
Rdb Optimizer Detailed Strategy
A tool for diagnosing poor query performance or wrong query results

An Article from the Rdb Journal

By Jean-Claude Proteau

March 15, 2002

Copyright © 2002 Oracle Corporation. All Rights Reserved.

March 15, 2002

Jean-Claude Proteau

Principal Member of Technical Staff, Oracle Rdb Engineering

Rdb Optimizer Detailed Strategy
A tool for diagnosing poor query performance or wrong query results

Oracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Feature - Rdb Optimizer Detailed Strategy

Example 1

he ability to get reports showing the execution
strategy of Rdb queries has existed for more than

a decade. Such reports can help you analyze and
possibly improve query performance. This paper
describes an option now available for seeing the Rdb
optimizer strategies in greater detail than before. This
additional detail can be useful not only to help you study
query performance but also to help when you have
queries that return wrong results or that return the data
rows sorted incorrectly.

A database administrator can use this tool to better
understand queries written by a customer's application
developers. A study of query strategies might help to
identify problems in the way queries are formulated. In
such case, feedback should go to the application
developers. On rare occasions, one might uncover some
problem in the way a query is optimized by Rdb. In that
case, use the information gathered and report it to the
Rdb engineers.

Examples in this paper were generated using Rdb V7.0-
62. The output from such examples might differ from
that of other Rdb releases due to the ongoing nature of
development in this area.

TT

Existing Optimizer Strategy
Documentation
It is assumed that you are already familiar with the
traditional way of obtaining and interpreting Rdb
strategy reports. This paper will not repeat that material
other than to include the optimizer notation in a
reference table farther on. If you need to refresh your
memory, you can read the following:

Oracle Rdb7 Guide to Database Performance and
Tuning, Copyright 1996, Oracle Corporation, section
5.8.7, Using RDMS$DEBUG_FLAGS and
RDB_DEBUG_FLAGS, and section C.1, Displaying
Optimization Strategy with the S Flag.

Consider this simple query and the different levels of
information that can be provided about the query
strategy. More interesting examples will be given later
along with an explanation of the new, detailed output.

 select last_name from employees
 where last_name = 'Nobody';

First, here is the traditional (undetailed) strategy:

 Conjunct Get Retrieval
 sequentially of relation EMPLOYEES

Contrast that with the detailed strategy:

 Tables: 0 = EMPLOYEES
 Conjunct: 0.LAST_NAME = 'Nobody'
 Get Retrieval sequentially of
 relation 0:EMPLOYEES

In an un-detailed strategy report, you can see where
tables are joined using the match versus cross method, if
indexes are used for data retrieval, when the data are
sorted, and some types of filtering operations (Conjunct
or Bool). When you request a detailed strategy report,
you'll be able to see the actual index keys used, the filter
expressions (Conjuncts and Bools), the sort keys, and
more. The example above shows 0.LAST_NAME =
'Nobody', which is the Conjunct (filter expression)
performed on the rows retrieved from the EMPLOYEES
table.

1 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

TBS

Section C.1, Displaying Optimization Strategy with
the S Flag, in the Oracle Rdb7 Guide to Database
Performance and Tuning, says that to enable the
display of optimizer query strategies in OpenVMS
you define the logical name
RDMS$DEBUG_FLAGS with the value "S",
meaning Strategy. Nowadays, the preferred method
of enabling and disabling such features is by
defining, instead, the RDMS$SET_FLAGS logical
name. Although one can still use
RDMS$DEBUG_FLAGS as in the past, it cannot be
used for some of the more recent Rdb features, one of
which is the flag to enable detailed strategy output.
Therefore, from this point forward only the "set
flags" method will be discussed.

To enable output of query strategies, you can use the
SET FLAGS statement in interactive SQL or you can
define the RDMS$SET_FLAGS logical name:

 SQL> SET FLAGS 'STRATEGY';
 or
 $ DEFINE RDMS$SET_FLAGS
 "STRATEGY"

After doing so, queries you execute will show the
traditional (undetailed) optimizer query strategies.

To enable detailed strategy output, include the
DETAIL keywords as shown here:

 SQL> SET FLAGS 'DETAIL,STRATEGY';
 or
 $ DEFINE RDMS$SET_FLAGS
 "DETAIL,STRATEGY"

The keywords DETAIL and DETAIL(1) are
synonymous. DETAIL(2) is meant to invoke a
greater level of detail. At present, there is nothing in
Rdb that relies on more than one level of detail, so
DETAIL(2) is treated the same as DETAIL(1).

