
java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-14421

The Design and
Implementation
of a Transactional
Data Manager

Charles Lamb
Architect
Sleepycat Software
http://www.sleepycat.com

Berkeley DB Java� Edition

| 2004 JavaOneSM Conference | Session TS-14422

Presentation Goal

Provide insight into the technical trade-offs
involved in implementing a robust,
high-performance, transactional database
in the Java� programming language

| 2004 JavaOneSM Conference | Session TS-14423

Agenda

Motivation and Overview
Code Examples
Log-Based, No-Overwrite Storage System
Highly Concurrent Tree Updates
Integration with Memory Management
Performance
Summary and Conclusions

| 2004 JavaOneSM Conference | Session TS-14424

Agenda

Motivation and Overview
Code Examples
Log-Based, No-Overwrite Storage System
Highly Concurrent Tree Updates
Integration with Memory Management
Performance
Summary and Conclusions

| 2004 JavaOneSM Conference | Session TS-14425

Motivation and Overview

� A small-footprint, high-speed, transactional
database for:
─ Backend storage or caching for web/app server
─ Embedded transactional database
─ Lightweight persistence for the Java

programming language
─ Traditional transaction processing

Berkeley DB Java� Edition

| 2004 JavaOneSM Conference | Session TS-14426

Motivation and Overview

� ACID properties
� B+Tree access method
� Record locking
─ Read-modify-write locks
─ Dirty reads

� Recovery
� Large database support
─ Hundreds of gigabytes of data
─ Tens of millions of records

Standard DBMS features

| 2004 JavaOneSM Conference | Session TS-14427

Motivation and Overview

� Log-based, no-overwrite storage system
� Highly concurrent tree updates
� Graceful interaction with JVM�

memory system

Unique features (discussed here)

| 2004 JavaOneSM Conference | Session TS-14428

Motivation and Overview

� Schema independent
� No ad-hoc queries
� In-memory speeds, no IPC

from client to server
� Lights-out operation
� N:M transaction:thread model
� Open source
� No native/Java Native Interface

(JNI) code

Unique features (not discussed here)

| 2004 JavaOneSM Conference | Session TS-14429

Motivation and Overview

� Log-based system improves performance
� Single-process, multi-threaded access
� Both steady and �bursty� workloads
� Read-mostly workloads
─ Support high-concurrency writes too

� Typically �in-memory� applications
─ But degrade gracefully if can�t fit in-memory

Design assumptions

| 2004 JavaOneSM Conference | Session TS-144210

Motivation and Overview

� Environment (think Relational DB �Database�)
─ JE Database(s) contained within environment
─ May be transactional
─ Sequentially numbered log files
─ Several daemon threads

� Database (think Relational DB �Table�)
─ Map: key/data pairs
─ May be transactional

Terminology

| 2004 JavaOneSM Conference | Session TS-144211

Motivation and Overview
JE in the application JVM process

JE Library (approx. 450KB code)

H
ea

p

Application code

JVM Process

File systemJE daemon threads

| 2004 JavaOneSM Conference | Session TS-144212

Motivation and Overview

� Persistent Collections API (built on base API)
─ Full implementation of Java Collections

Framework technology
─No new API to learn

─ Transactions, Iterators, exact and range queries,
joins (set intersection)

─ Transparent use of secondary indices, foreign keys
─ Bindings allow different marshalling options

─Compact form of Java API serialization
─DataInput/DataOutput style marshalling
─Strings and primitive wrapper classes

APIs

| 2004 JavaOneSM Conference | Session TS-144213

Motivation and Overview

� Base API
─ More specific operations than Persistent Collections
─ get/put of byte[] key/data pairs
─ Transactions, Cursors, exact and range queries,

joins (set intersection)
─ Secondary indices, foreign keys
─ Multi-threaded transactions
─ Explicit configuration for performance

related parameters

APIs

| 2004 JavaOneSM Conference | Session TS-144214

Agenda

Motivation and Overview
Code Examples
Log-Based, No-Overwrite Storage System
Highly Concurrent Tree Updates
Integration with Memory Management
Performance
Summary and Conclusions

| 2004 JavaOneSM Conference | Session TS-144215

Collections Example

import com.sleepycat.collections.TransactionRunner;
import com.sleepycat.collections.TransactionWorker;

public class MyWorker implements TransactionWorker {
...

