

Capacity planning for Oracle
NoSQL Database Cloud
Service

WHITE PAPER / FEBRUARY, 2020

2 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

[PAGE TITLE] TABLE OF CONTENT

Contents

white paper / October, 2018 Table of Content ... 1

Introduction .. 3

Provisioned Throughput Units ... 3

Write Units (WU) .. 3

Read Units (RU) .. 3

Storage Units ... 3

Specify provisioned throughput units ... 4

Modifying Throughput Settings .. 4

Factors that impact the capacity unit ... 4

Request unit consumption for Read and Write operations 5

Design ... 5

Read Operations (Gets, Selects) ... 5

Write Operations (Puts, Deletes, Updates) .. 7

Example of Read and Write units estimation ... 8

Optimize Oracle NoSQL Database Cloud Service provisioned unit usage 11

Summary ... 12

Appendix A .. 13

3 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

INTRODUCTION

When you use Oracle NoSQL Database Cloud Service, you don’t need to

provision CPU, memory or storage IOPS, but instead you must specify your

requirements for write, read and storage activity when creating the table

(referred to as provisioning). Throughput is specified in terms of write and

read units and storage is specified in gigabytes (GB). In the provisioning

process, Oracle NoSQL Database Cloud Service reserves those resources

to meet your application requirements, while ensuring sufficient, high

performance storage.

It’s important to properly evaluate how many write and read units you need

to provision. Provisioning too few units may result in some of your requests

getting throttled, and provisioning too many units may result in unused

performance. This white paper describes how you should approach

throughput estimation in Oracle NoSQL Database Cloud Service, and

presents an example with a sample workload for estimating write and read

units.

PROVISIONED THROUGHPUT UNITS

First, we need to define each of the units.

Write Units (WU)

One Write Unit (WU) is defined as the throughput of up to 1 KB of data per second for a write

operation.

Read Units (RU)

One Read Unit (RU) is defined as the throughput of up to 1 kilobyte (KB) of data per second for an

eventual consistent read operation (i.e., where the data returned may not be the most recently written

data to the database; if no new updates are made to the data, eventually all accesses to that data will

return the latest updated value). To achieve the throughput of up to 1 KB of data per second for an

absolute consistent read (i.e., where the data returned is expected to be the most recently written data

to the database), the equivalent of 2 Read Units would need to be provisioned.

For both RU and WU, if a record size is less than 1 KB, it is rounded up to 1 KB. For example, if it is

0.5 KB, then use 1 KB in the throughput calculation. If it is more than 1KB, then round up to the next

whole KB (i.e. record size of 3.4 KB is rounded up to 4 KB).

Storage Units

4 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

A storage unit is a measure of storage capacity used. One “Gigabyte Storage Capacity per Month” is

defined as a gigabyte (1073741824 bytes) of computer storage space used by a storage filer of the

Oracle Cloud Service during a month of the service. One (1) gigabyte (GB) of computer storage

provides space for user data and indexes.

Specify provisioned throughput units

Oracle NoSQL Database Cloud Service provides an API to specify the read and write throughput and

storage capacity for a table. A TableLimits instance is used during table creation to specify those

capacities/limits. This API takes as input the throughput units and storage unit.

For example, using the Java API to create a table with the limits set to 2000 RUs, 100 WUs and

storage of 500 GB, the application would issue the following request:

TableRequest tableRequest = new TableRequest()

 .setStatement(“create table if not exists user(id integer,

 FirstName string, LastName string, ZipCode integer,

 weight double, primary key(id))”)

 .setTableLimits(new TableLimits(2000, 100, 500))

 .setTimeout(1000);

 TableResult res = conn.tableRequest(tableRequest);

Modifying Throughput Settings

The same TableLimits instance that is used during table creation is also used to change the limits of

an existing table. This provides an easy and consistent interface. The operation is performed without

any downtime, and typically takes effect as soon as the API call returns.

Factors that impact the capacity unit

Before you provision the capacity units, it’s important to consider the following variables that impact

the read, write and storage capacities.

