

ORACLE®

Session 1: Introduction to Oracle's R Technologies

Mark Hornick, Director, Oracle Advanced Analytics Development Oracle Advanced Analytics

©2014 Oracle - All Rights Reserved

Topics

- What is R?
- Oracle R Enterprise motivation and overview
- Oracle R Distribution
- ROracle
- Oracle R Advanced Analytics for Hadoop
- Next level view Oracle R Enterprise
- Oracle Advanced Analytics option
 - Oracle R Enterprise
 - Oracle Data Mining
- Summary

What is R?

R is an Open Source scripting language and environment for statistical computing and graphics

http://www.R-project.org/

- The R environment
 - R is an integrated suite of software facilities for data manipulation, calculation and graphical display
- Around 2 million R users worldwide
 - Widely taught in Universities
 - Many Corporate Analysts and Data Scientists know and use R
- Thousands of open sources packages to enhance productivity such as:
 - Bioinformatics with R
 - Spatial Statistics with R
 - Financial Market Analysis with R
 - Linear and Non Linear Modeling

CRAN
Mirrors
What's new?
Task Views
Search

About R
R Homepage
The R Journal

R Sources
R Binaries
Packages

Other

Documentation
Manuals
FAOs
Contributed

CRAN Task Views

<u>Bayesian</u> Bayesian Inference

 ChemPhys
 Chemometrics and Computational Physics

 ClinicalTrials
 Clinical Trial Design, Monitoring, and Analysis

 Cluster
 Cluster Analysis & Finite Mixture Models

<u>Distributions</u> Probability Distributions
<u>Econometrics</u> Computational Econometrics

Environmetrics Analysis of Ecological and Environmental Data

ExperimentalDesign Design of Experiments (DoE) & Analysis of Experimental Data

Finance Empirical Finance

Genetics Statistical Genetics

Graphic Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization

gRaphical Models in R

<u>HighPerformanceComputing</u> High-Performance and Parallel Computing with R

Machine Learning & Statistical Learning

 MedicalImaging
 Medical Image Analysis

 Multivariate
 Multivariate Statistics

 NaturalLanguageProcessing
 Natural Language Processing

 Official Statistics
 Official Statistics & Survey Methodology

 Optimization
 Optimization and Mathematical Programming

Pharmacokinetics Analysis of Pharmacokinetic Data

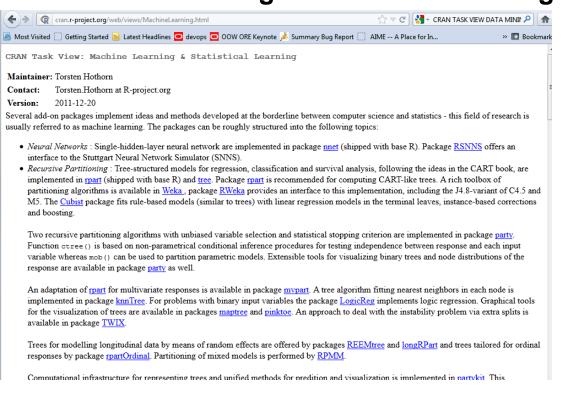
<u>Phylogenetics</u> Phylogenetics, Especially Comparative Methods

