

Berkeley DB Java Edition

Architecture

An Oracle White Paper
September 2006

Berkeley DB Java Edition Architecture Page 2

Berkeley DB Java Edition

Architecture

EXECUTIVE OVERVIEW

Berkeley DB Java Edition is a 100% native Java, high-performance transactional

database. It was designed to be functionally compatible with the ubiquitous, open

source Berkeley DB and architecturally compatible with Java applications.

This paper presents the design and implementation of Berkeley DB Java Edition

(JE), focusing on how it provides fast, reliable storage services when embedded in

applications that run in a JVM. JE uses a log-structured disk representation for its

database objects, avoiding unnatural marshalling of objects onto pages. The

combination of object-level caching and log-structured storage permits fine-grain

latching and record-level locking for highly concurrent applications. The log-

structured design provides unsurpassed write performance and competitive read

performance for applications whose data fits in memory.

1. INTRODUCTION

Berkeley DB Java Edition (JE) finds its functional roots in the Berkeley DB (DB)

embedded database library. DB was designed to provide persistent, application-

specific data storage in a fast, scalable, and easily administered package. It provides

the traditional atomicity, consistency, isolation, and durability (ACID) guarantees

of a relational database management system (RDBMS), without the need for

separate installation of a database server or the services of a database

administrator. In addition, Berkeley DB executes directly in the application’s

address space, allowing for single binary installation. This is an attractive

proposition for manufacturers of embedded devices, such as set top boxes or

mobile phones, as well as for developers of large heavily concurrent application

servers, such as messaging and directory servers.

Java Edition opens up many additional possibilities. First, it brings the functionality

of DB to environments that require 100% Java. Second, it creates the possibilities

that storage can be provided directly in application servers, which may not want to

rely on an external DBMS. Application servers frequently need robust data storage,

where relying on the existence of a RDBMS is burdensome. Additionally,

applications written for application server environments may want the benefit of a

small-footprint, embedded data manager that does not incur the overhead of a

JDBC interface and associated process switch. Even for those applications where

an RDBMS using JDBC is appropriate, we anticipate JE will be used, as Berkeley

DB is often used, as a fast front-end cache for the RDBMS.

Whether used in conjunction with an RDBMS or used directly, JE supports a

variety of Java standards. The Java Transaction API (JTA) specifies an interface

Berkeley DB Java Edition Architecture Page 3

between Transaction Managers, Java Applications, and Resource Managers. JE

implements the XAResource interface that is required for it to participate in a

distributed XA transaction as a Resource Manager, using two-phase commit to

satisfy the distributed transaction and recovery requirements.

The J2EE Connector Architecture (JCA) specifies a standard set of interfaces that

can be used by a J2EE application server to communicate with backend data

management systems. JE provides a Resource Adapter library to allow deployment

as a backend transaction-processing module.

Finally, JE can be integrated into a Java Management Extension (JMX)

environment. JMX allows a JE-based application to be managed and monitored via

a variety of interfaces (e.g., SNMP). For instance, using JMX, a system

administrator can view runtime performance statistics using a network

management console.

In Section 2, we present the overall architecture of JE, introduce some Berkeley

DB and JE specific terminology, and lay the groundwork for the in-depth design

discussion that follows. Section 3 presents the implementation in detail, focusing

on the aspects of JE’s design that make it particularly well suited for the JVM

environment. Section 4 compares JE to other Java implementations and more

conventional data management techniques. Section 5 discusses how our customers

use JE. Section 6 presents some performance results, and we conclude in Section

7.

2. ARCHITECTURAL OVERVIEW

As JE is functionally compatible with Berkeley DB, we have retained the key

concepts and definitions from the initial Berkeley DB product. We begin by

introducing these concepts and the terms Berkeley DB uses for them.

2.1 Terminology

A transaction is a group of operations that adhere to the ACID properties of

Atomicity, Consistency, Isolation, and Durability [14]. Atomicity implies that a

collection of operations appears atomically in the database; either all the operations

appear or none of them do. Consistency means the database always presents a

consistent view. (For example, consider a database of cats and owners. If Joy owns

Elsa, we would never see a database with owner Joy without cat Elsa or cat Elsa

without owner Joy.) Isolation describes the property that any transaction operates

under the illusion that it is the only transaction operating in the database at a

particular time. That is, there is no way to tell if there are multiple transactions

active concurrently. Finally, durability implies that modifications made by a

transaction are guaranteed to be persistent, even in the presence of system or

application failure.

Berkeley DB Java Edition Architecture Page 4

There are three primary interfaces to JE. The first uses Berkeley DB JE to

implement a Java collection. The application uses standard collection methods to

create, retrieve, and modify transactionally persistent data. Each Java collection

object is associated with a database, described below.

The second interface is a new Direct Persistence Layer, introduced in JE 3.0. The

Direct Persistence Layer is a type safe and convenient API for accessing persistent

objects. A developer specifies primary and (optionally) secondary keys using Java

annotations. The library transparently and seamlessly handles schema evolution as

class definitions change.

The final interface uses the DB data abstraction of key/data pairs. Keys are byte

arrays wrapped in a DatabaseEntry object. In JE, keys are true primary indexes,

which means that DatabaseEntry objects are arranged in key-order. By default,

JE sorts keys lexicographically, however, an application can optionally support

their own sort and comparison functions. Data objects are similarly opaque

structures from the point of view of the storage system. Applications may treat

key/data pairs as objects, using a compact form of Java serialization, or as tuples of

primitive values bound to objects. Applications may also create their own object-

data bindings or work directly with byte arrays.

A database is collection of key/data pairs sharing sort and comparison. You can

create multiple databases that use the same sort and comparison functions, of

course, but within one database, there may be only one sort function and one

comparison function. Through the JE API, applications create handles to

referenced databases, and all accesses to the database are performed as methods

off the database handle (or from objects created off the database handle; see cursors

below). In conventional relational database parlance, a Berkeley DB database

corresponds to a table. Databases are represented by a Java Database class;

Database handles persist across transactions and are typically opened once when

the application starts up and are left open for the lifetime of the application.

Databases support access to individual key/data pairs through keyed lookup. For

iteration, the Database class provides an openCursor method, which returns a

Cursor handle. Logically, cursors maintain a position in the Database. Cursors are

local to a particular transaction. That is, cursors are created in the context of a

particular transaction, and the cursor must be closed before the transaction

commits or aborts. Cursors allow iteration over an entire database (either forwards

or backwards) as well as traversal through sets of duplicates and within ranges of

the items in the database.

A collection of databases comprises a database environment. In RDBMS parlance, an

environment is typically called a database. For example, when implementing a

personnel management system, the application might reference a collection of

tables (databases in JE) for Employees, Managers, and Departments, and these

would all be grouped together into a JE database environment. Typically, database

environments correspond to directories or directory hierarchies in a file system.