 Record size: As size increases, the number of capacity units consumed to write or read the

data also increases.

 Data consistency: Eventual consistent reads are one half the cost of absolute consistent

reads.

 Secondary Indexes: When a record in a table is added, updated, or deleted, updating the

secondary indexes consumes write units. The total provisioned throughput cost for a write is

the sum of write units consumed by writing to the table and those consumed by updating the

local secondary indexes.

 Data modeling choice: With schema-less JSON, each document is self-describing which

adds meta-data overhead to the overall size of the record. With fixed schema tables, the

overhead for each record is exactly one byte.

 Query patterns: The number of query results, the number of predicates, the size of the

source data, and projections all affect the cost of query operations. A query based on a full

table scan would consume more throughput than a query that’s based on a key only scan

(e.g. this query, with ID as the primary key, “SELECT ID FROM T1 WHERE ID >1” performs a

5 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

“key only” scan and consumes less throughput than this query “SELECT * FROM T1 WHERE

ID >1” performing an index scan, but must read the entire record after scanning the index).

REQUEST UNIT CONSUMPTION FOR READ AND WRITE OPERATIONS

DESIGN

While determining your read and write consumption needs, it is important to understand how different

operations impact those read and write consumption needs.

Read Operations (Gets, Selects)

The following describes how Oracle NoSQL Database Cloud Service operations consume read units:

As mentioned previously, record sizes are rounded up to the next whole KB boundary.

Read operations are broken down into two buckets, reading a single record with a GET request and

reading records with a SQL select query.

For every SQL select operation there can be a 2 KB fixed consumption cost for preparing the

statement. If an explicit prepare statement is used, the cost is on that statement. This is the optimal

approach. If the prepare statement does not exist, it is done internally and charged against the select.

For every SQL select operation there is at least 1 read consumed on an index read.

Through the use of the QueryRequest() API, two types of limits can be set, namely, one limiting the

number of rows returned and another limiting the total data read. If a query returns more rows than

the limit, each group returned is called a batch. If limits are set and triggered, there is a 1KB cost for

each batch.

We will use the following table definition T1 to illustrate the concepts:

T1 (id integer, primary key (id), c1 string, c2 string) record size is 1.5KB

1. Get request example with reads:

 MapValue key = new MapValue().put("id", 10);

 GetRequest getRequest = new GetRequest()

 .setKey(key)

 .setTableName("T1");

 GetResult getRes = handle.get(getRequest);

This will consume the following read units:

 record size rounded up = 2 KB (record)

 If using absolute consistent reads, the consumption would be:

 Record size * 2 = 2 KB (record) * 2 = 4 KB

Using a GET is the most inexpensive read operation. The cost is determined by the size of

the record rounded up, and the read consistency.

6 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

2. Query examples with reads

The consumption from a query depends on whether we are querying by primary key or by

secondary key. In these formulas, we are assuming the optimal approach and have issued a

prepare statement in advance. This 2KB cost is not figured into the select statement

calculations below.

 Primary key case using the following query

 SELECT * from t1 where id = 1

 This consumes the following read units:

 Record size + 1 KB (for index read) =

 2 KB (record) + 1 KB (index) = 3 KB

 If using absolute consistent reads, the consumption would be 2 * 3 KB = 6 KB

If we extend this example and instead of selecting 1 record, we go ahead and want

all the records in the table then we would multiply the record and index parts by the

number of records (assume 100 records).

2 KB (record) * 100 + 1 KB (index) * 100 = 300 KB

Extending this example further, if you do a full table scan and no records matched

the predicates (returning 0 rows) there still would be 300 KB consumed because all

the records needed to be looked at.

 Secondary key case

When querying with a secondary index many records may match a given secondary

index entry. Much like we did for the full table scan, we need to multiply by the

number of records that matched on the record and index.