 SQL> SHOW FLAGS;

 Alias RDB$DBHANDLE:
 Flags currently set for Oracle Rdb:
 STRATEGY,PREFIX,
 MAX_RECURSION(100),
 DETAIL_LEVEL(1)

To disable detailed strategy output:

 SQL> SET FLAGS 'NODETAIL,NOSTRATEGY';
 or
 $ DEASSIGN RDMS$SET_FLAGS

In interactive SQL, DETAIL(0) is equivalent to
NODETAIL. If you use the RDMS$SET_FLAGS
logical instead, deassigning the logical name disables all
flags that had been previously set using that logical
name.

Enabling and Disabling Detailed
Strategy Output

Practical Uses for Detailed Strategy
Output

Study of the optimizer detailed strategy may help you to
better understand query performance, wrong results, or
incorrect sort order of the results. Here are a few tips
that might get you started in the right direction.

Poor Performance:

If you have a query which is performing poorly,
consider doing indexed retrieval in place of sequential
retrieval. Indexed retrieval is not always better, so make
certain you understand the conditions under which the
query is being executed.

If a full scan of a large index is being done, perhaps a
rewrite of the query or change in index definition will
result in a limited index scan instead. Continuing with
this idea, if all the columns referenced for a given table
in the query appear as segments of an index, then in
many cases all the information can be retrieved directly
from the index and you can avoid having to fetch the
data rows themselves.

If the strategy shows that Sorting is being performed,
that's a costly step you might be able to avoid. One way
is to define an index in which the data are already sorted
in the desired order.

Wrong Order:

If a query is returning results in the wrong sort order,
you can look at the detailed strategy to see what sorting
if any is done and the sort keys used. Rdb attempts to

2 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

TBS

eliminate unnecessary sort operations in queries. For
example, if you select data through a view and then
specify an ORDER BY of the results, and if the view
also contains an ORDER BY or GROUP BY clause,
Rdb might be able to eliminate one of the sorts. A
sort can also be eliminated if the data are retrieved
via a sorted index. When looking at the detailed
strategy report, check if a sort operation is performed
using incorrect sort keys or if the sort is done in the
wrong place in the query execution tree structure.

Wrong Results:

If a query returns wrong results, examination of the
query strategy in detail might show you something
otherwise overlooked. The problem is too broad to
give you any specific recommendation on what to
look for if the problem is in how the query was
formulated. It is worth knowing that Rdb, to improve
query performance, sometimes moves filter
expressions (e.g., WHERE x='a') to lower branches
of the query execution tree. This is done to eliminate
data rows as soon as possible. For example, if one
can reduce the number of rows from each branch of a

join operation rather than after the join has been
performed, the number of joins can be reduced. Study
the placement of these filter expressions. If they are
placed incorrectly in or are missing from the query
execution tree, wrong results might ensue.

Another example of wrong results involves a match join
strategy. Wrong results might be due to one of the inputs
to the join being sorted in some order that does not agree
with the order required for matching of the join keys.

Example 2

This next example shows much of the new, detailed
notation. It is based on a query on Rdb's
PERSONNEL database. Additional indexes and a
view definition (not shown) were added in order to
arrive at the given optimizer strategy. Some rows in
the results were omitted to shorten the output. The
example, below, has key numbers in the right margin.
You can find an explanation for each key element of
the strategy following the detailed strategy output.
Further reference information appears in Table 1.

SQL> ! List all employees whose names begin with M-N-O-P and who
SQL> ! currently live in some New England state. For the employee's
SQL> ! state of residence, list the names of colleges from which s/he
SQL> ! received degrees.
SQL>
SQL> select
cont> cast (e.state as char(2)) as st,
cont> cast (e.employee_id as char(5)) as empid,
cont> cast (trim(trailing ' ' from e.last_name)||', '||e.first_name
cont> as char(19)) as full_name,
cont> cast (cd.college_code as char(4)) as coll
cont> from employees e left outer join college_degrees_view cd
cont> on cd.state = e.state
cont> where e.last_name between 'M' and 'P' and
cont> e.state in ('CN', 'MA', 'ME', 'NH', 'RI', 'VT')
cont> group by e.state,e.last_name,e.first_name,e.employee_id,
cont> cd.college_code;