Berkeley DB Java Edition Architecture Page 5

The log files that support the database and the properties files that describe the

environment’s configuration live in the database environment’s directory.

2.2 Mapping Databases and Environments to Data Structures

Databases in JE are implemented as B+trees [8], where each leaf in the tree

represents an individual key/data pair and is implemented as a Java object called a

leaf node (LN). The data portion of the pair is stored as a reference in the LN

while the key is logically part of the LN, but physically referenced by the node that

points to the LN. These nodes that reference other nodes are called internal nodes

(IN) and are implemented as arrays of key/leaf pairs. The Figure titled “Database

structure” shows this structure. The lowest internal nodes are designated as

bottom INs (BINs) rather than INs. BINs are a subclass of IN providing

additional support for cursors. All the nodes within an Environment’s tree

structure have a unique node ID.

If a key value has duplicate data values,

then the BIN references a duplicate

internal node (DIN), which is the root of

a tree that stores all the duplicate data

items. Duplicate trees are structured like

database trees, with INs replaced by

DINs and BINs replaced with DBINs.

Thus, a database is potentially a tree of

trees. This structure is shown in the

Figure titled “Database structure with

duplicates”.

IN

BINs

LNs
DIN

DBINs

LNs

Database structure with duplicates.
Duplicates are stored in a tree similar to the database
tree that is rooted at a location in the tree typically
occupied by an LN.

Korat

Pixiebob

Nebelung

Somali

IN

Korat

Laperm . . .
Somali

BIN
BIN

Korat data Laperm data Somali dataLN LN LN

Database structure. Databases are implemented as B+trees with fixed size internal nodes (INs). BINs
are subclasses of INs that support iteration over the elements in the tree.

Berkeley DB Java Edition Architecture Page 6

Finally, the collection of databases in a

single environment is stored in yet

another tree called the mapping tree. The

mapping tree is simply a B+tree whose

keys are the various database names and

whose “data objects” are the root nodes

of the corresponding database tree. The

result is a hierarchy of trees, with a

maximum depth of three, as shown in the

Figure titled “Environment data

structures”. While this hierarchical

structure is intuitive and prevents having

multiple index structures for the various

logical entities being stored, it does

introduce additional complexity in

recovery processing.

Having mastered the basic terminology and structure of JE, we are now ready to

explore implementation details in more depth.

3. THE IMPLEMENTATION

The implementation revolves around the log-structured design of JE. Rather than

marshalling and unmarshalling Java objects to and from disk-backed pages, JE

serializes objects and writes them sequentially to a log, optionally using the Java

NIO API. All the necessary index structures sit atop this sequential log, and there

is no other representation of the data.

We found that the java.io.Serializable interface was too heavyweight for

our purposes, so the use of the term “serialize” throughout this paper references

the generic action of marshalling objects, although our implementation does not

use the java.io.Serializable interface to implement this functionality.

This design offers several advantages. First, JE does not have to pay the

performance penalty of marshalling and unmarshalling variable length objects onto

fixed-length pages. Second, JE can perform record-level locking without the

significant recovery complexity usually associated with traditional RDBMS record-

locking solutions. Third, there is only a single representation of the data, instead of

the separate database and log files in conventional logging systems. Fourth, all

writes happen sequentially, so unless the disk is used to handle read misses, the

disk head never moves, providing near maximum disk bandwidth utilization.

The log-structured design is not without its disadvantages. The primary

disadvantage is that a cache-miss for JE is more costly than a cache-miss in a

traditional database engine. For example, a cursor traversing the database, which

misses in the cache, will be forced to issue an I/O for any items not found in the

cache, whereas a traditional on-disk structure will amortize a single I/O over some

Environment data structures. The
mapping tree has a structure similar to the database
and duplicate trees, but implements the name to
database mapping.

Duplicate tree

cats database tree

Mapping IN

Mapping BIN

owners
database tree

cats

owners

Berkeley DB Java Edition Architecture Page 7

number of items as a page containing several items is read into memory from the

disk.

While log-structured file systems have been discussed in great length in the file

system community [24, 27, 28], there has been little attention paid them in the

database community. Section 4.2 discusses this topic in more depth.

The rest of this section is organized as follows: First, we discuss synchronization in

JE, which combines transactional and non-transactional access. Next, we present

the details of the log-structured storage system. Then we present the logging and

recovery implementation. We conclude the implementation discussion with

descriptions of the various maintenance threads that manage the log-structured

store.

3.1 Concurrency

JE uses record-level transactional locks on the LNs that store key/data pairs,

providing highly concurrent database access. Internal nodes are maintained non-

transactionally in order to preserve high-concurrency access, minimize the data

written to the log, and simplify abort (as modifications do not have to be undone

when transactions abort). Instead, modifications to internal nodes (INs) are

synchronized via short-term latches protecting only against physical manipulation.

Since Java monitors, using the synchronized keyword, cannot be used to perform

latch coupling (atomically acquiring a new latch and dropping a held latch) and do

not prevent starvation in the case that multiple threads are waiting for the same

object, JE provides its own latching mechanism using Java monitors as the basis.

Each object that requires a latch (for example, an IN) contains a reference to a JE

latch object. JE uses Java monitors to synchronize access to the latch object. When

a thread holds a latch that is requested by another thread, the incoming thread

waits on a synchronizer object.

Latch granting is strictly first in, first out. When a thread releases a latch it

examines the queue and notifies the first entry in that queue. Since the releasing

thread only calls notify on a single thread, we guarantee that threads are awakened

in the order they appear on the queue, reducing the possibility of starvation.

Latch deadlocks must be avoided, because we perform no latch deadlock detection

or resolution. Acquiring locks in a well-defined order is the most common

deadlock-avoidance technique [30]. While descending the tree, this well-defined

order is obvious: always acquire latches down the tree. For other data structures,

such as the transaction table, we define a lock order and adhere to it.

Using short-term latches rather than transactional locks on internal nodes allows

for improved concurrency but does introduce complexity in the implementation,

especially in recovery.

JE uses a conventional lock manager to implement transactional locks. The lock

table is an object that contains a hash table-mapping node IDs to lock objects.

Berkeley DB Java Edition Architecture Page 8

Each lock contains a list of waiting and granted locks, so it contains all the

information necessary to determine if a newly requested lock conflicts with those

already granted or requested. If the calling transaction already has a lock of the

correct mode for the object, we simply reuse the existing lock.

The lock manager implements a few simple policies. First, if a transaction owns a

write lock on an object, then a request for a read lock on the object is always

granted. Second, if a transaction owns a read lock on an object, then a requested

write lock is placed added at the front of the waiters list. This helps prevent

deadlocks if only one transaction jumps to the front of the wait list, but will

ultimately lead to deadlocks that would have arisen anyway if more than one

transaction were trying to upgrade from a read lock to a write lock. A read locked

object will block incoming read lock requests when there is already a waiting write

lock request, even though incoming readers do not conflict with current reader(s).

