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Berkeley DB Java Edition 

Architecture  

EXECUTIVE OVERVIEW 

Berkeley DB Java Edition is a 100% native Java, high-performance transactional 

database. It was designed to be functionally compatible with the ubiquitous, open 

source Berkeley DB and architecturally compatible with Java applications. 

This paper presents the design and implementation of Berkeley DB Java Edition 

(JE), focusing on how it provides fast, reliable storage services when embedded in 

applications that run in a JVM. JE uses a log-structured disk representation for its 

database objects, avoiding unnatural marshalling of objects onto pages. The 

combination of object-level caching and log-structured storage permits fine-grain 

latching and record-level locking for highly concurrent applications. The log-

structured design provides unsurpassed write performance and competitive read 

performance for applications whose data fits in memory. 

1. INTRODUCTION 

Berkeley DB Java Edition (JE) finds its functional roots in the Berkeley DB (DB) 

embedded database library. DB was designed to provide persistent, application-

specific data storage in a fast, scalable, and easily administered package. It provides 

the traditional atomicity, consistency, isolation, and durability (ACID) guarantees 

of a relational database management system (RDBMS), without the need for 

separate installation of a database server or the services of a database 

administrator. In addition, Berkeley DB executes directly in the application’s 

address space, allowing for single binary installation. This is an attractive 

proposition for manufacturers of embedded devices, such as set top boxes or 

mobile phones, as well as for developers of large heavily concurrent application 

servers, such as messaging and directory servers. 

Java Edition opens up many additional possibilities. First, it brings the functionality 

of DB to environments that require 100% Java. Second, it creates the possibilities 

that storage can be provided directly in application servers, which may not want to 

rely on an external DBMS. Application servers frequently need robust data storage, 

where relying on the existence of a RDBMS is burdensome. Additionally, 

applications written for application server environments may want the benefit of a 

small-footprint, embedded data manager that does not incur the overhead of a 

JDBC interface and associated process switch. Even for those applications where 

an RDBMS using JDBC is appropriate, we anticipate JE will be used, as Berkeley 

DB is often used, as a fast front-end cache for the RDBMS. 

Whether used in conjunction with an RDBMS or used directly, JE supports a 

variety of Java standards. The Java Transaction API (JTA) specifies an interface 
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between Transaction Managers, Java Applications, and Resource Managers. JE 

implements the XAResource interface that is required for it to participate in a 

distributed XA transaction as a Resource Manager, using two-phase commit to 

satisfy the distributed transaction and recovery requirements. 

The J2EE Connector Architecture (JCA) specifies a standard set of interfaces that 

can be used by a J2EE application server to communicate with backend data 

management systems. JE provides a Resource Adapter library to allow deployment 

as a backend transaction-processing module. 

Finally, JE can be integrated into a Java Management Extension (JMX) 

environment. JMX allows a JE-based application to be managed and monitored via 

a variety of interfaces (e.g., SNMP). For instance, using JMX, a system 

administrator can view runtime performance statistics using a network 

management console. 

In Section 2, we present the overall architecture of JE, introduce some Berkeley 

DB and JE specific terminology, and lay the groundwork for the in-depth design 

discussion that follows. Section 3 presents the implementation in detail, focusing 

on the aspects of JE’s design that make it particularly well suited for the JVM 

environment. Section 4 compares JE to other Java implementations and more 

conventional data management techniques. Section 5 discusses how our customers 

use JE. Section 6 presents some performance results, and we conclude in Section 

7. 

2. ARCHITECTURAL OVERVIEW 

As JE is functionally compatible with Berkeley DB, we have retained the key 

concepts and definitions from the initial Berkeley DB product. We begin by 

introducing these concepts and the terms Berkeley DB uses for them. 

2.1 Terminology 

A transaction is a group of operations that adhere to the ACID properties of 

Atomicity, Consistency, Isolation, and Durability [14]. Atomicity implies that a 

collection of operations appears atomically in the database; either all the operations 

appear or none of them do. Consistency means the database always presents a 

consistent view. (For example, consider a database of cats and owners. If Joy owns 

Elsa, we would never see a database with owner Joy without cat Elsa or cat Elsa 

without owner Joy.) Isolation describes the property that any transaction operates 

under the illusion that it is the only transaction operating in the database at a 

particular time. That is, there is no way to tell if there are multiple transactions 

active concurrently. Finally, durability implies that modifications made by a 

transaction are guaranteed to be persistent, even in the presence of system or 

application failure. 



Berkeley DB Java Edition Architecture          Page 4 

There are three primary interfaces to JE. The first uses Berkeley DB JE to 

implement a Java collection. The application uses standard collection methods to 

create, retrieve, and modify transactionally persistent data. Each Java collection 

object is associated with a database, described below. 

The second interface is a new Direct Persistence Layer, introduced in JE 3.0. The 

Direct Persistence Layer is a type safe and convenient API for accessing persistent 

objects. A developer specifies primary and (optionally) secondary keys using Java 

annotations. The library transparently and seamlessly handles schema evolution as 

class definitions change. 

The final interface uses the DB data abstraction of key/data pairs. Keys are byte 

arrays wrapped in a DatabaseEntry object. In JE, keys are true primary indexes, 

which means that DatabaseEntry objects are arranged in key-order. By default, 

JE sorts keys lexicographically, however, an application can optionally support 

their own sort and comparison functions. Data objects are similarly opaque 

structures from the point of view of the storage system. Applications may treat 

key/data pairs as objects, using a compact form of Java serialization, or as tuples of 

primitive values bound to objects. Applications may also create their own object-

data bindings or work directly with byte arrays. 

A database is collection of key/data pairs sharing sort and comparison. You can 

create multiple databases that use the same sort and comparison functions, of 

course, but within one database, there may be only one sort function and one 

comparison function. Through the JE API, applications create handles to 

referenced databases, and all accesses to the database are performed as methods 

off the database handle (or from objects created off the database handle; see cursors 

below). In conventional relational database parlance, a Berkeley DB database 

corresponds to a table. Databases are represented by a Java Database class; 

Database handles persist across transactions and are typically opened once when 

the application starts up and are left open for the lifetime of the application. 