<u>Psychometrics</u> Psychometric Models and Methods

 ReproducibleResearch
 Reproducible Research

 Robust
 Robust Statistical Methods

 SocialSciences
 Statistics for the Social Sciences


 Spatial
 Analysis of Spatial Data

 Survival
 Survival Analysis

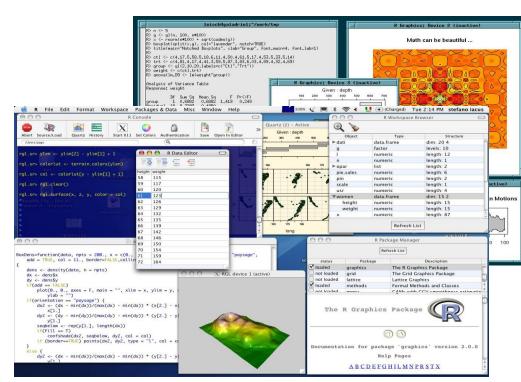
 TimeSeries
 Time Series Analysis

CRAN Task View – Machine Learning & Statistical Learning

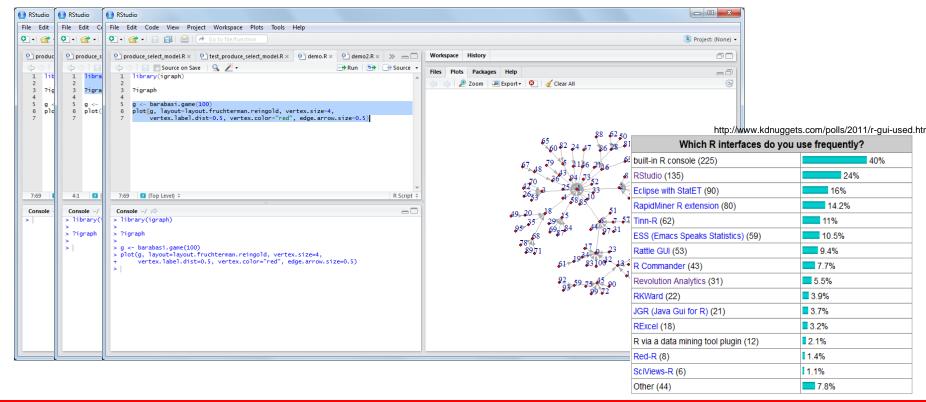
	arules	•	ncvreg
	BayesTree	•	nnet (core)
	Boruta	•	oblique.tree
	ВРНО	•	obliqueRF
	bst	•	pamr
	caret	•	party
	CORElearn	•	partykit
	CoxBoost	•	penalized
	Cubist	•	penalizedSVM
	e1071 (core)	•	predbayescor
	earth	•	quantregForest
	elasticnet	•	randomForest (core)
	ElemStatLearn	•	randomSurvivalForest
•	evtree	•	rattle
•	gafit	•	rda
•	GAMBoost	•	rdetools
•	gamboostLSS	•	REEMtree
•	gbev	•	relaxo
•	gbm (core)	•	rgenoud
•	glmnet	•	rgp
•	glmpath	•	rminer
•	GMMBoost	•	ROCR
•	grplasso	•	rpart (core)
•	hda	•	rpartOrdinal
•	ipred	•	RPMM
•	kernlab (core)	•	RSNNS
•	klaR	•	RWeka
•	lars	•	sda
•	lasso2	•	SDDA
•	LiblineaR	•	svmpath
•	LogicForest	•	tgp
•	LogicReg	•	tree
•	longRPart	•	TWIX
•	mboost (core)	•	varSelRF
			ORA

mvpart

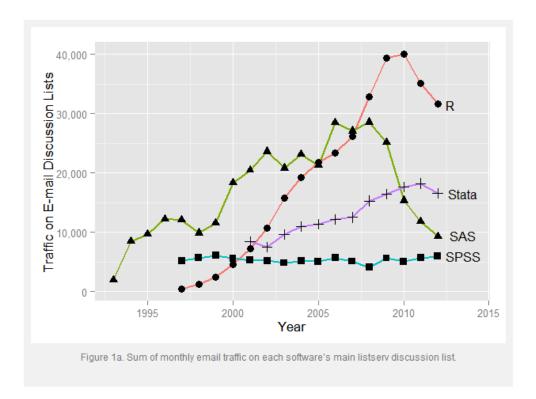
ahaz


Why statisticians | data analysts | data scientists use R

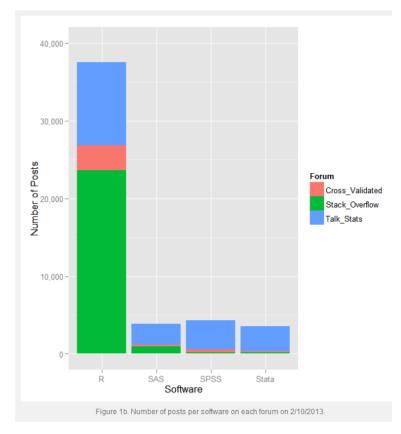
R is a statistics language similar to Base SAS or SPSS statistics


R environment is ..

- Powerful
- Extensible
- Graphical
- Extensive statistics
- OOTB functionality with many 'knobs' but smart defaults
- Ease of installation and use
- Free

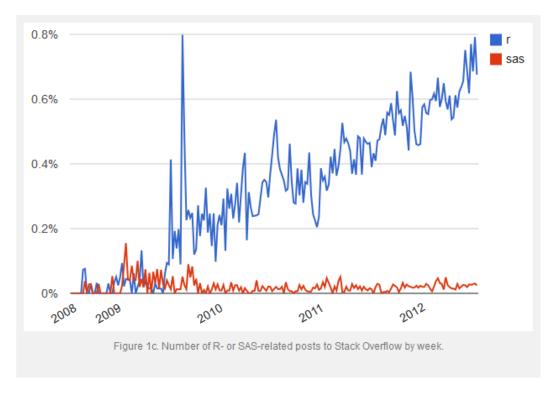

http://cran.r-project.org/

Third Party Open Source IDEs, e.g., RStudio


R's Popularity

"We can see that discussion of R has grown the most rapidly and, for the past few years, R is the most discussed software by an almost two-to-one margin."