Let’s add a secondary index to our table:

Create index c_idx on table t1 (c1);

Let’s use this query as our example and assume it returns 10 rows:

select * from t1 where c1 = "nosql";

This will consume the following read units:

Record size * (number of records) + 1 KB index * (number of

records) =

2 KB (record) * 10 + 1 KB (index) * 10 = 30 KB

7 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

If there wasn’t a secondary index on the table, this query would have resulted in a

full table scan and would have consumed 300 KB (see above). Hence, you can

lower your provisioned read unit costs by carefully examining your queries for the

possibility of adding secondary indexes.

Write Operations (Puts, Deletes, Updates)

The following describes how Oracle NoSQL Database Cloud Service operations consume write units.

In nearly all the formulas, absolute consistent reads are needed to guarantee we are reading the most

recent record.

1. Put

In a put operation, you account for the insert of the record as well as the index. The put

operation can be performed conditionally or unconditionally. If done conditionally, then

there are read units consumed in addition to write units. Those reads are done with absolute

consistency so there is a multiplier of 2 in the formula. It is possible that a single put

operation incurs several index operations and this needs to be taken into account.

A. Unconditional – the formula is shown below

Write KB = record size + 1 KB (index) * Number of secondary

index writes

B. Conditional (use of IfAbsent or IfPresent) - the formula is shown below. In the

IfAbsent case, the “original record size” is zero. This is effectively an update

statement. With 1 secondary index the “number of secondary index values

changed” is 2 if using IfPresent and 1 if using IfAbsent.

Write KB = original record size + new record size + 1 KB

(index) * Number of secondary index values changed

Read KB = 1 KB (index) * 2

2. Delete

The default behavior for a delete is to delete the row if it exists. A delete incurs both read

and write unit costs. Since we have to guarantee we are looking at the most current version

of the row, absolute consistent reads are used, therefor the 2 mulitplier in the read unit

formula. Several index writes are possible. The formulas are:

Read KB = 1 KB (index) * 2

Write KB = Record size + 1 KB (index) * Number of secondary index

writes

3. Update

When rows are updated using a query (SQL statement), then both read and write units are

consumed. Depending on the update it may need to read the primary key, secondary key, or

even the record itself. Absolute consistent reads are needed.

Read KB = Record size * 2 + [1 KB (index)* number of secondary

index reads] * 2

Write KB = original record size + new record size + 1 KB (index) *

Number of secondary index writes

8 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

Example update:

Table Users (id integer, name string, age integer, primary key(id))

The table has index on name and age. Record size: 1 KB

Case 1: Modify users age

UPDATE Users u SET u.age = 31 WHERE u.id = 1;

This operation consumes the following:

Read KB = 1 KB * 2 + 1 KB (age index) * 2 = 4 KB

Write KB = 1 KB (old record) + 1 KB (new record) + 1 KB * 1(update to age index) = 3 KB

Case 2: Modify users name and age

UPDATE Users u SET u.age = 31 SET u.name = john.doe WHERE u.id = 1;

This operation consumes the following:

Read KB = 1 KB * 2 + 2 KB (age index and name index) * 2 = 6 KB

Write KB = 1 KB (old record) + 1 KB (new record) + 1 KB * 2(update to age index and name

index) = 4 KB

EXAMPLE OF READ AND WRITE UNITS ESTIMATION

Let's take a real world example of how to estimate read and write capacities. In this example, we are

using Oracle NoSQL Database Cloud Service to store a product catalog for an e-commerce

application. The process of estimation is broken into the following steps:

Step 1: Identify the data model (JSON or fixed-table), record and key size for the application.

We are using a JSON model and have created a simple table with 2 columns: a record identifier

(primary key) and JSON document for the product details. There is overhead in this case because

each document is self-describing.

The JSON document, which is just under 1 KB in size when stored in the database because of

compression, is shown in Appendix A.

Let’s assume this application has 100,000 records. The primary key is a unique identifier for the record

and is 20 bytes in size. Prepare statements have been used, therefore the select statement will not

have the 2 KB fixed cost.

Also, for this example some queries read records via a secondary index (i.e. find all the records that

have screen size of 13 inches). Thus, we need an index created on the screen-size field (one

secondary index).