3 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Tables: 1
 0 = EMPLOYEES 1
 1 = COLLEGES 1
 2 = DEGREES 1
Reduce: 0.STATE, 0.LAST_NAME, 0.FIRST_NAME, 0.EMPLOYEE_ID, 2
 2.COLLEGE_CODE 2
Sort: 0.STATE(a), 0.LAST_NAME(a), 3
 0.FIRST_NAME(a), 3
 0.EMPLOYEE_ID(a),2.COLLEGE_CODE(a) 3
Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Leaf#01 BgrOnly 0:EMPLOYEES Card=100 4
 Bool: (0.LAST_NAME >= 'M') AND (0.LAST_NAME <= 'P') AND 5
 ((0.STATE = 'CN') OR (0.STATE = 'MA') OR 5
 (0.STATE = 'ME') OR (0.STATE = 'NH') OR 5
 (0.STATE = 'RI') OR (0.STATE = 'VT')) 5
 BgrNdx1 EMP_INDEX2 [(2:2)6] Fan=11
 Keys: r0: (0.STATE = 'CN') AND (0.LAST_NAME >= 'M') AND 6
 (0.LAST_NAME <= 'P') 6
 r1: (0.STATE = 'MA') AND (0.LAST_NAME >= 'M') AND 6
 (0.LAST_NAME <= 'P') 6
 r2: (0.STATE = 'ME') AND (0.LAST_NAME >= 'M') AND 6
 (0.LAST_NAME <= 'P') 6
 r3: (0.STATE = 'NH') AND (0.LAST_NAME >= 'M') AND 6
 (0.LAST_NAME <= 'P') 6
 r4: (0.STATE = 'RI') AND (0.LAST_NAME >= 'M') AND 6
 (0.LAST_NAME <= 'P') 6
 r5: (0.STATE = 'VT') AND (0.LAST_NAME >= 'M') AND 6
 (0.LAST_NAME <= 'P') 6
 Bool(Range): r0: 0.STATE = 'CN' 7
 r1: 0.STATE = 'MA' 7
 r2: 0.STATE = 'ME' 7
 r3: 0.STATE = 'NH' 7
 r4: 0.STATE = 'RI' 7
 r5: 0.STATE = 'VT' 7
 Bool(Common): (0.LAST_NAME >= 'M') AND (0.LAST_NAME <= 'P') 8
 Cross block entry 2
 Conjunct: 1.COLLEGE_CODE = 2.COLLEGE_CODE 9
 Match
 Outer loop (zig-zag)
 Leaf#02 Sorted 1:COLLEGES Card=16 4
 Bool: 1.STATE = 0.STATE 5
 FgrNdx COLL_COLLEGE_CODE [0:0] Fan=17
 BgrNdx1 COL_INDEX1 [1:1] Fan=15
 Keys: 1.STATE = 0.STATE 10
 Inner loop (zig-zag)
 Get Retrieval by index of relation 2:DEGREES 4
 Index name DEG_COLLEGE_CODE [0:0]

4 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Explanation of keyed lines:

ST EMPID FULL_NAME COLL
MA 00435 MacDonald, Johanna HVDU
MA 00435 MacDonald, Johanna MIT
MA 00232 McElroy, Mary HVDU
MA 00232 McElroy, Mary MIT
 … …
NH 00168 Nash, Norman NULL
NH 00183 Nash, Walter NULL
NH 00199 Nunez, Larry NULL
NH 00190 O'Sullivan, Rick NULL
18 rows selected

The detailed strategy for every query begins
with a list of tables to be joined. The numbers
are called 'context numbers' and are shorthand
notations for representing each table.

 1.

 2.

 3.

 4.

 5.

The list of columns following the Reduce
keyword comes from the GROUP BY clause in
the query. The results are reduced by
eliminating duplicate values for the given set of
columns taken in combination.

The list of columns following the Sort keyword
comes from the GROUP BY clause. The
ordering of the results by the given keys is a
precursor to the operation of reducing the rows
to unique values on those columns.

In the detailed strategy the table names are
preceded by their context numbers. This may
seem uninteresting except for cases where the
same table is used more than once.