JE also supports dirty reads [14] providing weaker forms of isolation than purely

ACID transactions. Dirty reading, or “read uncommitted,” means that a

transaction can read data that has been modified by a transaction that has not yet

committed. In practice, this means that a transaction could read data that is never

committed to the database, because the transaction that wrote it eventually gets

aborted. Nonetheless, some applications welcome the performance improvement

in exchange for this weaker form of consistency. Because dirty readers do not

block other lockers and are never blocked by other locks, dirty reading is

implemented via BIN latching. That is, while a node is physically being modified

by another thread, the referencing BIN is latched. Therefore, no other threads can

access the node while it is in the midst of a modification. We release the BIN latch

after the modification is complete. This precisely provides dirty read semantics, so

dirty reads are “free” in JE.

Access to the lock table could be coordinated either through a single hash-table

mutex or per-hash-bucket mutexes. Berkeley DB’s experience in implementing

per-hash bucket locks showed they did not necessarily improve performance

because the increased concurrency was offset by increased mutex activity, so JE

uses a single lock table mutex. If this mutex becomes a point of contention,

developers can configure JE to use multiple lock tables to reduce the contention.

Currently, JE supports configurable timeout-based deadlock detection. The

Berkeley DB implementation provides a richer set of deadlock detection

functionality, and we expect JE will eventually match that functionality. However,

because JE uses latches and not transactional locks on internal nodes, deadlocks in

JE can always be attributed to data access; internal nodes never contribute to

deadlocks. Thus, we expect deadlocks to occur less often in JE than in more

conventional systems.

By default, JE provides Repeatable Read isolation, since this is the natural

consequence of record locking. If phantom elimination is important, an application

can configure JE for serializable isolation [14]. Doing so introduces a small

Berkeley DB Java Edition Architecture Page 9

performance penalty, because JE must perform “next key” locking, effectively

acquiring range locks during read and insert operation.

3.2 Storage System

JE implements a database and B+tree abstraction via a log-structured storage

manager. It stores database key/ data pairs as byte-arrays referenced from the

leaves of the B+tree. Log records make these elements persistent via log records

that are serializations of the objects in the database. In order to make this concrete,

we’ll step through the insertion of a key/data pair into a database. Assume the

database is open and there is sufficient room in the BIN to add a new entry.

Insertion proceeds as follows:

1. Perform a tree search to locate the appropriate position for the new

key/data pair.

2. The search procedure is a standard B+tree traversal and is not discussed

here.

3. Latch the BIN.

4. Create a new LN for the key/data pair.

5. Write the LN to the log. This write takes place in-memory and returns a

log sequence number (LSN) that uniquely identifies the destination on-

disk location of this element.

6. Modify the BIN to reference the new key/data pair. The BIN contains

both an in-memory reference to the LN as well as the persistent LSN.

7. Mark the BIN dirty.

8. Unlatch the BIN

The tree structure is maintained via two sets of pointers: in-memory references and

persistent LSNs. If the tree’s nodes are in memory, JE uses the in-memory

pointers. However, should the in-memory copy of the LN be evicted from

memory in order to limit JE’s memory consumption, the LSN is both necessary

and sufficient to retrieve the LN from disk.

BINs are fixed-size arrays of entries, since they contain only references to keys and

LNs. We use a binary search to locate a particular entry in the sorted BINs. The

number of entries in a BIN is a configuration parameter. Smaller BINs lead to

more efficient searching at the expense of a deeper tree; larger BINs lead to

shallower trees, but more costly per-BIN searching. When a BIN becomes full, we

must split the BIN, creating a new BIN to be inserted into the parent IN.

Conventional split processing is inherently deadlock prone, because it involves

making modifications above the current position in the tree. JE performs

opportunistic IN splitting to avoid such deadlocks. During inserts, if the search

down the tree detects a node that is full, then it opportunistically splits the

Berkeley DB Java Edition Architecture Page 10

IN/BIN. Once the split has finished, the transaction continues its search down the

tree (triggering additional split/grows as necessary). Even if the split is not

necessary to accomplish the insert, or the transaction for which the insert is being

performed aborts, the split remains in the tree and is not undone. The rationale is

that even if the current operation does not trigger the split, the node is sufficiently

full that a future transaction will make the split necessary. This opportunistic

splitting makes the split processing in JE significantly simpler than the

corresponding operations in Berkeley DB.

Every modification to an LN triggers an update to a BIN, because modification of

an LN changes its log sequence number. In turn, BIN modifications trigger IN

modifications, etc. In order to avoid repeatedly writing internal nodes (and slowing

transactional throughput and wasting log space), INs(BINs) are simply marked

dirty upon update. Simply delaying the writing of BINs is not sufficient, because

we would still need to write BINs at checkpoints. Instead, we usually write BIN

Deltas, smaller log records that identify the specific BIN entries that have changed.

A background thread, described in Section 3.4, periodically scans the list of dirty

internal nodes and writes either deltas or entire node into the log. If the system

crashes prior to a checkpoint, the LN records in the log are sufficient to recover

modifications to internal nodes.

In theory, if one were willing to replay the log from the beginning of time, one

would never need to log the INs at all. However, recovery from the very beginning

of the log would impose too heavy a penalty on startup, and it does not work if

INs must be evicted from memory. The checkpoint thread serves a purpose identical

to that in a conventional data management system: it writes dirtied objects to disk,

trading I/O operations for improved recovery time.

An LN modification creates a new copy of the LN, which is written to the log, and

updates the in-memory LSN “pointer” in the BIN. This no-overwrite storage

system, characteristic of log-structured file systems, means that the previous

version of a node, or its before-image in database parlance [14], is still accessible in

the log. This leads to a simple transactional implementation: The first time a

transaction modifies an LN its LSN is preserved. If the transaction aborts,

restoring the original LSN of the LN effectively undoes the transaction’s

modifications. This same technique applies to modifications to duplicates and

modifications to the mapping tree, meaning that JE easily and naturally provides

transactional table creates, deletes, and renames.

Deletions are more complicated. Since BINs are not transactionally locked, deleted

key values in the BINs must remain until the transaction commits. The rationale

for this is twofold. First, if the key were removed, subsequent inserts to that BIN

by other transactions might leave the BIN full. If the deleting transaction then

aborts, we must restore the key to the BIN, but there would be no space, and we

would be forced to perform a split during abort. Second, if we removed a unique

key and a subsequent transaction inserted a new version of that unique key, then

the abort might be impossible, because it would introduce a duplicate key (which

Berkeley DB Java Edition Architecture Page 11

can be disallowed). To solve both of these problems, we use a lazy BIN compression,

leaving deleted keys in their BINs and nulling out the corresponding data entry for

the key.