Databases support access to individual key/data pairs through keyed lookup. For 

iteration, the Database class provides an openCursor method, which returns a 

Cursor handle. Logically, cursors maintain a position in the Database. Cursors are 

local to a particular transaction. That is, cursors are created in the context of a 

particular transaction, and the cursor must be closed before the transaction 

commits or aborts. Cursors allow iteration over an entire database (either forwards 

or backwards) as well as traversal through sets of duplicates and within ranges of 

the items in the database. 

A collection of databases comprises a database environment. In RDBMS parlance, an 

environment is typically called a database. For example, when implementing a 

personnel management system, the application might reference a collection of 

tables (databases in JE) for Employees, Managers, and Departments, and these 

would all be grouped together into a JE database environment. Typically, database 

environments correspond to directories or directory hierarchies in a file system. 
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The log files that support the database and the properties files that describe the 

environment’s configuration live in the database environment’s directory. 

2.2 Mapping Databases and Environments to Data Structures 

Databases in JE are implemented as B+trees [8], where each leaf in the tree 

represents an individual key/data pair and is implemented as a Java object called a 

leaf node (LN). The data portion of the pair is stored as a reference in the LN 

while the key is logically part of the LN, but physically referenced by the node that 

points to the LN. These nodes that reference other nodes are called internal nodes 

(IN) and are implemented as arrays of key/leaf pairs. The Figure titled “Database 

structure” shows this structure. The lowest internal nodes are designated as 

bottom INs (BINs) rather than INs. BINs are a subclass of IN providing 

additional support for cursors. All the nodes within an Environment’s tree 

structure have a unique node ID. 

 

If a key value has duplicate data values, 

then the BIN references a duplicate 

internal node (DIN), which is the root of 

a tree that stores all the duplicate data 

items. Duplicate trees are structured like 

database trees, with INs replaced by 

DINs and BINs replaced with DBINs. 

Thus, a database is potentially a tree of 

trees. This structure is shown in the 

Figure titled “Database structure with 

duplicates”. 
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Database structure with duplicates.
Duplicates are stored in a tree similar to the database
tree that is rooted at a location in the tree typically
occupied by an LN.
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Database structure. Databases are implemented as B+trees with fixed size internal nodes (INs). BINs
are subclasses of INs that support iteration over the elements in the tree.
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Finally, the collection of databases in a 

single environment is stored in yet 

another tree called the mapping tree. The 

mapping tree is simply a B+tree whose 

keys are the various database names and 

whose “data objects” are the root nodes 

of the corresponding database tree. The 

result is a hierarchy of trees, with a 

maximum depth of three, as shown in the 

Figure titled “Environment data 

structures”. While this hierarchical 

structure is intuitive and prevents having 

multiple index structures for the various 

logical entities being stored, it does 

introduce additional complexity in 

recovery processing. 

Having mastered the basic terminology and structure of JE, we are now ready to 

explore implementation details in more depth. 

3. THE IMPLEMENTATION 

The implementation revolves around the log-structured design of JE. Rather than 

marshalling and unmarshalling Java objects to and from disk-backed pages, JE 

serializes objects and writes them sequentially to a log, optionally using the Java 

NIO API. All the necessary index structures sit atop this sequential log, and there 

is no other representation of the data.  

We found that the java.io.Serializable interface was too heavyweight for 

our purposes, so the use of the term “serialize” throughout this paper references 

the generic action of marshalling objects, although our implementation does not 

use the java.io.Serializable interface to implement this functionality. 

This design offers several advantages. First, JE does not have to pay the 

performance penalty of marshalling and unmarshalling variable length objects onto 

fixed-length pages. Second, JE can perform record-level locking without the 

significant recovery complexity usually associated with traditional RDBMS record-

locking solutions. Third, there is only a single representation of the data, instead of 

the separate database and log files in conventional logging systems. Fourth, all 

writes happen sequentially, so unless the disk is used to handle read misses, the 

disk head never moves, providing near maximum disk bandwidth utilization. 

The log-structured design is not without its disadvantages. The primary 

disadvantage is that a cache-miss for JE is more costly than a cache-miss in a 

traditional database engine. For example, a cursor traversing the database, which 

misses in the cache, will be forced to issue an I/O for any items not found in the 

cache, whereas a traditional on-disk structure will amortize a single I/O over some 

Environment data structures. The
mapping tree has a structure similar to the database
and duplicate trees, but implements the name to
database mapping.

Duplicate tree

cats database tree

Mapping IN

Mapping BIN

owners
database tree

cats

owners
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number of items as a page containing several items is read into memory from the 

disk. 

While log-structured file systems have been discussed in great length in the file 

system community [24, 27, 28], there has been little attention paid them in the 

database community. Section 4.2 discusses this topic in more depth. 

The rest of this section is organized as follows: First, we discuss synchronization in 

JE, which combines transactional and non-transactional access. Next, we present 

the details of the log-structured storage system. Then we present the logging and 

recovery implementation. We conclude the implementation discussion with 

descriptions of the various maintenance threads that manage the log-structured 

store. 

3.1 Concurrency 

JE uses record-level transactional locks on the LNs that store key/data pairs, 

providing highly concurrent database access. Internal nodes are maintained non-

transactionally in order to preserve high-concurrency access, minimize the data 

written to the log, and simplify abort (as modifications do not have to be undone 

when transactions abort). Instead, modifications to internal nodes (INs) are 

synchronized via short-term latches protecting only against physical manipulation. 

Since Java monitors, using the synchronized keyword, cannot be used to perform 

latch coupling (atomically acquiring a new latch and dropping a held latch) and do 

not prevent starvation in the case that multiple threads are waiting for the same 

object, JE provides its own latching mechanism using Java monitors as the basis. 

Each object that requires a latch (for example, an IN) contains a reference to a JE 

latch object. JE uses Java monitors to synchronize access to the latch object. When 

a thread holds a latch that is requested by another thread, the incoming thread 

waits on a synchronizer object. 

Latch granting is strictly first in, first out. When a thread releases a latch it 

examines the queue and notifies the first entry in that queue. Since the releasing 

thread only calls notify on a single thread, we guarantee that threads are awakened 

in the order they appear on the queue, reducing the possibility of starvation. 

Latch deadlocks must be avoided, because we perform no latch deadlock detection 

or resolution. Acquiring locks in a well-defined order is the most common 

deadlock-avoidance technique [30]. While descending the tree, this well-defined 

order is obvious: always acquire latches down the tree. For other data structures, 

such as the transaction table, we define a lock order and adhere to it. 