This information is summarized below:

9 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

Tables Rows

per

table

Columns

per table

Key

Size

bytes

 Value Size

bytes

(sum all

columns)

Indexes

Index

Key

Size

bytes

1 100000 2 20 2 KB 1 20

Step 2: Identify the list of operations (typically CRUD operations and Index reads) on the table and at

what rate (per second) these are expected:

Operation Number of operations per sec

Create Records 3

Read the records via Primary Key

(i.e. read the product document via product id)

300

Read the records via Secondary Index

(i.e. get all documents that have screen size of 13 inches)

10

Update records

(i.e. update the product description or add a new attribute)

5

Delete records 1

Step 3 Identify the read and write consumption in KB.

Operation Read Consumption in KB Write Consumption in KB

Create records 0 (not checking if the key exists) Record size + 1 KB (index)

*(number of indexes)

= 1 KB + 1 KB (1) = 2 KB

Let's assume the records are

created without perform any

conditional check.

10 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

GET by primary

key

Record size

= 1 KB

0

Query records by

secondary index

[1 KB (index) + record size] * Number of

records matched

Let's assume 100 records are returned

100 * (1 KB + 1 KB) = 200 KB

There's also some variable overhead

depending on how many batches are

returned and the size limit that is set for

query

Let's say this variable consumption is 10

KB

So, the total KB consumption is:

200 KB + 10 KB = 210 KB

0

Update 1 KB (index) * 2 + Record size*2

= 2 KB + 2 KB = 4 KB

original record size + new

record size + 1KB (index)

(number of writes)

1 KB + 1 KB + 1 KB = 3 KB

Let's assume the updated

record is same size as old (1

KB)

Delete 1 KB (index) * 2 =

1 KB x 2 = 2 KB

 Record size + 1 KB (Index)*

(number of indexes)

= 1 KB + 1 KB (1 index) = 2

KB

Then, using the above KB consumption, we determine read and write units for our workload that we

identified in step #2 above

Operations # Read Units/sec Write Units/sec

Create 3 0 6

11 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

Get by primary key 300 300 0

Query by Index 10 2100 0

Update 5 20 15

Delete 1 2 2

Total 2422 23

So, the table needs to be created with a provisioned throughput of 2422 Read Units and 23 Write

Units.

Note: The preceding calculations assume eventual consistent read requests. For an absolute

consistent read request, the read capacity units would be 4844 Read Units.

ESTIMATING THE MONTHLY COST

After calculating the capacity units, the next step is determine the cost. Oracle provides you with a cost

estimator to figure out your monthly usage and costs before you commit to a subscription model or an

amount.

The Cost Estimator automatically calculates your monthly cost based on your input of read units, write

units, and storage.

Access the Cost Estimator on the Oracle Cloud website. Select the Data Management check box.

Scroll through to locate Oracle NoSQL Database Cloud, and click Add to add an entry for Oracle

NoSQL Database Cloud under the Configuration Options. Expand NoSQL Database to find the

different Utilization and configuration options. Input values for the Utilization and Configuration

parameters to estimate the cost for Oracle NoSQL Database Cloud Service usage from your Oracle

Cloud Pay-As-You-Go and Monthly Flex subscriptions.

OPTIMIZE ORACLE NOSQL DATABASE CLOUD SERVICE PROVISIONED UNIT USAGE

Here is the recommended workflow to optimize Oracle NoSQL Database Cloud Service provisioned

unit usage:

 Perform an initial, rough evaluation using the capacity calculator.

 Use the Oracle NoSQL Database Cloud Service API to benefit from automatic retries when

requests get throttled and make sure that your application code gracefully supports the case

when all retries fail. You can implement oracle.nosql.driver.RetryHandler to define the retry

strategy. Then set the RetryHandler through NoSQLHandleConfig.setRetryHandler. When

the request gets throttled, you will see oracle.nosql.driver.ThrottlingException which could be

https://www.oracle.com/cloud/cost-estimator.html

12 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

further classified into three subtypes: ReadThrottlingException, WriteThrottlingException,

OperationThrottlingException.