The Bool keywords following the dynamic
Leaf#nn notation define expressions for
filtering the results of each dynamic leaf data
retrieval.

The Keys notation here follows a background
index which has six index key ranges. The keys
for each index range, r0, r1, etc., are listed. The
Keys notation does not appear in an un-detailed
strategy report.

 6.

 7. The background index (EMP_INDEX2) preceding
this Bool(Range) notation has a filter expression
which can be applied to the index range entries
without having to access the rows from the table.
Such a filter expression is called a Key-only
Boolean. A range list index retrieval can have a
Key-only Boolean with two parts: one part applies
only to a specific index range, and a common part
applies to each index range. The entire filter
expression for a given range is the AND of the
range-specific Boolean expression and the
common Boolean filter expression.

 8. This is the common Boolean part of the Key-only
Boolean expression as described in note 7.

 9. A Conjunct is a filter expression which consists of
one or more predicates. It is like a Key-only
Boolean filter with the exception that it is
performed after rows of data from the table have
been retrieved.

 10. The Keys notation here follows a single-range
index retrieval. Unlike the Keys in item 6, which
show multiple index ranges, this single-range case
does not use the r0, r1, notation to distinguish one
range from the next.

5 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Example 3

Tables:
 0 = TABLE1
 1 = TABLE2
Merge of 1 entries
 Merge block entry 1
 Conjunct: 0.ID = 1.ID
 Match
 Outer loop (zig-zag)
 Index only retrieval of relation 0:TABLE1
 Index name TABLE1_IDX [0:0]
 Inner loop (zig-zag)
 Conjunct: (1.C > 0) AND (1.B >= 0)
 Get Retrieval by index of relation 1:TABLE2
 Index name TABLE2_IDX [0:0]
 Bool: <error: common keyonly boolean no predicates>
 ID
 1
 2
 3
 4
 5
 6
6 rows selected

Here is an example derived from a customer bug
report. The following query should have returned 3
rows. Instead it returned 6 rows.

select col1 from
 (select t2.A as col1,
 t2.B as col2,
 t2.C as col3
 from table1 t1, table2 t2
 where t1.id = t2.id) as
 vt (col1, col2, col3)
where
 vt.col3 > 0 and
 vt.col2 >= 0 and
 (vt.col1 <= 3 or 'x' = 'y');

The detailed strategy for this query was as follows. If
you examine the strategy you'll see that the predicates
(vt.col1 <= 3 or 'x' = 'y') are missing from the inner
loop of the match join. In their place for the index
key Boolean condition is an error message. For this
example, the Rdb optimizer incorrectly generated the
keyonly Boolean code for index TABLE2_IDX with
no conditional expression (no predicates). Do not
expect to always see an error message in the detailed
strategy output. Sometimes the problem might be that
the Boolean expression appears in the wrong place in
the strategy output.

6 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Tables:
 0 = TABLE1
 1 = TABLE2
Merge of 1 entries
 Merge block entry 1
 Conjunct: 0.ID = 1.ID
 Match
 Outer loop (zig-zag)
 Index only retrieval of relation 0:TABLE1
 Index name TABLE1_IDX [0:0]
 Inner loop (zig-zag)
 Conjunct: (1.C > 0) AND (1.B >= 0) AND ((1.A <= 3) OR ('x' = 'y'))
 Get Retrieval by index of relation 1:TABLE2
 Index name TABLE2_IDX [0:0]
 Bool: (1.A <= 3) OR ('x' = 'y')
 ID
 1
 2
 3
3 rows selected

After the error was corrected, the detailed strategy for
the query appeared as follows. The changes are in

both the Conjunct and the Bool portion of the Inner loop
for the match join.

Strategy Output Notation
Now that you have a general idea of what you might
see in a detailed strategy report, here is a table that
lists both the old and new strategy notation. The old
notation comes from the Rdb7 Guide to Performance
and Tuning, Section C.1 and Table C-2 Output
Definitions for the S Flag. Remember, you cannot see
detailed strategy output simply by defining
RDMS$DEBUG_FLAGS S. Instead, you must define
RDMS$SET_FLAGS, as explained earlier, or use the
interactive SQL statement SET FLAGS.

