input data in ORAAH. When
possible, it is suggested to use this binary data representation for performance sensitive analytics.

As of release 2.5.0, ORAAH has included support for Spark Resilient Distributed Dataset (RDD) objects. Users can load data
from HDFS to Spark’s RDD and optionally cache it in Spark distributed memory in order to improve performance of Spark-
enabled analytics run on this data set. Results of Spark-enabled analytics are retuned as another Spark RDD object. Users will
have an option to save data from Spark’s distributed memory to an HDFS directory in order to preserve it between ORAAH
sessions. For more information, review the documentation of the hdfs.toRDD() and hdfs.write() functions.

7 Working With the ORAAH Hadoop Interface

ORAAH’s MapReduce job definition is accomplished through hadoop.exec() or hadoop.run() APIs. The hadoop.
exec() function is a subset of hadoop.run() in that hadoop.run() additionally supports appropriate staging of the final
result from a MapReduce job. Use the hadoop.exec() function to build a pipeline of ORCH MapReduce job that stream data
from one job stage to another when all of the following is true:

• The job is not required to bring intermediate results back to ORAAH environment.

• The input to the MapReduce job is already in HDFS.

See help(“hadoop.exec”) and help(“hadoop.run”) for more details.

By default, ORAAH prepares the rows streamed into the mappers and reducers defined as part of hadoop.run() or hadoop.exec()
APIs as a data.frame object with input values and a vector object with input keys. Optionally, input can be supplied to the mapper
as an R matrix, vector, or a list object (see mapred.config()). If the input data to a MapReduce job is in RData representation, set
the “direct.call” parameter to TRUE. This will cause ORAAH to pass input data "as is" to the user-supplied R mapper code. The
R code that is meant to execute as mapper logic requires no special coding. It is nothing more than an R closure that accepts a
data.frame object as input (by default) together with other variables exported from the user’s client R session. Optionally, several
configuration parameters may be specified by instantiating an R object of “mapred.config” class.

The mapper has a choice of generating either structured output in the form of a data.frame or any arbitrary data structure. By
default, the mapper is assumed to perform any filtering/computation on data it receives as input and generate as output a data
frame with the same number of columns and same data type as its input. However this can be overridden through defining the
structure of the mapper’s output and hence the reducer’s input (in a map/reduce sequence) object using “map.output” parameter
in the “mapred.config” class. Additionally, if the mapper’s output is ‘pristine’ (i.e. all null values are represented either as “NA”
or “”) then, optionally setting yet another “mapred.config” parameter called mapred.pristine can enable better read performance
in the reducer. See orch.keyvals() and orch.keyval() for additional details.

Complex output objects from the mapper can be packed using orch.pack() (and read using corresponding orch.unpack()) in-
terfaces before being passed to orch.keyval[s]() functions. Packing of objects provides the benefit of allowing a user to store
unstructured, semi-structured or variable-structured data in a structured output of MapReduce jobs. Also, packed data can be



Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes 6 / 7

compressed in order to minimize space and improve performance. See the “COMPRESS” argument description of the orch.pack()
function.

By default, the reducer is not assumed to generate output data in the same format as its input. The user can specify the structure
of the reducer’s output via the “reduce.output” field of “mapred.config” class. If this specification is unavailable, ORAAH can
discover the metadata by sampling the reducer’s output.

If the mapper task is computationally expensive and likely to take longer than the default Hadoop timeout of 600 seconds, then
the “task.timeout” parameter of “mapred.config” class must be set to allow longer timeouts for a specific task. The timeout value
must be specified in seconds.

8 Working with ORAAH Hive Interface

ORAAH allows Hive tables/views from default and non-default databases to be used as ‘special’ data frames in that they have
enough metadata to be able to generate HiveQL queries when data in the Hive tables/views is processed. See the following demos
to understand ORAAH-Hive interfaces:

R> demo(package=”ORCH”)
hive_aggregate Aggregation in HIVE
hive_analysis Basic analysis & data processing operations
hive_basic Basic connectivity to HIVE storage
hive_binning Binning logic
hive_columnfns Column function
hive_nulls Handling of NULL in SQL vs. NA in R
hive_pushpull HIVE <-> R data transfer
hive_sequencefile Creating and using HIVE table

9 Native Analytic Functions

The following analytic functions are available out-of-the-box in ORAAH. These functions are parallel and distributed, and
execute utilizing all nodes of Hadoop cluster.

1. Covariance matrix computation (orch.cov)

2. Correlation matrix computation (orch.cor)

3. Principal Component Analysis (orch.princomp, orch.predict)

4. K-means clustering (orch.kmeans, orch.predict)

5. Linear regression (orch.lm, orch.predict)

6. Generalized linear models including logistic regression (orch.glm)

7. Neural Networks (orch.neural)

8. Matrix completion using low rank matrix factorization (orch.lmf)

9. Non negative matrix factorization (orch.nmf)

10. Reservoir sampling (orch.sample)



Oracle R Advanced Analytics for Hadoop 2.7.1 Release Notes 7 / 7

10 Copyright Notice

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only,
and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to
any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and
no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
0116


	Introduction
	What's new in ORAAH release 2.7.1
	What's new in ORAAH since release 2.7.0
	Known issues in ORAAH release 2.7.1
	Parallelization Packages in R Compared to Those in ORAAH
	Architecture
	Working With the ORAAH Hadoop Interface
	Working with ORAAH Hive Interface
	Native Analytic Functions
	Copyright Notice