Using short-term latches rather than transactional locks on internal nodes allows 

for improved concurrency but does introduce complexity in the implementation, 

especially in recovery. 

JE uses a conventional lock manager to implement transactional locks. The lock 

table is an object that contains a hash table-mapping node IDs to lock objects. 
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Each lock contains a list of waiting and granted locks, so it contains all the 

information necessary to determine if a newly requested lock conflicts with those 

already granted or requested. If the calling transaction already has a lock of the 

correct mode for the object, we simply reuse the existing lock. 

The lock manager implements a few simple policies. First, if a transaction owns a 

write lock on an object, then a request for a read lock on the object is always 

granted. Second, if a transaction owns a read lock on an object, then a requested 

write lock is placed added at the front of the waiters list. This helps prevent 

deadlocks if only one transaction jumps to the front of the wait list, but will 

ultimately lead to deadlocks that would have arisen anyway if more than one 

transaction were trying to upgrade from a read lock to a write lock. A read locked 

object will block incoming read lock requests when there is already a waiting write 

lock request, even though incoming readers do not conflict with current reader(s). 

JE also supports dirty reads [14] providing weaker forms of isolation than purely 

ACID transactions. Dirty reading, or “read uncommitted,” means that a 

transaction can read data that has been modified by a transaction that has not yet 

committed. In practice, this means that a transaction could read data that is never 

committed to the database, because the transaction that wrote it eventually gets 

aborted. Nonetheless, some applications welcome the performance improvement 

in exchange for this weaker form of consistency. Because dirty readers do not 

block other lockers and are never blocked by other locks, dirty reading is 

implemented via BIN latching. That is, while a node is physically being modified 

by another thread, the referencing BIN is latched. Therefore, no other threads can 

access the node while it is in the midst of a modification. We release the BIN latch 

after the modification is complete. This precisely provides dirty read semantics, so 

dirty reads are “free” in JE. 

Access to the lock table could be coordinated either through a single hash-table 

mutex or per-hash-bucket mutexes. Berkeley DB’s experience in implementing 

per-hash bucket locks showed they did not necessarily improve performance 

because the increased concurrency was offset by increased mutex activity, so JE 

uses a single lock table mutex. If this mutex becomes a point of contention, 

developers can configure JE to use multiple lock tables to reduce the contention. 

Currently, JE supports configurable timeout-based deadlock detection. The 

Berkeley DB implementation provides a richer set of deadlock detection 

functionality, and we expect JE will eventually match that functionality. However, 

because JE uses latches and not transactional locks on internal nodes, deadlocks in 

JE can always be attributed to data access; internal nodes never contribute to 

deadlocks. Thus, we expect deadlocks to occur less often in JE than in more 

conventional systems. 

By default, JE provides Repeatable Read isolation, since this is the natural 

consequence of record locking. If phantom elimination is important, an application 

can configure JE for serializable isolation [14]. Doing so introduces a small 
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performance penalty, because JE must perform “next key” locking, effectively 

acquiring range locks during read and insert operation. 

3.2 Storage System 

JE implements a database and B+tree abstraction via a log-structured storage 

manager. It stores database key/ data pairs as byte-arrays referenced from the 

leaves of the B+tree. Log records make these elements persistent via log records 

that are serializations of the objects in the database. In order to make this concrete, 

we’ll step through the insertion of a key/data pair into a database. Assume the 

database is open and there is sufficient room in the BIN to add a new entry. 

Insertion proceeds as follows: 

1. Perform a tree search to locate the appropriate position for the new 

key/data pair. 

2. The search procedure is a standard B+tree traversal and is not discussed 

here. 

3. Latch the BIN. 

4. Create a new LN for the key/data pair. 

5. Write the LN to the log. This write takes place in-memory and returns a 

log sequence number (LSN) that uniquely identifies the destination on-

disk location of this element. 

6. Modify the BIN to reference the new key/data pair. The BIN contains 

both an in-memory reference to the LN as well as the persistent LSN. 

7. Mark the BIN dirty. 

8. Unlatch the BIN 

The tree structure is maintained via two sets of pointers: in-memory references and 

persistent LSNs. If the tree’s nodes are in memory, JE uses the in-memory 

pointers. However, should the in-memory copy of the LN be evicted from 

memory in order to limit JE’s memory consumption, the LSN is both necessary 

and sufficient to retrieve the LN from disk. 

BINs are fixed-size arrays of entries, since they contain only references to keys and 

LNs. We use a binary search to locate a particular entry in the sorted BINs. The 

number of entries in a BIN is a configuration parameter. Smaller BINs lead to 

more efficient searching at the expense of a deeper tree; larger BINs lead to 

shallower trees, but more costly per-BIN searching. When a BIN becomes full, we 

must split the BIN, creating a new BIN to be inserted into the parent IN. 

Conventional split processing is inherently deadlock prone, because it involves 

making modifications above the current position in the tree. JE performs 

opportunistic IN splitting to avoid such deadlocks. During inserts, if the search 

down the tree detects a node that is full, then it opportunistically splits the 
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IN/BIN. Once the split has finished, the transaction continues its search down the 

tree (triggering additional split/grows as necessary). Even if the split is not 

necessary to accomplish the insert, or the transaction for which the insert is being 

performed aborts, the split remains in the tree and is not undone. The rationale is 

that even if the current operation does not trigger the split, the node is sufficiently 

full that a future transaction will make the split necessary. This opportunistic 

splitting makes the split processing in JE significantly simpler than the 

corresponding operations in Berkeley DB. 

Every modification to an LN triggers an update to a BIN, because modification of 

an LN changes its log sequence number.  In turn, BIN modifications trigger IN 

modifications, etc. In order to avoid repeatedly writing internal nodes (and slowing 

transactional throughput and wasting log space), INs(BINs) are simply marked 

dirty upon update. Simply delaying the writing of BINs is not sufficient, because 

we would still need to write BINs at checkpoints. Instead, we usually write BIN 

Deltas, smaller log records that identify the specific BIN entries that have changed. 

A background thread, described in Section 3.4, periodically scans the list of dirty 

internal nodes and writes either deltas or entire node into the log. If the system 

crashes prior to a checkpoint, the LN records in the log are sufficient to recover 

modifications to internal nodes. 