http://r4stats.com/articles/popularity/


R's Popularity

http://r4stats.com/articles/popularity/

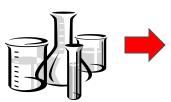
R's Popularity

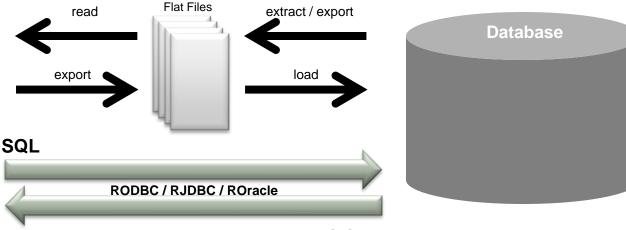
http://r4stats.com/articles/popularity/

Three concerns for enterprise data analytics

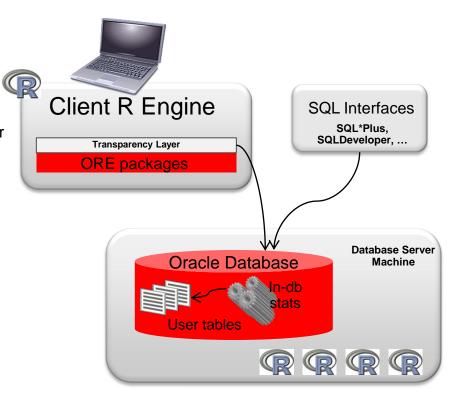
Scalability

Performance

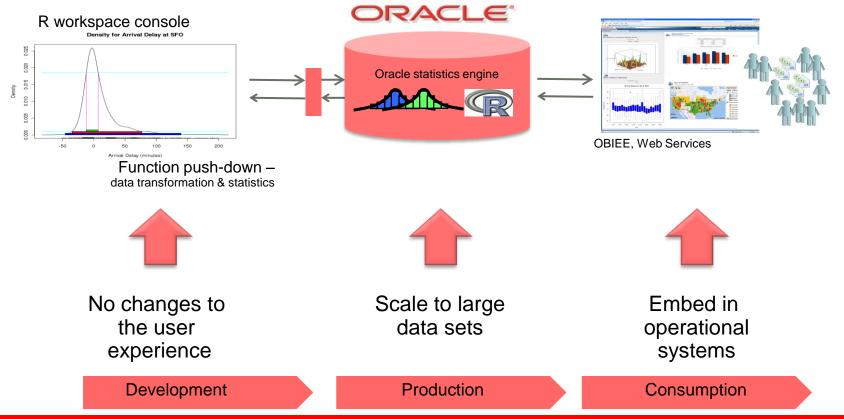



Production Deployment

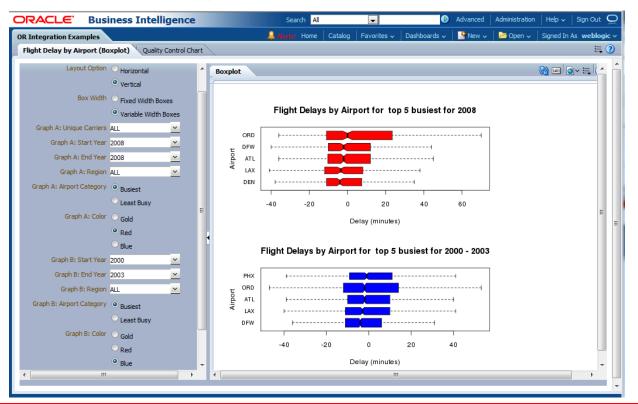
Traditional R and Database Interaction



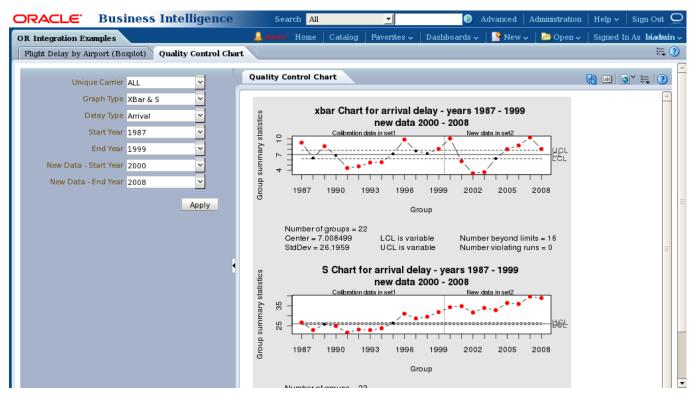
- Paradigm shift: R → SQL → R
- R memory limitation data size, call-by-value
- R single threaded
- Access latency, backup, recovery, security...?
- Ad hoc script execution


Target Environment with ORE

- A comprehensive, database-centric environment for end-to-end analytical processes in R, with immediate deployment to production environments
- Operationalize entire R scripts in production applications eliminate porting R code
- Seamlessly leverage Oracle Database as an HPC environment for R scripts, providing data parallelism and resource management
- Avoid reinventing code to integrate R results into existing applications
- Transparently analyze and manipulate data in Oracle Database through R using versatile and customizable R functions
- Eliminate memory constraint of client R engine
- Score R models in Oracle Database
- Execute R scripts through Oracle Database server machine for scalability and performance
- Get maximum value from your Oracle Database and Exadata
- Enable integration and management through SQL
- Integrate R into the IT software stack, e.g. OBIEE