Leaving keys in BINs after a delete is a good short-term strategy, greatly

simplifying abortion of a delete, but it is a poor long-term strategy. Each BIN entry

costs a latch get/release during cursor traversal and limits the fanout of the BIN.

The simplest way to resolve this problem would be to discard the deleted keys

when the deleting transaction commits. Unfortunately, this would place BIN

cleanup in the transaction commit path. As transaction commits are the normal

case, it is desirable to optimize commit processing, and so rather than removing

BIN entries upon commit, we remove deleted entries from BINs when we are

about to write those BINs to the log.

3.3 Logging and Recovery

As mentioned in Section 3.2, an LN modification (e.g., create, update, or delete)

produces a serialized representation of that LN in the log. The log consists of a

collection of files in the file system. Each log file contains an initial record

including a version number, creation timestamp, file sequence number, and the

offset of the last record in the previous file to facilitate backward chaining.

Other than the header, a log contains a sequence of log records, referenced by

LSN. The LSN identifies the specific log file and the offset within that log file.

Each log record also has a header containing the log record type, a version, a

pointer (offset) to the previous log entry, the record size, and a checksum.

Most database systems guarantee recoverability using write-ahead-logging [14], and

JE uses write-ahead-logging, influenced by the log-structured design. The

persistent pointer to a node is its LSN. However, an LSN does not exist until a

record is written to the log. Therefore, in order for IN A to reference LN B, IN A

must contain LN B’s LSN. Thus, any version of A that appears in the log and

references B must appear after B, because otherwise A could not know the LSN of

B.

Transaction commit processing in JE is similar to that in conventional systems. To

provide maximal concurrency, we first release all read locks. Then JE writes a

commit record into the log and flushes the log up to and including the commit

record. Then JE releases the transaction’s write locks and returns to the caller.

Transaction abort is slightly more complicated. Abort processing must restore all

data to its pre-transaction state, however, it need not restore the physical tree to its

pre-transaction state. That is, any operations on the internal nodes of the tree can

be left as they are, since they are not part of the transaction’s modifications.

Each node modified by a transaction stores the pre-transaction LSN of the node.

“Undoing” a transaction requires restoring these saved LSNs to the tree.

Therefore, abort processing consists of the following steps:

Berkeley DB Java Edition Architecture Page 12

1. Write a transaction abort record to the log.

2. Walk the list of locks for the transaction and for each write lock, retrieve

the abort LSN for each node.

a. For each node identified in 2

3. Search the tree for the BIN referencing the node and undo the operation

on the BIN (i.e., remove a newly created entry; restore an original value

for an update; replace a newly removed entry).

4. Release locks

5. Return to the application

The log must contain enough information to allow the system to recover from

failure, in addition to supporting transaction commit and abort processing. Our

recovery algorithm uses a combination of logical and physical recovery, because we

use a combination of locking and latching during normal operation. This is unusual

in a database engine, and certainly the most complex and challenging aspect of the

JE implementation.

Recall that the JE environment is structured as a tree of trees with a potential

depth of three trees (mapping tree, database tree, duplicate tree). While the

elegance of this architecture provides many benefits, such as code reuse and

uniformity, the penalty for this architecture occurs in recovery. Because we do

logical recovery, we need to recover each level of this hierarchical tree in order,

first the mapping tree, then the database tree, and then duplicate trees. For

example, in order to recover a database, we need to be able to open it. In order to

open a database, we need to be able to find its name in the mapping tree.

Therefore, before being able to recover any database, we must fully recover the

mapping tree.

Our recovery algorithm currently requires ten passes over portions of the log. (For

comparison Berkeley DB requires four passes over selected portions of its log

during recovery: one to find the end of the log, one to open files, one to roll

backward undoing aborted transactions, and one to roll forward to redo

committed transaction). In both JE and Berkeley DB, the portion of the log that

must be repeatedly processed is determined by the checkpoint interval; to a first

approximation, the part of the log that is repeatedly traversed is that part written

since the last checkpoint.

If JE does significantly more processing during recovery than Berkeley DB, it will

be more sensitive to the checkpoint interval than either Berkeley DB or other

conventional database engines. The number of passes is a result of our initial focus

on correctness over performance; we focused first on making it correct, leaving

performance optimizations to later releases. By the time a database engine is

running recovery, something bad has already happened, and the primary focus

must be on not making the situation worse. We have identified a number of ways

Berkeley DB Java Edition Architecture Page 13

to combine some of these passes and reduce the total to a more manageable

number, but this has not yet become a compelling issue. Finally, the typical

association of large amounts of memory on machines where recovery may have to

process large numbers of log records make this less of a concern than it might

have been a decade ago.

Recovery has four phases, each of which requires one or more passes over the log.

The first phase establishes the limits on allocated node ids and transactions.

1. Read all INs to find the largest allocated node ID (so that we can

begin allocating new IDs) and the largest used transaction ID (before

we need to perform any transactional operations).

The next three passes recover the mapping tree, which maps database IDs to

actual databases:

2. Read all the BIN Delta records for the mapping tree.

3. Undo all aborted LNs in the map (i.e., roll backward). Keep track of

all committed transaction IDs.

4. Redo all committed LNs in the map (i.e., roll forward).

The next two passes reconstruct the physical structure of all the database trees:

5. Read all the INs and link them back into the tree.

6. Read all the BIN Deltas and apply those to the INs.

Next, we reconstruct duplicate data trees, similarly to how we reconstructed the

database trees. The reason this must be implemented as a separate set of passes is

because we cannot necessarily traverse enough of the tree to access the duplicate

trees until pass numbers 5 and 6 are complete.

7. Read all the DINs and DBINs and link them back into the tree.

8. Read all the DBIN Deltas and apply those to the INs.

And finally, we execute the conventional roll back and roll forward phases:

9. Roll backward undoing aborted transactions.

10. Roll forward reapplying the committed transactions.

3.4 Checkpoint Thread

The goal of checkpointing is to bound the time necessary for recovery. Checkpoint

accomplishes this by writing dirty INs to the log. Our initial design for checkpoint

took the naive approach that we would write each dirty IN to the log at every

checkpoint. Unfortunately, simple calculations reveal that in a steady-state random

workload, we would end up writing the entire tree on every checkpoint. This was

obviously unacceptable.

Berkeley DB Java Edition Architecture Page 14

The solution for bounding the size of checkpoints is twofold: we use incremental

logging for IN updates and we flush INs in layers corresponding to their depth in

the tree. Rather than logging entire INs whenever an IN is dirty at a checkpoint,

we log a delta record. A delta record contains a reference to the last intact copy of

an IN and a collection of changes that, when applied to the intact IN, produce the

current state of the IN. For example, consider the following list of IN

modifications.