In theory, if one were willing to replay the log from the beginning of time, one 

would never need to log the INs at all. However, recovery from the very beginning 

of the log would impose too heavy a penalty on startup, and it does not work if 

INs must be evicted from memory. The checkpoint thread serves a purpose identical 

to that in a conventional data management system: it writes dirtied objects to disk, 

trading I/O operations for improved recovery time. 

An LN modification creates a new copy of the LN, which is written to the log, and 

updates the in-memory LSN “pointer” in the BIN. This no-overwrite storage 

system, characteristic of log-structured file systems, means that the previous 

version of a node, or its before-image in database parlance [14], is still accessible in 

the log. This leads to a simple transactional implementation: The first time a 

transaction modifies an LN its LSN is preserved. If the transaction aborts, 

restoring the original LSN of the LN effectively undoes the transaction’s 

modifications. This same technique applies to modifications to duplicates and 

modifications to the mapping tree, meaning that JE easily and naturally provides 

transactional table creates, deletes, and renames. 

Deletions are more complicated. Since BINs are not transactionally locked, deleted 

key values in the BINs must remain until the transaction commits. The rationale 

for this is twofold. First, if the key were removed, subsequent inserts to that BIN 

by other transactions might leave the BIN full. If the deleting transaction then 

aborts, we must restore the key to the BIN, but there would be no space, and we 

would be forced to perform a split during abort. Second, if we removed a unique 

key and a subsequent transaction inserted a new version of that unique key, then 

the abort might be impossible, because it would introduce a duplicate key (which 
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can be disallowed). To solve both of these problems, we use a lazy BIN compression, 

leaving deleted keys in their BINs and nulling out the corresponding data entry for 

the key. 

Leaving keys in BINs after a delete is a good short-term strategy, greatly 

simplifying abortion of a delete, but it is a poor long-term strategy. Each BIN entry 

costs a latch get/release during cursor traversal and limits the fanout of the BIN. 

The simplest way to resolve this problem would be to discard the deleted keys 

when the deleting transaction commits. Unfortunately, this would place BIN 

cleanup in the transaction commit path. As transaction commits are the normal 

case, it is desirable to optimize commit processing, and so rather than removing 

BIN entries upon commit, we remove deleted entries from BINs when we are 

about to write those BINs to the log. 

3.3 Logging and Recovery 

As mentioned in Section 3.2, an LN modification (e.g., create, update, or delete) 

produces a serialized representation of that LN in the log. The log consists of a 

collection of files in the file system. Each log file contains an initial record 

including a version number, creation timestamp, file sequence number, and the 

offset of the last record in the previous file to facilitate backward chaining. 

Other than the header, a log contains a sequence of log records, referenced by 

LSN. The LSN identifies the specific log file and the offset within that log file. 

Each log record also has a header containing the log record type, a version, a 

pointer (offset) to the previous log entry, the record size, and a checksum. 

Most database systems guarantee recoverability using write-ahead-logging [14], and 

JE uses write-ahead-logging, influenced by the log-structured design. The 

persistent pointer to a node is its LSN. However, an LSN does not exist until a 

record is written to the log. Therefore, in order for IN A to reference LN B, IN A 

must contain LN B’s LSN. Thus, any version of A that appears in the log and 

references B must appear after B, because otherwise A could not know the LSN of 

B. 

Transaction commit processing in JE is similar to that in conventional systems. To 

provide maximal concurrency, we first release all read locks. Then JE writes a 

commit record into the log and flushes the log up to and including the commit 

record. Then JE releases the transaction’s write locks and returns to the caller. 

Transaction abort is slightly more complicated. Abort processing must restore all 

data to its pre-transaction state, however, it need not restore the physical tree to its 

pre-transaction state. That is, any operations on the internal nodes of the tree can 

be left as they are, since they are not part of the transaction’s modifications. 

Each node modified by a transaction stores the pre-transaction LSN of the node. 

“Undoing” a transaction requires restoring these saved LSNs to the tree. 

Therefore, abort processing consists of the following steps: 
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1. Write a transaction abort record to the log. 

2. Walk the list of locks for the transaction and for each write lock, retrieve 

the abort LSN for each node. 

a. For each node identified in 2 

3. Search the tree for the BIN referencing the node and undo the operation 

on the BIN (i.e., remove a newly created entry; restore an original value 

for an update; replace a newly removed entry). 

4. Release locks 

5. Return to the application 

The log must contain enough information to allow the system to recover from 

failure, in addition to supporting transaction commit and abort processing. Our 

recovery algorithm uses a combination of logical and physical recovery, because we 

use a combination of locking and latching during normal operation. This is unusual 

in a database engine, and certainly the most complex and challenging aspect of the 

JE implementation. 

Recall that the JE environment is structured as a tree of trees with a potential 

depth of three trees (mapping tree, database tree, duplicate tree). While the 

elegance of this architecture provides many benefits, such as code reuse and 

uniformity, the penalty for this architecture occurs in recovery. Because we do 

logical recovery, we need to recover each level of this hierarchical tree in order, 

first the mapping tree, then the database tree, and then duplicate trees. For 

example, in order to recover a database, we need to be able to open it. In order to 

open a database, we need to be able to find its name in the mapping tree. 

Therefore, before being able to recover any database, we must fully recover the 

mapping tree. 

Our recovery algorithm currently requires ten passes over portions of the log. (For 

comparison Berkeley DB requires four passes over selected portions of its log 

during recovery: one to find the end of the log, one to open files, one to roll 

backward undoing aborted transactions, and one to roll forward to redo 

committed transaction). In both JE and Berkeley DB, the portion of the log that 

must be repeatedly processed is determined by the checkpoint interval; to a first 

approximation, the part of the log that is repeatedly traversed is that part written 

since the last checkpoint. 

If JE does significantly more processing during recovery than Berkeley DB, it will 

be more sensitive to the checkpoint interval than either Berkeley DB or other 

conventional database engines. The number of passes is a result of our initial focus 

on correctness over performance; we focused first on making it correct, leaving 

performance optimizations to later releases. By the time a database engine is 

running recovery, something bad has already happened, and the primary focus 

must be on not making the situation worse. We have identified a number of ways 
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to combine some of these passes and reduce the total to a more manageable 

number, but this has not yet become a compelling issue. Finally, the typical 

association of large amounts of memory on machines where recovery may have to 

process large numbers of log records make this less of a concern than it might 

have been a decade ago. 