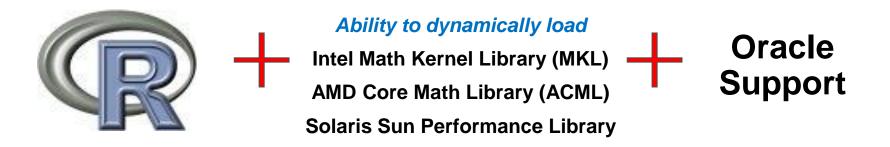
Oracle R Enterprise


OBIEE Dashboard

Parameterized data selection and graph customization

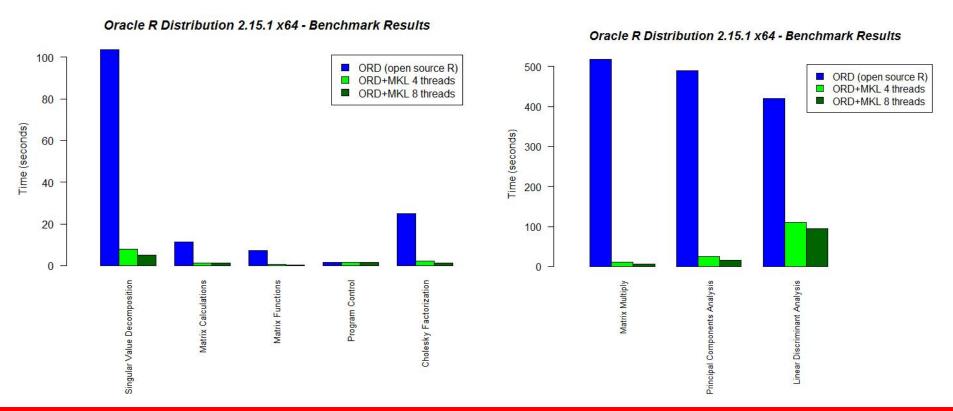
OBIEE Dashboard

Leverage open source R packages



Oracle's R Strategic Offerings

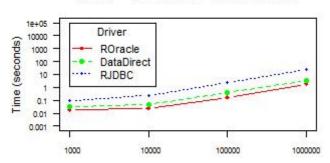
Deliver enterprise-level advanced analytics based on R environment

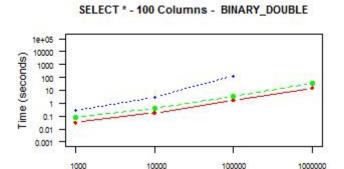

- Oracle R Enterprise
 - Transparent access to database-resident data from R
 - Embedded R script execution through database managed R engines with SQL language integration
 - Statistics engine
- Oracle R Distribution
 - Free download, pre-installed on Oracle Big Data Appliance, bundled with Oracle Linux
 - Enterprise support for customers of Oracle R Enterprise, Big Data Appliance, and Oracle Linux
 - Enhanced linear algebra performance using Intel, AMD, or Solaris libraries
- ROracle
 - Open source Oracle database interface driver for R based on OCI
 - Maintainer is Oracle rebuilt from the ground up
 - Optimizations and bug fixes made available to open source community
- Oracle R Advanced Analytics for Hadoop
 - R interface to Oracle Hadoop Cluster on BDA
 - Access and manipulate data in HDFS, database, and file system
 - Write MapReduce functions using R and execute through natural R interface
 - Leverage native MapReduce advanced analytic techniques built on the framework

Oracle R Distribution

- Improve scalability at client and database for embedded R execution
- Enhanced linear algebra performance using Intel's MKL, AMD's ACML, and Sun Performance Library for Solaris
- Enterprise support for customers of Oracle Advanced Analytics option,
 Big Data Appliance, and Oracle Linux
- Free download
- Oracle to contribute bug fixes and enhancements to open source R

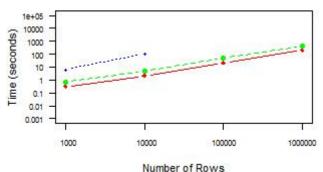
ORD Performance with MKL




ROracle

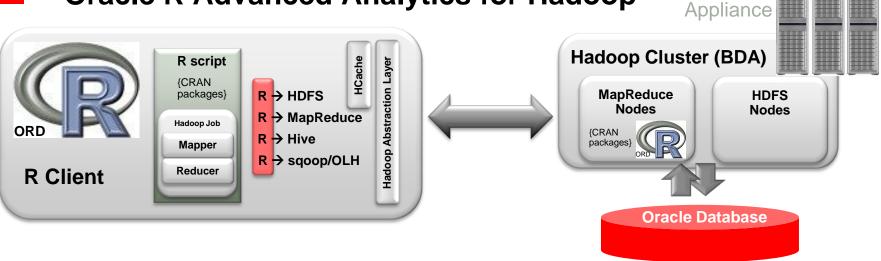
- R package enabling connectivity to Oracle Database
 - Open source
 - Publicly available on CRAN
- Execute SQL statements from R interface
- Enables transactional behavior for insert, update, and delete
- Oracle Database Interface (DBI) for R
- DBI –compliant Oracle driver based on OCI
- Requirements
 - Oracle Instant Client allows running applications without installing the standard Oracle
 Database Client or having an ORACLE_HOME. OCI, OCCI, Pro*C, ODBC, and JDBC applications
 work without modification, while using significantly less disk space. SQL*Plus can also be used
 with Instant Client.
 - Or, the standard Oracle Database Client