• BIN 10 logged in full version (LSN = 10)

• LNa added to BIN10

• LNb added to BIN10

• LNa deleted from BIN10

Now, assume that we begin a checkpoint (A). The log record for BIN 10 contains:

• a reference to LSN 10 (intact BIN)

• a delta for delete of LNa

• a delta for the add of LNb.

Now, assume that we add another LN (c) to BIN 10 and begin a new checkpoint.

The log record for BIN 10 would be everything in the previous log record plus a

delta for the addition of LNc.

When the delta list for an IN becomes sufficiently large, we simply write a new

copy of the IN (the threshold at which we make this transition is a configurable

parameter).

Each time we write a new copy of an IN, we also dirty another IN (its parent).

Therefore, newly dirtied INs are not processed in the current checkpoint, thus

bounding the size and time required for any single checkpoint.

The second key design issue for checkpointing is logging INs in tree order, from

those nodes deepest in the tree towards the root. This provides both an

optimization as well as correctness. Let’s say that we were to allow internal nodes

to be written in any order—for expository purposes, let’s say that they are written

in their node ID order. Consider a tree where IN-8 references IN-2 which

references IN-5. During a checkpoint IN-2 is initially clean, so it is not written, but

IN-5 is dirty, so it is written. The act of writing IN-5 dirties IN-2, but IN-2 will not

be written during this checkpoint, because we’ve already passed its turn. However,

imagine now that IN-8 is also dirty, so it gets written. We’ve now written to disk a

“new” version of IN-8 that does not reference a modified IN-2. As a result, the

modification to IN-2 will be lost during recovery if the system now crashed.

If we force INs to be written in tree order from the lowest/deepest levels towards

the root, the scenario described above cannot happen and our tree remains

recoverable. In addition, we limit the amount of data written during a checkpoint,

improving performance as well.

Berkeley DB Java Edition Architecture Page 15

3.5 Node Eviction

Like conventional data managers, JE must limit its memory consumption to an

application-specified amount. Like Berkeley DB, JE allows the application to

configure this limit. The node eviction algorithm enforces this limit.

Both BINs and INs are candidates for eviction, and both BINs and INs can be

evicted regardless of their participation in active transactions. INs are not evicted if

they have resident children.

We treat BINs and LNs differently, because we do not explicitly track LNs for

eviction. When we select a BIN for eviction, we first check whether it has any

resident LNs. If it does, we evict them and leave the BIN in memory; if it does

not have resident children, then we evict the BIN. This gives preference to evicting

LNs over BINS without having to track LNs explicitly.

JE maintains a list of in-memory INs and uses this list for memory eviction.

However, a few nodes are excluded from eviction. We exclude all INs belonging to

the mapping tree, since the mapping tree should be small, and since any open file

handles will hold a reference to objects in the mapping tree. We exclude all INs

that have children present in-memory. This is because children may be dirty and

will need access to the IN when it is time to write them to disk. Finally, we exclude

BINs that have open cursors referencing them, since we will almost certainly

access them in the near future.

To select a particular IN for eviction we borrow from the virtual memory page

replacement literature to approximate LRU [30]. Borrowing from the Berkeley DB

memory management design, we maintain a 64-bit monotonically increasing

generation count (G) for each IN, BIN and DIN in the system. This is a system-

wide generation counter. On every application-initiated access to an IN, BIN, or

DIN we assign the current value of the generation number to the node and

increment the generation number. So, the G of a particular node indicates how

recently it was accessed. If we always evicted the node with the minimum G, we

would implement LRU; evicting the node with the maximum G implements MRU.

In order to avoid creating a hot spot, we never latch the generation count, so we

must assume that nodes in the system may have the same generation number.

We invoke eviction on every database operation when memory usage is above a

(configurable) threshold. The eviction algorithm selects and evicts nodes until a

(configurable) desired amount of memory has been freed. An invocation of the

algorithm examines nodes in batches of N (configurable) evitable nodes and selects

the node with the lowest G value for eviction.

To select a node, the evictor walks the list of INs in an arbitrary order different

than both the creation order and key proximity. When it reaches the end of the list,

the evictor cycles back to the beginning. When eviction completes (that is, it has

freed a sufficient amount of memory), it saves the current position in the IN list

and begins its next run at that point.

Berkeley DB Java Edition Architecture Page 16

Because of the arbitrary order of the IN list, this algorithm is essentially a clock

algorithm approximating LRU without having to sort or maintain the nodes in G-

value order. The larger the batch considered during eviction (N), the closer the

approximation to LRU.

3.6 Cleaning

No discussion of a log-structured system would be complete without a discussion

of the cleaner. As has been demonstrated [24], selecting the appropriate segments

(or JE log files) for cleaning has a significant effect on cleaner performance. JE

maintains a utilization profile for each log file so the cleaner can select the eligible

log file with the lowest utilization. A log file is eligible for cleaning if its removal

does not interfere with recovery. Thus, any log file is eligible if it does not contain

the last checkpoint and has not been written since the last checkpoint.

JE cleaning consists of reading a log file, appending records that are still “live”

back into the log, and then reclaiming the space freed up by the now useless log

file. A record is alive if the node it references is still present in the database. If log

files are copied to archival media before being removed, the collection of archived

log files provides the basis for catastrophic recovery.

There are two types of information in the utilization profile: summary and detail.

Summary information for each file indicates approximately how much of the file is

obsolete and how much it will cost to clean the file. It contains the total number of

nodes, the number of obsolete nodes, and the average size of the nodes. The

summary information is cached in memory and is used to select the next log file to

be cleaned.

The detailed information for each log file consists of a list of the byte offsets in the

file for all entries that are known to be obsolete. Without detailed summary

information, identifying obsolete entries requires traversing the live database tree

to determine if the entry in the log file exists in the tree. The detail information is

used to avoid this potentially costly check during cleaning.

The utilization profile is stored as an internal hidden database. Each record in that

database contains both the summary and some of the detail information for a

particular log file. A log file can have multiple profile records with each one

containing the complete summary information and the detail information

accumulated since the last record for the log file was written. By storing the detail

information incrementally and in a packed form, the utilization profile information

is less than 2% of the total disk space used in the environment.

JE tracks utilization profile information during live database operations. In most

cases, this is accomplished without additional latching by tracking utilization while

a latch is already held. The challenge in keeping utilization information accurate is

keeping it transactionally consistent, both during regular operation and during

recovery.

Berkeley DB Java Edition Architecture Page 17

While the detail information makes cleaning obsolete entries in a log file efficient,

we must still migrate the active entries to the end of the log. This requires updating

the live tree so parent nodes reflect the new location (LSN) of their migrated

children. The parents must be flushed to disk before the cleaned log file is deleted.

In many applications, especially those whose data sets do not fit in JE’s memory

cache, the migration of active nodes and the accompanying BIN update comprise

the bulk of the cleaning overhead.