Recovery has four phases, each of which requires one or more passes over the log. 

The first phase establishes the limits on allocated node ids and transactions. 

 

1. Read all INs to find the largest allocated node ID (so that we can 

begin allocating new IDs) and the largest used transaction ID (before 

we need to perform any transactional operations). 

The next three passes recover the mapping tree, which maps database IDs to 

actual databases: 

2. Read all the BIN Delta records for the mapping tree. 

3. Undo all aborted LNs in the map (i.e., roll backward). Keep track of 

all committed transaction IDs. 

4. Redo all committed LNs in the map (i.e., roll forward). 

The next two passes reconstruct the physical structure of all the database trees: 

5. Read all the INs and link them back into the tree. 

6. Read all the BIN Deltas and apply those to the INs. 

Next, we reconstruct duplicate data trees, similarly to how we reconstructed the 

database trees. The reason this must be implemented as a separate set of passes is 

because we cannot necessarily traverse enough of the tree to access the duplicate 

trees until pass numbers 5 and 6 are complete. 

7. Read all the DINs and DBINs and link them back into the tree.  

8. Read all the DBIN Deltas and apply those to the INs. 

And finally, we execute the conventional roll back and roll forward phases: 

9. Roll backward undoing aborted transactions. 

10. Roll forward reapplying the committed transactions. 

3.4 Checkpoint Thread 

The goal of checkpointing is to bound the time necessary for recovery. Checkpoint 

accomplishes this by writing dirty INs to the log. Our initial design for checkpoint 

took the naive approach that we would write each dirty IN to the log at every 

checkpoint. Unfortunately, simple calculations reveal that in a steady-state random 

workload, we would end up writing the entire tree on every checkpoint. This was 

obviously unacceptable. 
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The solution for bounding the size of checkpoints is twofold: we use incremental 

logging for IN updates and we flush INs in layers corresponding to their depth in 

the tree. Rather than logging entire INs whenever an IN is dirty at a checkpoint, 

we log a delta record. A delta record contains a reference to the last intact copy of 

an IN and a collection of changes that, when applied to the intact IN, produce the 

current state of the IN. For example, consider the following list of IN 

modifications. 

• BIN 10 logged in full version (LSN = 10) 

• LNa added to BIN10 

• LNb added to BIN10 

• LNa deleted from BIN10 

Now, assume that we begin a checkpoint (A). The log record for BIN 10 contains: 

• a reference to LSN 10 (intact BIN) 

• a delta for delete of LNa 

• a delta for the add of LNb.         

Now, assume that we add another LN (c) to BIN 10 and begin a new checkpoint. 

The log record for BIN 10 would be everything in the previous log record plus a 

delta for the addition of LNc. 

When the delta list for an IN becomes sufficiently large, we simply write a new 

copy of the IN (the threshold at which we make this transition is a configurable 

parameter). 

Each time we write a new copy of an IN, we also dirty another IN (its parent). 

Therefore, newly dirtied INs are not processed in the current checkpoint, thus 

bounding the size and time required for any single checkpoint. 

The second key design issue for checkpointing is logging INs in tree order, from 

those nodes deepest in the tree towards the root. This provides both an 

optimization as well as correctness. Let’s say that we were to allow internal nodes 

to be written in any order—for expository purposes, let’s say that they are written 

in their node ID order. Consider a tree where IN-8 references IN-2 which 

references IN-5. During a checkpoint IN-2 is initially clean, so it is not written, but 

IN-5 is dirty, so it is written. The act of writing IN-5 dirties IN-2, but IN-2 will not 

be written during this checkpoint, because we’ve already passed its turn. However, 

imagine now that IN-8 is also dirty, so it gets written. We’ve now written to disk a 

“new” version of IN-8 that does not reference a modified IN-2. As a result, the 

modification to IN-2 will be lost during recovery if the system now crashed. 

If we force INs to be written in tree order from the lowest/deepest levels towards 

the root, the scenario described above cannot happen and our tree remains 

recoverable. In addition, we limit the amount of data written during a checkpoint, 

improving performance as well. 
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3.5 Node Eviction 

Like conventional data managers, JE must limit its memory consumption to an 

application-specified amount. Like Berkeley DB, JE allows the application to 

configure this limit. The node eviction algorithm enforces this limit. 

Both BINs and INs are candidates for eviction, and both BINs and INs can be 

evicted regardless of their participation in active transactions. INs are not evicted if 

they have resident children. 

We treat BINs and LNs differently, because we do not explicitly track LNs for 

eviction. When we select a BIN for eviction, we first check whether it has any 

resident LNs.  If it does, we evict them and leave the BIN in memory; if it does 

not have resident children, then we evict the BIN. This gives preference to evicting 

LNs over BINS without having to track LNs explicitly. 

JE maintains a list of in-memory INs and uses this list for memory eviction. 

However, a few nodes are excluded from eviction. We exclude all INs belonging to 

the mapping tree, since the mapping tree should be small, and since any open file 

handles will hold a reference to objects in the mapping tree. We exclude all INs 

that have children present in-memory. This is because children may be dirty and 

will need access to the IN when it is time to write them to disk. Finally, we exclude 

BINs that have open cursors referencing them, since we will almost certainly 

access them in the near future. 

To select a particular IN for eviction we borrow from the virtual memory page 

replacement literature to approximate LRU [30]. Borrowing from the Berkeley DB 

memory management design, we maintain a 64-bit monotonically increasing 

generation count (G) for each IN, BIN and DIN in the system. This is a system-

wide generation counter. On every application-initiated access to an IN, BIN, or 

DIN we assign the current value of the generation number to the node and 

increment the generation number. So, the G of a particular node indicates how 

recently it was accessed. If we always evicted the node with the minimum G, we 

would implement LRU; evicting the node with the maximum G implements MRU. 

In order to avoid creating a hot spot, we never latch the generation count, so we 

must assume that nodes in the system may have the same generation number. 