When normal (un-detailed) strategy is requested, you
will see only the keywords as they appear in the
Notation column of Table 1, below. When detailed
strategy is enabled, the keywords will appear followed
by a colon and the details for each keyword. Examples
showing the details appear in the Description and
Examples column of Table 1.

7 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Notation

Aggregate

Aggregate-F1

Aggregate-F2

<aggn>

BgrNdxn

BgrOnly

Bool

Description and Examples

Indicates use of a statistical function, such as, COUNT, SUM, AVG, MIN, MAX, STDDEV, or
VARIANCE. Example of detailed strategy, which can include a Boolean filter expression:

Aggregate: COUNT (0.X)
 Bool: NOT MISSING (0.X)

The Aggregate keyword can represent more than one aggregate operation in the query. When
detailed strategy is requested, these aggregate types will be listed one after the other.

In versions of Rdb after V7.0-62 and V7.1.0.0, the notation will include a number, such as 3:, to
identify each aggregate function, as in the following:

Aggregate: 3:COUNT (0.X)

Elsewhere in the query strategy, notation such as <agg3> will refer to the results of the aggregate
operation.

Indicates a check for the existence of a single value, such as a query containing EXISTS or ANY.
Example of detailed strategy:

Aggregate-F1: COUNT-ANY (0.X)

Indicates a check for uniqueness. Used for SQL queries containing SINGLE. Example of detailed
strategy:

Aggregate-F2: COUNT-SINGLE (0.X)

When detailed strategy is requested, a term such as <agg3> represents the result of aggregate
function number 3 (see description of Aggregate). For instance:

Conjunct: 0.SALARY_AMOUNT > <agg3>

Indicates background index number n, e.g, BgrNdx1.

Indicates the background only leaf retrieval type.

Boolean filters indicate processing of WHERE predicates. They can appear as part of an
Aggregate, RLEAF, or index retrieval operation. When shown below an index retrieval, Bool
signifies key-only Boolean optimization. The optimizer uses this method to filter out dbkeys
before fetching rows, thus saving I/O operations. Example of detailed strategy:

Bool: 1.STATUS = 'B'

Table 1: Output Definitions for the STRATEGY and DETAIL,STRATEGY Flags

8 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Notation

Bool(Common)

Bool(Range)

Card=n

Cross block of n
entries

Direct Lookup

<error: ...>

Fan = n

FFirst

Description and Examples

This notation is used only for detailed strategy for an index key Boolean where a range list is used.
For range list retrieval, the keyonly Boolean can consist of two parts, a common part which
applies to each range of the index, and a range-specific part (see next section). For example:

Bool(Common): 0.X = Y

The 0.X=Y predicate applies to each index range.

This notation is used only for detailed strategy for an index key Boolean where a range list is used.
For range list retrieval, the keyonly Boolean can consist of two parts, a common part which
applies to each range of the index (see previous section), and a range-specific part. For example:

Bool(Range): r0: 0.X = 3
 r1: 0.X > 7

Each listed Boolean range (r0, r1, etc.) applies only to a single index range. The predicate 0.X = 3
is applied only to the first range for the index. The predicate 0.X > 7 is applied only to the second
range. If there is also a common part to the index key Boolean (see previous section), the common
Boolean expression is effectively ANDed with each range-specific predicate.

Note that there is no correspondence necessarily between the index ranges shown in the index
segment notation, such as, [1:0,1:1], and the index key range Booleans which might follow. That's
because the index range segments are sorted and compressed into notation (described farther on)
such as [(l:h)n].

Indicates table cardinality stored in the column RDB$CARDINALITY in the system table
RDB$RELATIONS.

Indicates a cross (or nested loop) join method for n entries.

Indicates that the index used has no duplicates and that an exact key match predicate is used for
retrieval, which returns one or zero dbkeys.

This notation is used during detailed strategy output whenever some internal error is detected. The
text of the error message gives some clue to the nature of the problem.

Indicates the average fanout factor of an index B-tree node based on the B-tree node size, index
key length, and the initial percent fill of the index node. The fanout of a B-tree node is the number
of child nodes (branches) attached to a given node. The higher the average fanout, the fewer levels
the B-tree contains, which promotes faster single key access but greater potential for deadlock in a
multiuser environment.

Indicates the fast first leaf retrieval type.