Comparison loading database table to R data.frame



ROracle

- Up to 79X faster than RJDBC
- Up to 2.5X faster than RODBC
- Scales across NUMBER, VARCHAR2,
 TIMESTAMP data types



ORACLE

ROracle Example – rolling back transactions

```
drv <- dbDriver("Oracle")</pre>
con <- dbConnect(drv, username = "scott", password = "tiger")</pre>
dbReadTable(con, "EMP")
rs <- dbSendQuery(con, "delete from emp where deptno = 10")
dbReadTable(con, "EMP")
if(dbGetInfo(rs, what = "rowsAffected") > 1){
   warning("dubious deletion -- rolling back transaction")
   dbRollback (con)
dbReadTable(con, "EMP")
```

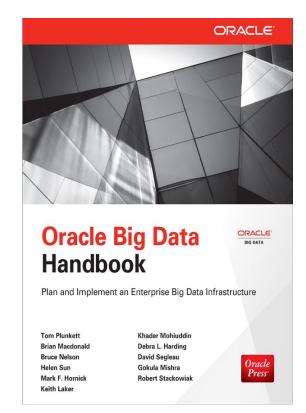
Oracle R Advanced Analytics for Hadoop

- Expand user population that can build models on Hadoop
- Accelerate rate at which business problems are tackled
- Deliver analytics that scale with data volumes, variables, techniques

- Provide transparent access to Hadoop Cluster
- Manipulate data in HDFS, database, and file system all from R
- Write and execute MapReduce jobs with R
- Leverage CRAN R packages to work on HDFS-resident data
- Move from lab to production without requiring knowledge of Hadoop internals, Hadoop CLI, or IT infrastructure

ORAAH Analytics Functions

Function	Description
orch.cor	Correlation matrix computation
orch.cov	Covariance matrix computation
orch.kmeans	Perform k-means clustering on a data matrix stored as an HDFS file. Score data using orch.predict.
orch.lm	Fits a linear model using tall-and-skinny QR (TSQR) factorization and parallel distribution. The function computes the same statistical parameters as the Oracle R Enterprise ore.lm function. Score data using orch.predict.
orch.lmf	Fits a low rank matrix factorization model using either the jellyfish algorithm or the Mahout alternating least squares with weighted regularization (ALS-WR) algorithm.
orch.neural	Provides a neural network to model complex, nonlinear relationships between inputs and outputs, or to find patterns in the data. Score data using orch.predict.
orch.nmf	Provides the main entry point to create a nonnegative matrix factorization model using the jellyfish algorithm. This function can work on much larger data sets than the R NMF package, because the input does not need to fit into memory.
orch.princomp	Principal components analysis of HDFS data. Score data using orch.predict.
orch.sample	Sample HDFS data by percentage or explicit number of rows specification



Using R to Unlock the Value of Big Data

Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop

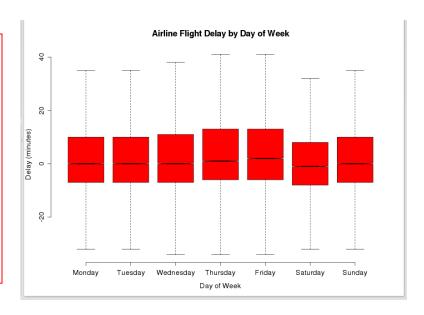
Mark Hornick Tom Plunkett

Oracle R Enterprise – Brief Introduction

Transparency Layer

Aggregation function on ore.frame object

```
class(aggdata)
                                                                          [1] "ore.frame"
                                                                          attr(,"package")
aggdata <- aggregate (ONTIME S$DEST,
                                                                           [1] "OREbase"
                      by = list(ONTIME S$DEST),
                                                                          R> head(aggdata)
                                                                            Group.1
                       FUN = length)
                                                                                ABE
                                                                                    237
class (aggdata)
                                                                                ABI
                                                                                ABO 1357
head (aggdata)
                                                                                     10
                                                                                ABY
                                      Client R Engine
                                                                                     select DEST, count(*)
                                              Transparency Layer
                                                                                     from ONTIME S
                                           Oracle R package
                                                                                     group by DEST
                                                                           Oracle Database
```