We invoke eviction on every database operation when memory usage is above a 

(configurable) threshold. The eviction algorithm selects and evicts nodes until a 

(configurable) desired amount of memory has been freed. An invocation of the 

algorithm examines nodes in batches of N (configurable) evitable nodes and selects 

the node with the lowest G value for eviction. 

To select a node, the evictor walks the list of INs in an arbitrary order different 

than both the creation order and key proximity. When it reaches the end of the list, 

the evictor cycles back to the beginning. When eviction completes (that is, it has 

freed a sufficient amount of memory), it saves the current position in the IN list 

and begins its next run at that point. 
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Because of the arbitrary order of the IN list, this algorithm is essentially a clock 

algorithm approximating LRU without having to sort or maintain the nodes in G-

value order. The larger the batch considered during eviction (N), the closer the 

approximation to LRU. 

3.6 Cleaning 

No discussion of a log-structured system would be complete without a discussion 

of the cleaner. As has been demonstrated [24], selecting the appropriate segments 

(or JE log files) for cleaning has a significant effect on cleaner performance. JE 

maintains a utilization profile for each log file so the cleaner can select the eligible 

log file with the lowest utilization. A log file is eligible for cleaning if its removal 

does not interfere with recovery. Thus, any log file is eligible if it does not contain 

the last checkpoint and has not been written since the last checkpoint. 

JE cleaning consists of reading a log file, appending records that are still “live” 

back into the log, and then reclaiming the space freed up by the now useless log 

file. A record is alive if the node it references is still present in the database. If log 

files are copied to archival media before being removed, the collection of archived 

log files provides the basis for catastrophic recovery. 

There are two types of information in the utilization profile: summary and detail. 

Summary information for each file indicates approximately how much of the file is 

obsolete and how much it will cost to clean the file. It contains the total number of 

nodes, the number of obsolete nodes, and the average size of the nodes. The 

summary information is cached in memory and is used to select the next log file to 

be cleaned. 

The detailed information for each log file consists of a list of the byte offsets in the 

file for all entries that are known to be obsolete. Without detailed summary 

information, identifying obsolete entries requires traversing the live database tree 

to determine if the entry in the log file exists in the tree. The detail information is 

used to avoid this potentially costly check during cleaning. 

The utilization profile is stored as an internal hidden database. Each record in that 

database contains both the summary and some of the detail information for a 

particular log file. A log file can have multiple profile records with each one 

containing the complete summary information and the detail information 

accumulated since the last record for the log file was written. By storing the detail 

information incrementally and in a packed form, the utilization profile information 

is less than 2% of the total disk space used in the environment. 

JE tracks utilization profile information during live database operations. In most 

cases, this is accomplished without additional latching by tracking utilization while 

a latch is already held. The challenge in keeping utilization information accurate is 

keeping it transactionally consistent, both during regular operation and during 

recovery. 
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While the detail information makes cleaning obsolete entries in a log file efficient, 

we must still migrate the active entries to the end of the log. This requires updating 

the live tree so parent nodes reflect the new location (LSN) of their migrated 

children. The parents must be flushed to disk before the cleaned log file is deleted. 

In many applications, especially those whose data sets do not fit in JE’s memory 

cache, the migration of active nodes and the accompanying BIN update comprise 

the bulk of the cleaning overhead. 

JE needs to accomplish two goals with respect to cleaning. The first goal is to keep 

the cost of node migration as low as possible. The second goal is to distribute the 

work of migration among the threads of an application such that the cleaner keeps 

up with the application’s activity. This second goal is particularly challenging for 

applications whose working sets exceed the size of the JE cache. We use lazy 

migration to address both of these goals. 

Lazy migration defers both the migration of live nodes and the flushing of parent 

nodes for as long as possible—until the next time the particular node is flushed 

due to a checkpoint or eviction. Because multiple migrated LNs might have the 

same parent BIN that needs to be flushed, deferring the flush significantly reduces 

the number of times that BINs are written to the log. Additionally, by offloading 

some cleaning activity into the checkpointer and evictor, the cleaner is better able 

to keep up with write-intensive applications. Application threads perform eviction 

before each database operation, and since cleaner migration is performed as part of 

this eviction, the application is throttled appropriately. 

While marking active LNs for lazy migration, the cleaner maintains a look-ahead 

cache.  When the cleaner latches a BIN to mark an LN for migration, it also checks 

the look-ahead cache for other LNs belonging to that BIN.  Since adjacent LNs 

commonly migrate together, this look-ahead policy reduces the number of tree 

lookups. 

In general, the cleaner tries to achieve a target disk space utilization (50% by 

default) for the database as a whole. However, even with lazy migration, the 

cleaner can fall behind in some extreme cases. In these cases, the cleaner uses an 

additional technique, called proactive migration. 

If the cleaner is not meeting its target utilization, it maintains a list of files that will 

be cleaned in order to meet the target. The evictor and checkpointer will then 

proactively migrate LN entries in those files, working ahead of the cleaner, 

reducing the amount of work performed as part of cleaning. This too has the effect 

of throttling the application until equilibrium is reached. 

No matter how efficient cleaning is, it is possible to create an application where a 

single cleaner thread cannot keep up with the application threads performing I/O, 

because the cleaner thread competes for I/O bandwidth to read the log files being 

cleaned. This effect is most pronounced in applications with high write rates and 

non-durable transactions. JE supports multiple cleaner threads to accommodate 

such applications.  Each thread cleans a separate log file.  Alternately, increasing 
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the size of the cleaner’s read buffer also helps the cleaner keep in in the presence 

of write-hungry applications. 

We expect that further improvements can be made in both cleaner efficiency and 

balancing cleaning and application workloads. Based on historical experience with 

log-structured file systems, it is likely that we will be tuning the cleaner for as long 

as the JE software is maintained. 

4. RELATED WORK 

There are three types of prior work related to this paper. First, there is the 

enormous literature on transactional systems. Second, there is the rich research 

history in log-structured file systems. Lastly, there are a number of alternative pure 

Java database implementations. We discuss each of these areas in the next three 

sections. 