JE needs to accomplish two goals with respect to cleaning. The first goal is to keep

the cost of node migration as low as possible. The second goal is to distribute the

work of migration among the threads of an application such that the cleaner keeps

up with the application’s activity. This second goal is particularly challenging for

applications whose working sets exceed the size of the JE cache. We use lazy

migration to address both of these goals.

Lazy migration defers both the migration of live nodes and the flushing of parent

nodes for as long as possible—until the next time the particular node is flushed

due to a checkpoint or eviction. Because multiple migrated LNs might have the

same parent BIN that needs to be flushed, deferring the flush significantly reduces

the number of times that BINs are written to the log. Additionally, by offloading

some cleaning activity into the checkpointer and evictor, the cleaner is better able

to keep up with write-intensive applications. Application threads perform eviction

before each database operation, and since cleaner migration is performed as part of

this eviction, the application is throttled appropriately.

While marking active LNs for lazy migration, the cleaner maintains a look-ahead

cache. When the cleaner latches a BIN to mark an LN for migration, it also checks

the look-ahead cache for other LNs belonging to that BIN. Since adjacent LNs

commonly migrate together, this look-ahead policy reduces the number of tree

lookups.

In general, the cleaner tries to achieve a target disk space utilization (50% by

default) for the database as a whole. However, even with lazy migration, the

cleaner can fall behind in some extreme cases. In these cases, the cleaner uses an

additional technique, called proactive migration.

If the cleaner is not meeting its target utilization, it maintains a list of files that will

be cleaned in order to meet the target. The evictor and checkpointer will then

proactively migrate LN entries in those files, working ahead of the cleaner,

reducing the amount of work performed as part of cleaning. This too has the effect

of throttling the application until equilibrium is reached.

No matter how efficient cleaning is, it is possible to create an application where a

single cleaner thread cannot keep up with the application threads performing I/O,

because the cleaner thread competes for I/O bandwidth to read the log files being

cleaned. This effect is most pronounced in applications with high write rates and

non-durable transactions. JE supports multiple cleaner threads to accommodate

such applications. Each thread cleans a separate log file. Alternately, increasing

Berkeley DB Java Edition Architecture Page 18

the size of the cleaner’s read buffer also helps the cleaner keep in in the presence

of write-hungry applications.

We expect that further improvements can be made in both cleaner efficiency and

balancing cleaning and application workloads. Based on historical experience with

log-structured file systems, it is likely that we will be tuning the cleaner for as long

as the JE software is maintained.

4. RELATED WORK

There are three types of prior work related to this paper. First, there is the

enormous literature on transactional systems. Second, there is the rich research

history in log-structured file systems. Lastly, there are a number of alternative pure

Java database implementations. We discuss each of these areas in the next three

sections.

4.1 Transactional Systems

The transaction concept grew out of the database community and data processing

needs of the early 70’s [13]. With a few notable exceptions, transactions were

entirely a service of the database management system until fairly recently. The

notable exception is the Quicksilver system [16], which used transactions

throughout a distributed system to provide consistent state management. In the

late 80’s and early 90’s there were a number of investigations of the feasibility of

providing transaction support in file systems [19, 25, 26], but none of these

approaches seemed to have broad impact. Instead, journaling file systems, which

borrow the database logging concept to provide meta-data integrity, have become

common [6, 11, 13]. More recently, the Reiser4 file system [23] fully embodies

transactional support. Each of the file system’s system calls is implemented as a

transaction, and the intention is to export transaction begin, commit, and abort

functionality to user-level.

To the best of our knowledge, Berkeley DB was the first system to provide full

transactional recovery in a library-package. This packaging allowed applications to

embed services typically found in DBMSs within an application, so that

applications could be deployed without requiring database administration. JE

addresses this same market in the context of a JVM or J2EE environment.

4.2 Log-Structured File Systems

Although the first relational database (System R [1]) used a no-overwrite storage

system, maintaining shadow copies of data until commit time, Ousterhout and

Rosenblum’s log-structured file system (LFS) [24] is the intellectual ancestor of the

JE design. JE implements all the ideas of a log-structured file system, but provides

a database abstraction rather than a file-system abstraction atop this segmented

log. While a conventional LFS uses fixed size segments for its log, JE uses files to

Berkeley DB Java Edition Architecture Page 19

represent segments. Since JE sits on top of a file system, JE is able to store more

meta-data to assist in optimizing the cleaning process.

There have been a number of studies criticizing LFS for excessive cleaner

overhead [27, 28], and this is a concern for JE as well. However, the fact that we

are targeting a Java environment allows us to make a set of assumptions that

simplify the problem.

First, we expect a large class of applications to have data that is entirely memory

resident. In these applications, cleaning’s I/O overhead, which is the typical

Achilles’ heel of log-structured file systems, is not a big issue. The only

performance impact results from the cleaner competing with the application for

CPU time. Increasing processing power and today’s multi-threaded processors

make this a smaller problem than it has been historically.

Second, memories are an order of magnitude larger today than a decade ago.

Larger memories allow for cleaning more data simultaneously, and aggregating data

during cleaning has been shown to lessen the burden of cleaning [28].

Third, disks are an order of magnitude larger today than a decade ago. Larger disks

allow cleaning to be postponed until down periods when the database

environment is not as active [4].

Fourth, the complexity of a log-structured file system implementation is found in

disk space accountability: log-structured solutions have a difficult time accounting

for disk space usage, and any specific write into the file system can consume more

blocks than are freed up by the write, leading to implementation complexity and

possible starvation. The JE implementation does not have to worry about either of

these issues, because it sits on top of a conventional file system.

4.3 Java Databases

There are a number of pure Java database products on the market today, although

none is directly comparable to JE.

There are a number of Java SQL products such as McKoi [20], HyperSonic SQL

[17], Axion [3], and Derby [10], all of which rely on a JDBC interface. Although

JDBC permits both embedded and client-server use, none of these products core

emphasis is on embedded use, so there is greater competition for resources within

the JVM using these products than there is with JE. Additionally, the reliance on

SQL means that programmers must organize and access data in a relational model

within the context of an object oriented language, while JE provides a natural

collections-oriented interface, a Direct Persistence Layer, and its native key/data

pair interface.

In the realm of more object-oriented data management products, db4o [9] is a

newcomer in this space. It provides “simple object data access” (SODA) as well as

query-by-example (QbE). However, db4o assumes that object graph storage is

Berkeley DB Java Edition Architecture Page 20

sufficient for all applications providing far less data management flexibility than is

available with JE.

Finally, there are a few simple Java persistent storage managers such as JDBM [18]

and Solinger SDBM [29]. They provide simple dbm/ndbm-like [2] access to

persistent data in Java, but do not provide multi-threaded access, nor do they

provide transactional guarantees, but are instead focused on relatively simple data

management.