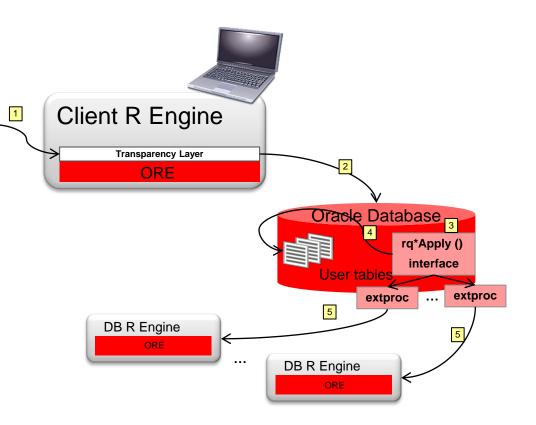

aggdata <- aggregate(ONTIME_S\$DEST,

by = list(ONTIME_S\$DEST),

FUN = length)

Transparency Layer

Overloads graphics functions for in-database statistics


Embedded R Execution – R Interface

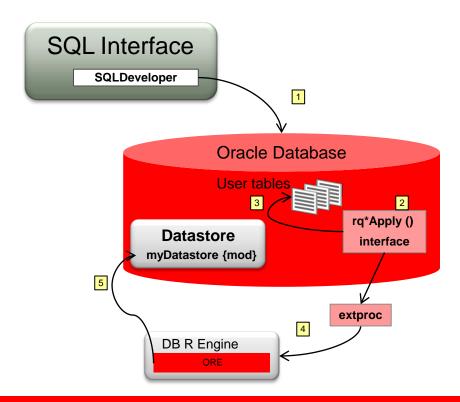
Data parallel in-database execution

```
modList <- ore.groupApply(
    X=ONTIME_S,
    INDEX=ONTIME_S$DEST,
    function(dat) {
        lm(ARRDELAY ~ DISTANCE + DEPDELAY, dat)
      });
modList_local <- ore.pull(modList)
summary(modList_local$BOS) ## return model for BOS</pre>
```

Also includes

- ore.doEval
- ore.tableApply
- ore.rowApply
- ore.indexApply

Embedded R Execution – SQL Interface


For model build and batch scoring

```
begin
  sys.rqScriptDrop('Example2');
  sys.rqScriptCreate('Example2',
 'function(dat,datastore name) {
  mod <- lm(ARRDELAY ~ DISTANCE + DEPDELAY, dat)</pre>
   ore.delete(datastore name)
   ore.save(mod,name=datastore name)
  }');
end:
select *
  from table(rqTableEval(
     cursor(select ARRDELAY,
                   DISTANCE,
                   DEPDELAY
            from ontime s),
     cursor(select 1 "ore.connect",
                    'myDatastore' as "datastore name"
            from dual),
     'XML',
     'Example2' ));
```

```
begin
  sys.rqScriptCreate('Example3',
 'function(dat, datastore name) {
     ore.load(datastore name)
     prd <- predict(mod, newdata=dat)</pre>
     prd[as.integer(rownames(prd))] <- prd</pre>
     res <- cbind(dat, PRED = prd)
     resl'):
end:
select *
from table(rgTableEval(
    cursor(select ARRDELAY, DISTANCE, DEPDELAY
           from ontime s
           where year = 2003
                  month = 5
           and
                  dayofmonth = 2),
           and
    cursor(select 1 "ore.connect",
                 'myDatastore' as "datastore name" from dual),
    'select ARRDELAY, DISTANCE, DEPDELAY, 1 PRED from ontime s',
    'Example3'))
order by 1, 2, 3;
```

Embedded R Execution – SQL Interface

rqTableEval + datastore for model building

Statistics Engine

Example Features

- Special Functions
 - Gamma function
 - Natural logarithm of the Gamma function
 - Digamma function
 - Trigamma function
 - Error function
 - Complementary error function
- Tests
 - Chi-square, McNemar, Bowker
 - Simple and weighted kappas
 - Cochran-Mantel-Haenzel correlation
 - Cramer's V
 - Binomial, KS, t, F, Wilcox
- Base SAS equivalents
 - Freq, Summary, Sort
 - Rank, Corr, Univariate

- Density, Probability, and Quantile Functions
 - Beta distribution
 - Binomial distribution
 - Cauchy distribution
 - Chi-square distribution
 - Exponential distribution
 - F-distribution
 - Gamma distribution
 - Geometric distribution
 - Log Normal distribution
 - Logistic distribution

- Negative Binomial distribution
- Normal distribution
- Poisson distribution
- Sign Rank distribution
- Student's t distribution
- Uniform distribution
- Weibull distribution
- Density Function
- Probability Function
- Quantile

Oracle R Enterprise 1.4 Key New Features

- ORE-specific algorithms for high performance and scalability
 - Neural Networks: ore.neural highly flexible network architecture with wide range of activation functions
 - Generalized Linear Models: ore.glm
 - Exponential Smoothing (simple and double): ore.esm
 - ore.neural, ore.glm, ore.stepwise and ore.lm leverage embedded R parallelism, exceeding 1000 column formula derived column limit, and supporting categorical variables
 - Support for weights in regression models
 - Factor Analysis factanal Transparency Layer function
 - Principal Component Analysis princomp Transparency Layer function
 - ANOVA anova Transparency Layer function on ore.lm fit object
 - Support for discretization of numeric variables using cut Transparency Layer function
- OREdm package
 - ore.odmAssocRules Association Rules with igraph package compatibility
 - ore.odmNMF Non-Negative Matrix Factorization
 - ore.odmOC O-Cluster