4.1 Transactional Systems 

The transaction concept grew out of the database community and data processing 

needs of the early 70’s [13]. With a few notable exceptions, transactions were 

entirely a service of the database management system until fairly recently. The 

notable exception is the Quicksilver system [16], which used transactions 

throughout a distributed system to provide consistent state management. In the 

late 80’s and early 90’s there were a number of investigations of the feasibility of 

providing transaction support in file systems [19, 25, 26], but none of these 

approaches seemed to have broad impact. Instead, journaling file systems, which 

borrow the database logging concept to provide meta-data integrity, have become 

common [6, 11, 13]. More recently, the Reiser4 file system [23] fully embodies 

transactional support. Each of the file system’s system calls is implemented as a 

transaction, and the intention is to export transaction begin, commit, and abort 

functionality to user-level. 

To the best of our knowledge, Berkeley DB was the first system to provide full 

transactional recovery in a library-package. This packaging allowed applications to 

embed services typically found in DBMSs within an application, so that 

applications could be deployed without requiring database administration. JE 

addresses this same market in the context of a JVM or J2EE environment. 

4.2 Log-Structured File Systems 

Although the first relational database (System R [1]) used a no-overwrite storage 

system, maintaining shadow copies of data until commit time, Ousterhout and 

Rosenblum’s log-structured file system (LFS) [24] is the intellectual ancestor of the 

JE design. JE implements all the ideas of a log-structured file system, but provides 

a database abstraction rather than a file-system abstraction atop this segmented 

log. While a conventional LFS uses fixed size segments for its log, JE uses files to 
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represent segments. Since JE sits on top of a file system, JE is able to store more 

meta-data to assist in optimizing the cleaning process. 

There have been a number of studies criticizing LFS for excessive cleaner 

overhead [27, 28], and this is a concern for JE as well. However, the fact that we 

are targeting a Java environment allows us to make a set of assumptions that 

simplify the problem. 

First, we expect a large class of applications to have data that is entirely memory 

resident. In these applications, cleaning’s I/O overhead, which is the typical 

Achilles’ heel of log-structured file systems, is not a big issue.  The only 

performance impact results from the cleaner competing with the application for 

CPU time. Increasing processing power and today’s multi-threaded processors 

make this a smaller problem than it has been historically. 

Second, memories are an order of magnitude larger today than a decade ago. 

Larger memories allow for cleaning more data simultaneously, and aggregating data 

during cleaning has been shown to lessen the burden of cleaning [28]. 

Third, disks are an order of magnitude larger today than a decade ago. Larger disks 

allow cleaning to be postponed until down periods when the database 

environment is not as active [4]. 

Fourth, the complexity of a log-structured file system implementation is found in 

disk space accountability: log-structured solutions have a difficult time accounting 

for disk space usage, and any specific write into the file system can consume more 

blocks than are freed up by the write, leading to implementation complexity and 

possible starvation. The JE implementation does not have to worry about either of 

these issues, because it sits on top of a conventional file system. 

4.3 Java Databases 

There are a number of pure Java database products on the market today, although 

none is directly comparable to JE. 

There are a number of Java SQL products such as McKoi [20], HyperSonic SQL 

[17], Axion [3], and Derby [10], all of which rely on a JDBC interface. Although 

JDBC permits both embedded and client-server use, none of these products core 

emphasis is on embedded use, so there is greater competition for resources within 

the JVM using these products than there is with JE. Additionally, the reliance on 

SQL means that programmers must organize and access data in a relational model 

within the context of an object oriented language, while JE provides a natural 

collections-oriented interface, a Direct Persistence Layer, and its native key/data 

pair interface. 

In the realm of more object-oriented data management products, db4o [9] is a 

newcomer in this space. It provides “simple object data access” (SODA) as well as 

query-by-example (QbE).  However, db4o assumes that object graph storage is 
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sufficient for all applications providing far less data management flexibility than is 

available with JE. 

Finally, there are a few simple Java persistent storage managers such as JDBM [18] 

and Solinger SDBM [29].  They provide simple dbm/ndbm-like [2] access to 

persistent data in Java, but do not provide multi-threaded access, nor do they 

provide transactional guarantees, but are instead focused on relatively simple data 

management. 

5. APPLICATIONS USING JE 

The key distinction between JE and the other systems discussed in the previous 

section is its flexibility. If an application is not wedded to a SQL data management 

interface, then JE can be molded to address practically every data management 

need. Indeed, this is precisely what we observe in our customers’ applications. In 

this section, we provide three examples of how customers are using JE. 

5.1 Internet Archive’s Heritrix Web Crawler 

The Internet Archive (archive.org) is an internet library that currently holds over 

50 billion URLs (and rising). Heritrix is the Internet Archive’s open source Web 

crawler. Its emphasis is on its pluggable, extensible architecture that facilitates 

customization and external contribution. Historically, the size of Heritrix’s Web 

crawl was bounded by a large in-memory Java collection. In adopting JE, the goal 

was to retain the Java collection abstraction while handling a data set that could 

exceed memory capacity without suffering a significant performance penalty. 

Heritrix now uses JE to maintain a queue of all the URIs to crawl. JE is the 

backend for a Java Map that caches these URIs and can grow without bound. This 

application uses both the native API as well as the collections API, but does not 

use transaction support. 

The Internet Archive, using the Heritrix Web crawler, archives the majority of the 

Internet for posterity.  Old versions of most Web sites are available for all time.  

This requires a massive amount of storage.  They are investigating a petabyte-sized 

storage system called the ‘Petabox’ (http://www.archive.org/web/petabox.php) of 

their own design to manage the volume of data required for this task.  Their 

experience with JE has led them to begin working toward a JE-based backing store 

for the Wayback Machine. When finished, this will quickly become one of the 

largest databases in the world.  

5.2 Amazing Media 

Amazing Media provides a Web-based classified listings application. The 

application architecture is service-based and services use JE as the repository for 

persistent data. The design goal of the application is to keep services as simple as 
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possible. One way of achieving this is to maintain an object-oriented view of the 

data in the service, but provide transactional support, performance, and reliability. 

The application provides familiar Java serialization via a custom implementation 

with a high-performance, efficient transactional data storage. It uses dynamic 

analysis of the “getters” and “setters” of the objects to identify which parts of the 

object need to be persisted. The key characteristic of JE that made it suitable for 

this application is its agnosticism with respect to the data it stores. This application 

uses JE’s transactions and the native API, including secondary indexes. 