 Monitor throttling errors from the API. Start with conservative limits such as 10 throttled

requests over the last 15 minutes and switch to more permissive rules once you figure out

your actual consumption (remember that occasional throttles are fine, they show that you’re

close to the limits you’ve set and that’s what you want to do). For monitoring you can use

the class TableUsageResult API. In the TableUsageRequest you can

specify startTime() and endTime() to return the usage for the specified time

range. TableUsageResult contains a TableUsage array. Each entry in the TableUsage array

represents the table usage stats during

the TableUsage.secondsInPeriod from TableUsage.startTimeMillis. You can add

up TableUsage.readThrottleCount to get a count of all of the throttling requests that you

received in the last 15 minutes.

 Use the monitoring API to understand the traffic pattern, so you can consider the need to

dynamically adjust your throughput provisioning over time, perhaps over a day or week. As

stated earlier, there is an API available to monitor table usage stats

through TableUsageResult. You could

sum readThrottleCount, writeThrottleCount or storageThrottleCount over day/week to

understand the traffic pattern.

 Regularly monitor the provisioned vs. consumed capacity unit ratio to make sure you have

not over-provisioned your table.

 Scale your throughput elastically and on-demand. Monitoring the consumption of your

request units and the ratio of throttled requests could reveal that you don’t need to keep a

constant performance level throughout the day or the week; many web applications receive

less traffic at night or during the weekend.

SUMMARY

Oracle NoSQL Database Cloud Service is a fully managed database service that provides high

performance with seamless scalability. It frees the IT department from the headaches of provisioning

hardware and systems software, setting up and configuring a distributed database cluster, and

managing ongoing cluster operations. There are no hardware administration costs since there is no

hardware to maintain.

By identifying your workload, and identifying the typical operations that you need to perform, it is

possible to estimate the read and write units that would needed for your workload.

13 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

APPENDIX A

Sample JSON record

{

 "additionalFeatures": "Front Facing 1.3MP Camera",

 "os": "Macintosh OS X 10.7",

 "battery": {

 "type": "Lithium Ion (Li-Ion) (7000 mAH)",

 "standbytime" : "24 hours"

 },

 "camera": {

 "features": [

 "Flash",

 "Video"

],

 "primary": "5.0 megapixels"

 },

 "connectivity": {

 "bluetooth": "Bluetooth 2.1",

 "cell": "T-mobile HSPA+ @ 2100/1900/AWS/850 MHz",

 "gps": true,

 "infrared": false,

 "wifi": "802.11 b/g"

 },

 "description": "Apple iBook is the best in class computer for your professional and personal work.",

 "display": {

 "screenResolution": "WVGA (1280 x 968)",

 "screenSize": "13.0 inches"

 },

 "hardware": {

 "accelerometer": true,

 "audioJack": "3.5mm",

 "cpu": "Intel i7 2.5 GHz",

 "fmRadio": false,

 "physicalKeyboard": false,

 "usb": "USB 3.0"

 },

 "id": "appleproduct_1",

 "images": [

 "img/apple-laptop.jpg"

],

 "name": "Myshop.com : Apple iBook",

14 WHITE PAPER / Capacity planning for Oracle NoSQL Database Cloud Service

 "sizeAndWeight": {

 "dimensions": [

 "300 mm (w)",

 "300 mm (h)",

 "12.4 mm (d)"

],

 "weight": "1250.0 grams"

 },

 "storage": {

 "hdd": "750GB",

 "ram": "8GB"

 }

}

ORACLE CORPORATION

Worldwide Headquarters

500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries

TELE + 1.650.506.7000 + 1.800.ORACLE1

FAX + 1.650.506.7200

oracle.com

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com/nosql facebook.com/oracle twitter.com/oraclenosql

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are

subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed

orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks

of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0220

Oracle NoSQL Database Cloud V14

February 2020

Author: Anand Chandak, Michael Brey,

https://www.oracle.com/
http://www.oracle.com/contact