Oracle R Enterprise 1.4 Key New Features (2)

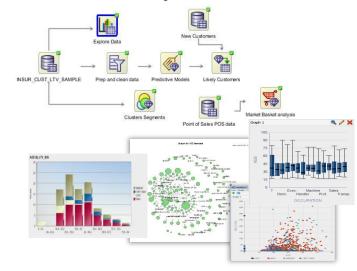
- Embedded R Execution enhancements
 - Optimized interface to load data from several sources into Oracle database
 - Support for efficient discretization of numeric variables
 - explicitly specify degree of parallelism (DOP) for parallel-enabled functions (ore.groupApply, ore.rowApply, ore.indexApply), use ore.options(ore.parallel=n)
- Embedded R graphics rendering performance enhancement
 - cairo device R graphics rendered in image buffer, eliminating temp file writes
 - eliminates need for X11 configuration for graphics on Unix-like ORE server side
- Support for migration of ORE R script repository and datastore across databases
 - Supports ease of production deployment from development environments
 - Supports snapshotting of production environments for evaluation/debugging in test systems
- Improved performance for table creation from R ore.create()
 - Enables execution of CTAS in parallel
 - Always executes with NOLOGGING
 - Leverages ore.parallel R option to specify parallelism

Oracle Advanced Analytics Option

Oracle Advanced Analytics Option

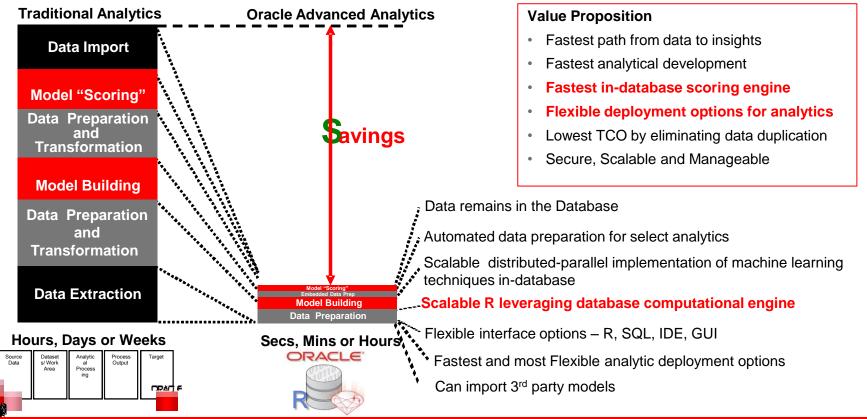
Fastest Way to Deliver Scalable Enterprise-wide Predictive Analytics

Powerful


- Accelerate rate at which business problems are tackled
- Improve time to insight
- Combination of in-database predictive algorithms and open source R algorithms
- Accessible via SQL, PL/SQL, R and database APIs
- Scalable, parallel in-database execution of R language

Easy to Use

- Expand user population that can build models
- Range of GUI and IDE options for business users to data scientists


Enterprise-wide

- Integrated feature of Oracle Database via SQL R is integrated into SQL
- Seamless support for enterprise analytical applications / BI environments

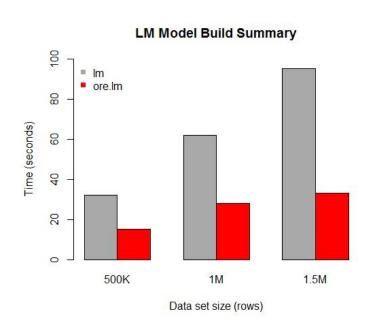
Oracle R Enterprise + Oracle Data Mining

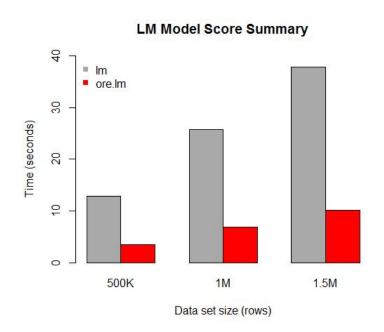
Oracle Advanced Analytics Value Proposition

Oracle Data Miner GUI

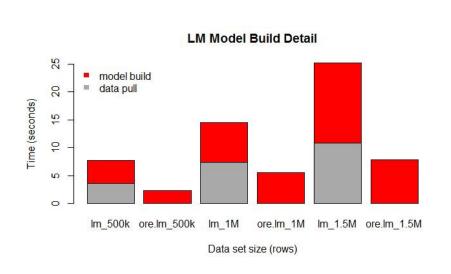
SQL Developer 4.0 Extension—Free OTN Download