5.3 TIBCO’s Business Events 

BusinessEvents is a rule- and complex event-processing system used to correlate 

events and execute rules based upon those correlations. It must provide highly 

reliable, high throughput persistence of the system state, capable of meeting 

TIBCO’s target event/second rates. In this application, JE is used to store system 

state every 20-30 seconds, performing checkpointing and the ability to recover 

after a failure. BusinessEvents uses the native API and transactions. 

6. PERFORMANCE 

We began this paper by citing some of the advantages of JE and its log-structured 

architecture. Up to this point, we’ve focused largely on JE’s architecture and its 

functional flexibility. In this section, we illustrate its performance characteristics. 

We compare JE 2.1.30 to its JNI counterpart implemented atop Berkeley DB’s C 

library using a pre-release version of 4.5 (referred to as JNI for the rest of this 

paper). Such a comparison is not perfect as the C library has been in widespread 

commercial use for nearly a decade and has been optimized, while JE has been in 

commercial use for less than two years.  JE has undergone much less extensive 

performance tuning.  Nonetheless, it is the best comparison available and 

highlights the areas where JE’s architecture delivers outstanding performance.  

6.1 Evaluation Platform 

All the test results reported here were run on a Dell Inspiron 8600 running 

Windows XP.  The machine has a 1.8 GHz Pentium M with a 2 MB L2 cache and 

1 GB of main memory. The default disk is a 7200 RPM 60 GB ATA-100 Hitachi 

HT S726060M9AT00 with an 8 MB buffer. 

6.2 Insert Performance 

Our first test demonstrates how JE’s architecture delivers outstanding write 

performance. The insert benchmark began with the database empty.  We then 

(transactionally) added 200,000 key/data pairs where the keys were 6-byte 

alphanumeric strings and the data items were 294 bytes.  The cache was sized so 

that the entire database fit in the cache for both JE and JNI, but checkpoints were 
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enabled. Since the database fits 

entirely in memory, the only I/O 

activity is due to log writes and 

checkpoints. The systems are both 

configured to commit 

asynchronously, so log records are 

written to disk only when the in-

memory buffer fills or at 

checkpoint.  The results in the 

graph titled “In-memory Random 

Insertion” show that the 

benchmark performance is 

determined completely by the system’s ability to write data to disk at checkpoint. 

JE’s log-structured architecture delivers near-sequential disk write performance, 

because data need only be written to the log. In contrast, JNI checkpoints must 

update database pages in-place, producing random I/O performance. 

6.3 Update Performance 

JE’s log-structured storage provides 

similar performance benefits when 

we update existing data items. We 

begin with the database created in 

the Insert benchmark and then select 

200,000 records uniformly at random 

and update them. The graph titled 

“Random Updates” demonstrates 

JE’s write-optimized design, 

delivering near sequential disk 

performance instead of JNI’s random 

disk performance. 

6.4 Concurrency 

Our next benchmark explores the improved concurrency possible due to JE’s 

record level locking. This benchmark is similar to the one in Section 6.3, except 

that rather than select the records uniformly at random, we skew the distribution 

selecting less than 1% of the records for update.  This sets the stage to explore the 

behavior of the system under contention. Our expectation is that the record-level 

locking of JE will produce better scalability than JNI’s page-level locking. 
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The graph titled “Contentious Updates” 

shows that JE performs as we expect.  

Its performance does not degrade under 

a highly concurrent workload. With 

200,000 items in the database, even with 

20 threads selecting from among the 

100 “hot” records, the probability that 

two threads conflict is low. In contrast, 

JNI’s page locking induces significant 

hotspots, and throughput drops.  

It is worth noting that in the single-thread case, JNI outperforms JE significantly. 

The highly skewed access pattern in this benchmark means that JNI dirties only a 

few pages (under 10); on checkpoint, it has little data to write to disk. Thus, in the 

absence of contention, JNI performance is limited by its ability to flush data at 

checkpoint, and there is so little data, the resulting performance is significantly 

higher than we saw in earlier tests. In contrast, JE’s no-overwrite storage means 

that log records are generated for each update even if the item being updated was 

recently updated. This highlights the trade-offs inherent in conventional and no-

overwrite storage systems. 

6.5 In-memory read Performance 

Having demonstrated the outstanding 

JE write performance, we next turn to 

read performance. In this test we 

populate the database as before 

(200,000 key/data pairs with 6-byte 

keys and 294-byte data items). This 

time, once the database has been 

populated, we iterate over the entire 

data using a cursor. We present three 

variations of this test: Degree-3 

serializable reads (txn), Degree-1 dirty 

reads (DirtyRead), and non-

transactional reads (noTxn). The graph titled “Read Performance” shows the 

results. JNI locking is similar under all configurations and we observe little 

difference between them.  However, JE takes advantage of weaker semantics 

delivering significant performance improvement.  In the DirtyRead configuration, 

JE bypasses the lock manager entirely, using the high-speed latches to control 

concurrent access, producing the excellent JE-DirtyRead performance. In the non-

transactional case, even though JE must obtain more locks than JNI, its 

performance is comparable and even slightly better than JNI’s. JE’s transactional 

performance falls significantly below the non-transactional performance due to the 

difference in the transactional and non-transactional locking implementations.  The 
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transactional implementation is optimized for collections of many locks and this 

benchmark pays the overhead for these optimizations, even though there is only a 

single data item being locked. 

6.6 Recovery Performance 

Our last test measures JE’s recovery 

time to alleviate concerns over its 

more complicated recovery 

mechanisms. In this test, we produce 

a large log file by running update 

transactions similar to those used in 

Section 6.3. Then we truncate that 

log to a variety of sizes ranging from 

10 to 100 MB and measure how long 

it takes to recover the log file. As 

shown in the graph titled “Recovery 

Speed,” JE and JNI exhibit comparable recovery times, demonstrating that JE’s 

more complicated recovery does not incur significant overhead, since recovery 

time is dominated by the time to read the log and associated data items. 

7.  CONCLUSIONS 

We have presented the design and implementation of the Berkeley DB Java 

Edition, a native Java transactional data manager. JE’s log-structured storage 

system delivers outstanding write performance without jeopardizing read 

performance. 

8. AVAILABILITY 

Additional information about Berkeley DB Java Edition and the full product 

including source code, documentation, sample code and test code is available for 

download from: 

http://www.oracle.com/technology/products/berkeley-db/je/index.html. 
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