private Environment env = new Environment(…);
...

static public void main(String argv[]) {
MyWorker worker = new MyWorker();
TransactionRunner runner =

new TransactionRunner(env);
runner.run(worker);

}

Create a transaction

| 2004 JavaOneSM Conference | Session TS-144216

Collections Example

import com.sleepycat.collections.StoredIterator;

public void doWork() { // in a transaction
// Add an entry
map.put(“myKey”, “myData”);
...
// Read entries back
Iterator iter = map.entrySet().iterator();
while (iter.hasNext()) {

Map.Entry entry = (Map.Entry) iter.next();
String keyStr = entry.getKey().toString();
System.out.println(keyStr + “ “ +

entry.getValue());
}
StoredIterator.close(iter);

}

Add an entry to a map, read entries back

| 2004 JavaOneSM Conference | Session TS-144217

Base API Example

import com.sleepycat.je.DatabaseEntry;
...

// Add an entry
Transaction txn =

env.beginTransaction(null, null);
DatabaseEntry key =

new DatabaseEntry(“myKey”.getBytes());
DatabaseEntry data =

new DatabaseEntry(“myData”.getBytes());
db.put(txn, key, data);
txn.commit();

Add an entry to a database

| 2004 JavaOneSM Conference | Session TS-144218

Base API Example

import com.sleepycat.je.Cursor;
...

Transaction txn =
env.beginTransaction(null, null);

Cursor cursor = db.openCursor(txn, null);
DatabaseEntry key = new DatabaseEntry();
DatabaseEntry data = new DatabaseEntry();
while (cursor.getNext

(key, data, LockMode.DEFAULT) ==
OperationStatus.SUCCESS) {

System.out.println(
new String(key.getData()) + “ “ +
new String(data.getData()));

}
cursor.close();
txn.commit();

Read entries back

| 2004 JavaOneSM Conference | Session TS-144219

Agenda

Motivation and Overview
Code Examples
Log-Based, No-Overwrite Storage System
Highly Concurrent Tree Updates
Integration with Memory Management
Performance
Summary and Conclusions

| 2004 JavaOneSM Conference | Session TS-144220

Log-Based, No-Overwrite
Storage System

� Based on work by
─ Ousterhout, Rosenblum (1991)1

─ Seltzer, Bostic, McKusick, Staelin (1993)2

� Data is written only once (even updates)
─ Disk head generally stays on same track
─ Inserts and updates are fast

� Data can�t be arbitrarily clustered
─ Out-of-cache reads are generally slower
─ Assumption: working set fits in memory

� Log and data (the �material DB�) are the same
� Backup and restore are simplified

Overview

| 2004 JavaOneSM Conference | Session TS-144221

Log-Based, No-Overwrite
Storage System

� Storage system uses NIO ByteBuffer
─ Makes it easy to set up a buffer pool
─ Caution: not thread safe
─ Caution: watch out for Direct Memory Buffers

in 1.4.2

Java technology NIO usage

| 2004 JavaOneSM Conference | Session TS-144222

Log-Based Storage System

� Every N MB�s, log switches to a new file
� Periodic consolidation is required
─ Background daemon thread
─ User invoked through API call

� Cleaner scans old log files
─ For each entry in the file, determine if it is in the tree

─Migrate live data to current log file
─Discard (by ignoring) obsolete data

─ If all records processed successfully, delete the file

Cleaner (Persistent Garbage Collector)

| 2004 JavaOneSM Conference | Session TS-144223

Log-Based Storage System

� Two cleaner functions
─ Data migration (easy)
─ Log file selection (harder)

─Maintain utilization info about �live� data per log file
─Stored in a database in the environment

� No additional files or file formats
� Recoverable

Cleaner log file selection

| 2004 JavaOneSM Conference | Session TS-144224

Log-Based Storage System

� Problem: How much IO/CPU is being used?
� Solution: Application invokes cleaner during

quiet times
─ Future: Application can set cleaner thread priority
─ Future: Allow cleaner to run in a thread pool