5. APPLICATIONS USING JE

The key distinction between JE and the other systems discussed in the previous

section is its flexibility. If an application is not wedded to a SQL data management

interface, then JE can be molded to address practically every data management

need. Indeed, this is precisely what we observe in our customers’ applications. In

this section, we provide three examples of how customers are using JE.

5.1 Internet Archive’s Heritrix Web Crawler

The Internet Archive (archive.org) is an internet library that currently holds over

50 billion URLs (and rising). Heritrix is the Internet Archive’s open source Web

crawler. Its emphasis is on its pluggable, extensible architecture that facilitates

customization and external contribution. Historically, the size of Heritrix’s Web

crawl was bounded by a large in-memory Java collection. In adopting JE, the goal

was to retain the Java collection abstraction while handling a data set that could

exceed memory capacity without suffering a significant performance penalty.

Heritrix now uses JE to maintain a queue of all the URIs to crawl. JE is the

backend for a Java Map that caches these URIs and can grow without bound. This

application uses both the native API as well as the collections API, but does not

use transaction support.

The Internet Archive, using the Heritrix Web crawler, archives the majority of the

Internet for posterity. Old versions of most Web sites are available for all time.

This requires a massive amount of storage. They are investigating a petabyte-sized

storage system called the ‘Petabox’ (http://www.archive.org/web/petabox.php) of

their own design to manage the volume of data required for this task. Their

experience with JE has led them to begin working toward a JE-based backing store

for the Wayback Machine. When finished, this will quickly become one of the

largest databases in the world.

5.2 Amazing Media

Amazing Media provides a Web-based classified listings application. The

application architecture is service-based and services use JE as the repository for

persistent data. The design goal of the application is to keep services as simple as

Berkeley DB Java Edition Architecture Page 21

possible. One way of achieving this is to maintain an object-oriented view of the

data in the service, but provide transactional support, performance, and reliability.

The application provides familiar Java serialization via a custom implementation

with a high-performance, efficient transactional data storage. It uses dynamic

analysis of the “getters” and “setters” of the objects to identify which parts of the

object need to be persisted. The key characteristic of JE that made it suitable for

this application is its agnosticism with respect to the data it stores. This application

uses JE’s transactions and the native API, including secondary indexes.

5.3 TIBCO’s Business Events

BusinessEvents is a rule- and complex event-processing system used to correlate

events and execute rules based upon those correlations. It must provide highly

reliable, high throughput persistence of the system state, capable of meeting

TIBCO’s target event/second rates. In this application, JE is used to store system

state every 20-30 seconds, performing checkpointing and the ability to recover

after a failure. BusinessEvents uses the native API and transactions.

6. PERFORMANCE

We began this paper by citing some of the advantages of JE and its log-structured

architecture. Up to this point, we’ve focused largely on JE’s architecture and its

functional flexibility. In this section, we illustrate its performance characteristics.

We compare JE 2.1.30 to its JNI counterpart implemented atop Berkeley DB’s C

library using a pre-release version of 4.5 (referred to as JNI for the rest of this

paper). Such a comparison is not perfect as the C library has been in widespread

commercial use for nearly a decade and has been optimized, while JE has been in

commercial use for less than two years. JE has undergone much less extensive

performance tuning. Nonetheless, it is the best comparison available and

highlights the areas where JE’s architecture delivers outstanding performance.

6.1 Evaluation Platform

All the test results reported here were run on a Dell Inspiron 8600 running

Windows XP. The machine has a 1.8 GHz Pentium M with a 2 MB L2 cache and

1 GB of main memory. The default disk is a 7200 RPM 60 GB ATA-100 Hitachi

HT S726060M9AT00 with an 8 MB buffer.

6.2 Insert Performance

Our first test demonstrates how JE’s architecture delivers outstanding write

performance. The insert benchmark began with the database empty. We then

(transactionally) added 200,000 key/data pairs where the keys were 6-byte

alphanumeric strings and the data items were 294 bytes. The cache was sized so

that the entire database fit in the cache for both JE and JNI, but checkpoints were

Berkeley DB Java Edition Architecture Page 22

enabled. Since the database fits

entirely in memory, the only I/O

activity is due to log writes and

checkpoints. The systems are both

configured to commit

asynchronously, so log records are

written to disk only when the in-

memory buffer fills or at

checkpoint. The results in the

graph titled “In-memory Random

Insertion” show that the

benchmark performance is

determined completely by the system’s ability to write data to disk at checkpoint.

JE’s log-structured architecture delivers near-sequential disk write performance,

because data need only be written to the log. In contrast, JNI checkpoints must

update database pages in-place, producing random I/O performance.

6.3 Update Performance

JE’s log-structured storage provides

similar performance benefits when

we update existing data items. We

begin with the database created in

the Insert benchmark and then select

200,000 records uniformly at random

and update them. The graph titled

“Random Updates” demonstrates

JE’s write-optimized design,

delivering near sequential disk

performance instead of JNI’s random

disk performance.

6.4 Concurrency

Our next benchmark explores the improved concurrency possible due to JE’s

record level locking. This benchmark is similar to the one in Section 6.3, except

that rather than select the records uniformly at random, we skew the distribution

selecting less than 1% of the records for update. This sets the stage to explore the

behavior of the system under contention. Our expectation is that the record-level

locking of JE will produce better scalability than JNI’s page-level locking.

In-memory Random Insertion

0

5,000

10,000

15,000

20,000

0 5 10 15 20

of Threads

JNI

JE

In-Memory Random Updates

0

10000

20000

30000

0 5 10 15 20

of Threads

JE

JNI

Berkeley DB Java Edition Architecture Page 23

The graph titled “Contentious Updates”

shows that JE performs as we expect.

Its performance does not degrade under

a highly concurrent workload. With

200,000 items in the database, even with

20 threads selecting from among the

100 “hot” records, the probability that

two threads conflict is low. In contrast,

JNI’s page locking induces significant

hotspots, and throughput drops.

It is worth noting that in the single-thread case, JNI outperforms JE significantly.

The highly skewed access pattern in this benchmark means that JNI dirties only a

few pages (under 10); on checkpoint, it has little data to write to disk. Thus, in the

absence of contention, JNI performance is limited by its ability to flush data at

checkpoint, and there is so little data, the resulting performance is significantly

higher than we saw in earlier tests. In contrast, JE’s no-overwrite storage means

that log records are generated for each update even if the item being updated was

recently updated. This highlights the trade-offs inherent in conventional and no-

overwrite storage systems.