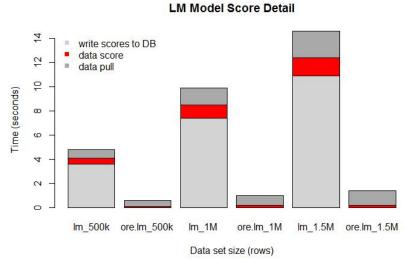
- Easy to Use
 - Oracle Data Miner GUI for data analysts
 - "Work flow" paradigm
- Powerful
 - Multiple algorithms & data transformations
 - Runs 100% in-DB
 - Build, evaluate and apply models
- Automate and Deploy
 - Generate SQL scripts for deployment
 - Share analytical workflows

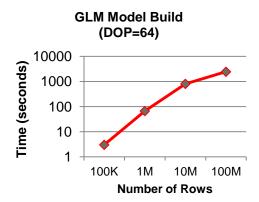



Oracle Advanced Analytics

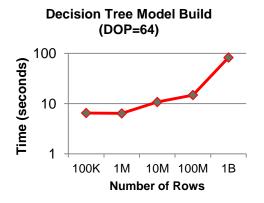
In-Database Data Mining Algorithms from Oracle Data Mining

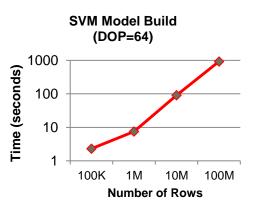

		Algorithms	Applicability
Classification		Logistic Regression (GLM) Decision Trees Naïve Bayes Support Vector Machines (SVM)	Classical statistical technique Popular / Rules / transparency Embedded app Wide / narrow data / text
Regression		Linear Regression (GLM) Support Vector Machine (SVM)	Classical statistical technique Wide / narrow data / text
Anomaly Detection	xx	One Class SVM	Unknown fraud cases or anomalies
Attribute Importance	A1 A2 A3 A4 A5 A6 A7	Minimum Description Length (MDL) Principal Components Analysis (PCA)	Attribute reduction, Reduce data noise
Association Rules		Apriori	Market basket analysis / Next Best Offer
Clustering		Hierarchical k-Means Hierarchical O-Cluster Expectation-Maximization Clustering (EM)	Product grouping / Text mining Gene and protein analysis
Feature Extraction	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	Nonnegative Matrix Factorization (NMF) Singular Value Decomposition (SVD)	Text analysis / Feature reduction


In-database Performance Advantage



In-database Performance Advantage




In-database GLM, Decision Tree, and SVM

11 seconds to score 100M records (DOP=64)
92 seconds to score 1B records (DOP=128)

13 seconds to score 1B records (DOP=128)

2466 seconds to score 1B records (DOP=64)

Exadata X2-2 half-rack

12c Parallel Distributed Advanced Analytics Real world proof points

- Linear Regression (ore.lm) on Exadata X3-2 half-rack
 - Data set: 2.9 billion rows spanning 12 months of data with over 350 predictors
 - Elapsed time ~5 minutes!
- Logistic Regression (ore.glm) on Exadata X3-2 half-rack
 - Data set: 2.9 billion rows spanning 12 months of data with over 350 predictors
 - Elapsed time ~30 minutes!
- Neural networks (ore.neural) on T5-4 Solaris
 - Data set: 1 billion rows with 40 columns
 - Elapsed time ~6 minutes with 10 hidden neurons & 421 weights

Oracle R Enterprise as framework for Advanced Analytics

Workflow example

Oracle Big Data Platform

Oracle Big Data
Appliance
Optimized for Hadoop,
R, and NoSQL Processing

Oracle
Big Data
Connectors

Oracle Exadata

"System of Record"
Optimized for DW/OLTP

Oracle Exalytics

Optimized for Analytics & In-Memory Workloads

Oracle R
Distribution

Oracle NoSQL
Database

Applications

Oracle R
Advanced Analytics
for Hadoop + ...

Oracle Data
Integrator

Oracle R
Enterprise

Oracle Data
Mining

Data
Warehouse
Oracle
Database
Oracle R
Distribution

Oracle Enterprise
Performance
Management

Oracle Business Intelligence Applications

Oracle Business Intelligence Tools

Oracle Endeca
Information Discovery

Stream

Acquire

Organize

Discover & Analyze

ORACLE

Summary

- Oracle enables R users with advanced analytics on Big Data
 - Via Oracle Database with Oracle Advanced Analytics Oracle R Enterprise
 - Via Big Data Appliance with Oracle R Advanced Analytics for Hadoop
- Oracle's R technologies extend R for Enterprise use
 - Data analysis and exploration
 - Application development
 - Production deployment
- Enabling high performance, scalability, and ease of production deployment

Resources

- **Book:** Using R to Unlock the Value of Big Data, by Mark Hornick and Tom Plunkett
- Blog: https://blogs.oracle.com/R/
- **Forum:** https://forums.oracle.com/forums/forum.jspa?forumID=1397
- **Oracle R Distribution**
- ROracle
- **Oracle R Enterprise**

http://oracle.com/goto/R

Oracle R Advanced Analytics for Hadoop

ORACLE®