Cleaner challenges in
Java technology-based applications

| 2004 JavaOneSM Conference | Session TS-144225

Log-Based Storage System

� Full
─ Copy all log files

� Incremental
─ Copy all log files that are new or modified

since last backup

� No �holes� in the log means it is always
consistent

� Hot and cold backup are the same
─ No locks required during hot backup

Backup

| 2004 JavaOneSM Conference | Session TS-144226

Log-Based Storage System

� Recovery from system failure
─ Open the database, JE performs recovery

� Recovery from media failure
─ Restore log files from backup
─ Open the database, JE performs recovery

� Interval between checkpoints bounds
recovery time

Recovery

| 2004 JavaOneSM Conference | Session TS-144227

Agenda

Motivation and Overview
Code Examples
Log-Based, No-Overwrite Storage System
Highly Concurrent Tree Updates
Integration with Memory Management
Performance
Summary and Conclusions

| 2004 JavaOneSM Conference | Session TS-144228

LNLNLN

IN

LN

IN

LN LNLNLN

IN

LNLN

Tree structure

Highly Concurrent Tree Updates

IN = Internal Node (keys only)

ININ IN IN

LN = Leaf Node (keys + data)

| 2004 JavaOneSM Conference | Session TS-144229

Highly Concurrent Tree Updates

� Lightweight mutexes on internal data structures
� Exclusive and shared/exclusive varieties
� Never held across user API calls (short-lived)
� Deadlock avoidance, not deadlock detection
─ Multiple latch acquisitions require strict ordering

� synchronized keyword isn�t sufficient
─ Fairness (first come, first served) required
─ Shared/exclusive necessary

Latches

| 2004 JavaOneSM Conference | Session TS-144230

Highly Concurrent Tree Updates

� Heavyweight mutexes for locking records
─ Available with or without transactions

� Held across API calls
� Read (shared), write (exclusive) varieties
� Standard two-phase locking semantics
─ Held until transaction end or cursor advance

� Deadlocks are detectable
� Implemented using latches
� First come, first served behavior

Logical locks

| 2004 JavaOneSM Conference | Session TS-144231

Highly Concurrent Tree Updates

� Record-locking
� LNs (records) are locked, not latched
� INs are latched for short periods, not locked
� Latch couple INs during tree descent
� Never latch up the tree
─ Latching up can cause latch deadlocks
─ No parent pointers in the tree removes temptation

Tree latching and locking

| 2004 JavaOneSM Conference | Session TS-144232

Highly Concurrent Tree Updates

� INs do not require rollback
� INs may contain keys that are aborted

or not yet committed
─ Gets/puts block on LN lock during

concurrent access

� LNs are transactional
─ Aborts cause reversion to last committed LN
─ LNs are the final authority on key/data pairs

Impact on transactions and recovery

| 2004 JavaOneSM Conference | Session TS-144233

Highly Concurrent Tree Updates

� Tree splits
─ Opportunistic
─ Not undone in an abort

� Compressor
─ Tree rebalancing operations
─ Tree cleanup from delete operations

─Remove deleted LNs and empty subtrees
─ Daemon thread or API call

Compressor

| 2004 JavaOneSM Conference | Session TS-144234

Agenda

Motivation and Overview
Code Examples
Log-Based, No-Overwrite Storage System
Highly Concurrent Tree Updates
Integration with Memory Management
Performance
Summary and Conclusions

| 2004 JavaOneSM Conference | Session TS-144235

Integration With Memory Management

� JE shares JVM process with application
─ Lives within user-specified memory budget

� JE maintains it�s own memory cache
─ Approximates LRU behavior
─ JE cache chooses eviction target
─ Can�t use weak/soft references

The JE memory cache

| 2004 JavaOneSM Conference | Session TS-144236

Integration With Memory Management

� Determining actual object space usage
─ J2SE� 1.5 platform will help to calculate better

object overhead sizes (in the future)

� Maintaining total JE cache space usage

But�

� There�s no internal fragmentation
─ Everything is allocated as objects
─ No fixed size buffers/pages