6.5 In-memory read Performance

Having demonstrated the outstanding

JE write performance, we next turn to

read performance. In this test we

populate the database as before

(200,000 key/data pairs with 6-byte

keys and 294-byte data items). This

time, once the database has been

populated, we iterate over the entire

data using a cursor. We present three

variations of this test: Degree-3

serializable reads (txn), Degree-1 dirty

reads (DirtyRead), and non-

transactional reads (noTxn). The graph titled “Read Performance” shows the

results. JNI locking is similar under all configurations and we observe little

difference between them. However, JE takes advantage of weaker semantics

delivering significant performance improvement. In the DirtyRead configuration,

JE bypasses the lock manager entirely, using the high-speed latches to control

concurrent access, producing the excellent JE-DirtyRead performance. In the non-

transactional case, even though JE must obtain more locks than JNI, its

performance is comparable and even slightly better than JNI’s. JE’s transactional

performance falls significantly below the non-transactional performance due to the

difference in the transactional and non-transactional locking implementations. The

Contentious Updates

0

15000

30000

45000

60000

0 5 10 15 20

of Threads

JNI

JE

Berkeley DB Java Edition Architecture Page 24

transactional implementation is optimized for collections of many locks and this

benchmark pays the overhead for these optimizations, even though there is only a

single data item being locked.

6.6 Recovery Performance

Our last test measures JE’s recovery

time to alleviate concerns over its

more complicated recovery

mechanisms. In this test, we produce

a large log file by running update

transactions similar to those used in

Section 6.3. Then we truncate that

log to a variety of sizes ranging from

10 to 100 MB and measure how long

it takes to recover the log file. As

shown in the graph titled “Recovery

Speed,” JE and JNI exhibit comparable recovery times, demonstrating that JE’s

more complicated recovery does not incur significant overhead, since recovery

time is dominated by the time to read the log and associated data items.

7. CONCLUSIONS

We have presented the design and implementation of the Berkeley DB Java

Edition, a native Java transactional data manager. JE’s log-structured storage

system delivers outstanding write performance without jeopardizing read

performance.

8. AVAILABILITY

Additional information about Berkeley DB Java Edition and the full product

including source code, documentation, sample code and test code is available for

download from:

http://www.oracle.com/technology/products/berkeley-db/je/index.html.

Recovery Speed

0

2

4

6

0 25 50 75 100

Log size (megabytes)

JE

JNI

Berkeley DB Java Edition Architecture Page 25

9. REFERENCES
1. Astrahan, M., et al, “System R: A Relational Approach to Database

Management,” ACM Transactions on Database Systems, p. 97, June 1976.
2. AT&T, DBM(3X), Unix Programmer’s Manual, Seventh Edition, Volume 1,

January, 1979.
3. Axion, http://axion.tigris.org, project home page.
4. Blackwell, T., Harris, J., Seltzer., M. “Heuristic Cleaning Algorithms in

Log-Structured File Systems,” Proceedings of the 1995 USENIX Technical
Conference, pp. 277–288, New Orleans, LA, Jan. 1995.

5. NDBM(3), 4.3BSD Unix Programmer’s Manual Reference Guide, University of
California, Berkeley, 1986.

6. Chutani, S., Anderson, O., Kazer, M., Leverett, B., Mason, W.A.,
Sidebotham, R. “The Episode File System,” Proceedings of the 1992 Winter
USENIX Technical Conference, pp. 43–60. San Francisco, CA, Jan. 1992.

7. Cloudscape, http://www-3.ibm.com/software/data/ cloudscape. Product
Overview.

8. Comer, D., “The Ubiquitous B-tree,” ACM Computing Surveys Volume 11,
number 2, June 1979.

9. db4objects: www.db4o.com.
10. Derby, http://incubator.apache.org/derby.
11. Elkhardt, K., Bayer, R. “A Database Cache for High Performance and

Fast Restart in Database Systems,” ACM Transactions on Database Systems,
9(4), pp. 503– 525. Dec. 1984.

12. Firstsql, http://www.firstsql.com, Home page.
13. Gray, J., “The transaction concept: Virtues and limitations,” Proceedings

of the Seventh International Conference on Very Large Databases, pp.
144–154, 1981.

14. Gray, J., Reuter, A. Transaction Processing: Concepts and Techniques. San Mateo,
CA: Morgan Kaufmann, 1993.

15. Hagmann, R. “Reimplementing the Cedar File System Using Logging and
Group Commit,” Proceedings of the 11th SOSP, pp. 155–162. Austin, TX,
Nov. 1987.

16. Haskin, R., Malachi, Y., Sawdon, W., Chan, G. “Recovery Management in
QuickSilver,” ACM Transactions on Computer Systems, 6(1), pp. 82–108. Feb.
1988.

17. Hypersonic SQL, http://hsqldb.sourceforge.net, software distribution
page.

18. JDBM, http://jdbm.sourceforge.net, software distribution page.
19. Kumar, A., Stonebraker, M., “Performance Evaluation of an Operating

System Transaction Manager,” Proceedings of the 13th International Conference
on Very Large Data Bases,” Brighton England, pp. 473-481, 1987.

20. McKoi, http://mckoi.com/, McKoi project home page.
21. Olson, M., Bostic, K., Seltzer, M., “Berkeley DB,” Proceedings of the 1999

Freenix Conference, Monterey, CA, June 1999.
22. Pointbase, http://www.pointbase.com, Pointbase home page.
23. ReiserFS4, http://www.namesys.com/v4/v4.html, Reiser4 design and

rationale.
24. Rosenblum, M., Ousterhout, J. “The Design and Implementation of a

Log-Structured File System,” ACM Transactions on Computer Systems, 10(1),
pp. 26–52. Feb. 1992.

Berkeley DB Java Edition Architecture Page 26

25. Seltzer, M., Stonebraker, M., “Transaction Support in Read Optimized
and Write Optimized File Systems,” Proceedings of the 16th International
Conference on Very Large Databases, Brisbane, Australia, 174–185, 1990.

26. Seltzer, M., “Transaction Support in a Log-Structured File System,”
Proceedings of the Ninth International Conference on Data Engineering, Vienna,
Austria, pp. 503–501, 1993.

27. Seltzer, M., Bostic, K., McKusick, M.K., Staelin, C. “An Implementation
of a Log-Structured File System for UNIX,” Proceedings of the 1993
USENIX Winter Technical Conference, pp. 307–326. San Diego, CA, Jan.
1993.

28. Seltzer, M., Smith, K., Balakrishnan, H., Chang, J., McMains, S.,
Padmanabhan, V. “File System Logging versus Clustering: A Performance
Comparison,” Proceedings of the 1995 USENIX Technical Conference, pp. 249–
264. New Orleans, LA, Jan. 1995.

29. Solinger SDBM, http://sourceforge.net/projects/solinger, software
distribution page.

30. Tanenbaum, Modern Operating Systems, second edition, pp. 182–183,
214–220, Prentice-Hall, Englewood, NJ, 2001.

Berkeley DB Java Edition Architecture

September 2006

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2006, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle

Corporation and/or its affiliates. Other names may be trademarks

of their respective owners.