Challenges

| 2004 JavaOneSM Conference | Session TS-144237

Integration With Memory Management

� Flushes memory cache
� Daemon or API call
� To evict an object
─ Select a victim (IN or LN)
─ Write to log if dirty
─ Null the reference to it
─ Let the GC do the rest

� One specialized concurrent data structure

Evictor

| 2004 JavaOneSM Conference | Session TS-144238

Integration With Memory Management

� Positives:
─ Objects have better granularity than pages

─Locking
─ I/O
─Memory management

─ Java technology is optimized for lots of
small objects

� Negative:
─ Variable object sizes harder to manage

Objects vs. pages

| 2004 JavaOneSM Conference | Session TS-144239

Agenda

Motivation and Overview
Code Examples
Log-Based, No-Overwrite Storage System
Highly Concurrent Tree Updates
Integration with Memory Management
Performance
Summary and Conclusions

| 2004 JavaOneSM Conference | Session TS-144240

Performance

� Commodity hardware ($1600)
─ Dual CPU Pentium Xeon, 2.4GHz, hyper-threading
─ 1024 MB memory
─ Windows XP
─ 7200 RPM IDE disk

� J2SE 1.4.2 platform
� 300 byte records
─ 6 bytes key + 294 bytes data

Benchmark configuration

| 2004 JavaOneSM Conference | Session TS-144241

Performance

� 20,000 x 300 byte records
� Baseline throughput (writes per second)
─ Straight java.nio writes with and without fsyncs*

Compared to�

� JE insert, update, delete throughput
─ Vary number of records per transaction
─ With and without fsyncs* at transaction commit

* �without fsyncs� implies non-durable transactions

Update benchmark methodology

| 2004 JavaOneSM Conference | Session TS-144242

Performance
Modifications per second

Source: Sleepycat internal performance measurement tests

1

10

100

1000

10000

100000

1 rec/txn 4 rec/txn 20 rec/txn non-
durable txn

Baseline
Insert
Update
Delete

CPU-bound
Disk-bound

N
ot

e:
 L

og
ar

ith
m

ic
 s

ca
le

| 2004 JavaOneSM Conference | Session TS-144243

Performance

� 200,000 x 300 byte records
� Sequential data scans of entire database
─ With and without locks/transactions
─ When transactions are enabled, benchmark

performs one complete scan per transaction

Compared to�

� Random reads
─ With and without locks/transactions
─ When transactions are enabled, benchmark

performs one read per transaction

Read benchmark methodology

| 2004 JavaOneSM Conference | Session TS-144244

Performance
Reads per second�Warm cache

Source: Sleepycat internal performance measurement tests

0

20,000

40,000

60,000

80,000

100,000

Scan Random

no txns, no locks
no txns, locks
txns, locks

N
ot

e:
 L

in
ea

r s
ca

le

| 2004 JavaOneSM Conference | Session TS-144245

Agenda

Motivation and Overview
Code Examples
Log-Based, No-Overwrite Storage System
Highly Concurrent Tree Updates
Integration with Memory Management
Performance
Summary and Conclusions

| 2004 JavaOneSM Conference | Session TS-144246

Summary

� Use of a log-based file system can improve
write performance

� Maintain synergy with the garbage collector
when managing memory in Java technology-
based applications

� Create special highly-concurrent structures
only as needed

� Optionally allow the application to manually
schedule daemon functions

| 2004 JavaOneSM Conference | Session TS-144247

Conclusion

� High performance transaction processing is
possible in the Java programming language
if appropriate techniques are used

| 2004 JavaOneSM Conference | Session TS-144248

For More Information

� http://www.sleepycat.com to download .jar,
source, Getting Started Guide, and docs

� References
─ 1 �The Design and Implementation of a

Log-Structured File System�, Proceedings of the
Thirteenth ACM Symposium on Operating System
Principles, October 13�16, 1991.

─ 2 �An Implementation of a Log-Structured File
System for UNIX®�, Proceedings 1993 Winter
USENIX, San Diego.

| 2004 JavaOneSM Conference | Session TS-1442 49

Q&A

java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-144250

The Design and
Implementation
of a Transactional
Data Manager

Charles Lamb
Architect
Sleepycat Software
http://www.sleepycat.com

Berkeley DB Java� Edition