9 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Notation

FgrNdx

Firstn

Get

Index only
retrieval of
relation

Keys

Leaf#01

<mapped field>

Match

Max key lookup
Min key lookup

Merge of n
entries

NdxOnly

Description and Examples

Indicates a foreground index.

Indicates use of a LIMIT TO n ROWS clause. This information is not used by the optimizer as
part of the optimization process, but rather as a limitation of the output from the query.

Indicates execution of an I/O operation for data record retrieval.

Indicates that the requested information was retrieved from within the index. No data record
access was required.

The Keys notation appears only when detailed strategy is produced. It lists the keys used for index
retrieval. This first example is for a regular (non-range-type) index retrieval using two index
segments:

Keys: (0.WAREHOUSE = '451') AND
 (1.STOCK_NUMBER = '7075002')

Keys for range list index retrieval are listed separately for each range (r0, r1, etc.):

Keys: r0: 0.EMPLOYEE_ID = '00164'
 r1: 0.EMPLOYEE_ID = '00200'

Indicates the first dynamic leaf optimization node in the execution tree. Subsequent leaf nodes in
the same tree will have different numeric identifiers. This use of the term leaf is distinct from its
use in partitioned scan notation (see that notation farther on).

This notation appears only in detailed strategies. It shows an indirect reference to a column which
cannot be traced back to a single base table column. For example, you might have a view that is a
UNION of two tables. The view columns are like those of the underlying tables, but they are not
exactly the same because they represent a different set of data.

Indicates a match join method.

Indicates a direct index key lookup instead of an entire index scan. Used when the optimizer can
use index only retrieval and the query contains the MAX or MIN statistical function.

Indicates use of the merge strategy to return rows from multiple tables. In the merge strategy, rows
from different tables are merged and delivered to the user.

Indicates the index only leaf retrieval type.

10 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Notation

OR index
retrieval

(partitioned
scan#n)

Reduce

Retrieval by
DBK of relation

Retrieval by
index of relation

Retrieval
sequentially of
relation

Reverse Scan

Sort

Sorted

Description and Examples

Indicates static OR optimization using a hashed index or multiple sorted indexes to retrieve data
from a single table. Rows selected by each index are delivered one after another. Duplicate dbkeys
are discarded by applying Conjunct, so that the same row is not delivered twice.

Indicates a particular instance of a sequential scan of one partition of a strictly-partitioned table.
The number n is the leaf (or instance) number for the sequential scan. This use of the term leaf is
distinct from its use in the dynamic leaf optimization retrieval strategies (see Leaf#01 notation).

Indicates elimination of duplicate rows based on the values of one or more columns. Found in
queries using the DISTINCT or UNION DISTINCT operators. A sort is frequently part of the
duplicate elimination process and the Sort notation is therefore often included in the output.
Example of detailed strategy:

Reduce: 0.LAST_NAME, 0.FIRST_NAME

Indicates that the requested data was retrieved using direct dbkey access.

Indicates use of an index to retrieve data.

Indicates that data retrieval is done without the use of an index. Access to the data is performed by
a sequential scan of the table.

Indicates that the index is scanned from back to front. In Rdb, scanning an index in reverse order
typically requires more I/O operations than does scanning the index in the forward direction.

Indicates the requested data had an output order specified, that a sort was done on behalf of a
match join strategy, or that a sort was required for a DISTINCT or UNION DISTINCT operation.

In the detailed strategy, the Sort keyword is followed by the list of sort keys. Each key is shown as
either ascending (a) or descending (d). For example:

Sort: 0.NAME(a), 1.SCORE(d)

Indicates the sorted order leaf retrieval type.

11 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Notation

<subselect>

Tables

Temporary
Relation

Description and Examples

In the detailed strategy, the term <subselect> is used in two circumstances. The first is as the
argument of an aggregate function, as in,

Aggregate: 0.COUNT(<subselect>)

The portion of the strategy which implements the subselect expression immediately follows the
Aggregate line(s) in the output.

The second circumstance is when a reference is made to the result of some aggregate operation.
Example:

Conjunct: <subselect> = 0

In versions of Rdb after V7.0-62 and V7.1.0.0, the notation used in this second circumstance will
change to directly reference the aggregate results, as in,

Conjunct: <agg3> = 0

See the description of Aggregate for further information.

This notation only appears in detailed strategies. It lists each table used in the query and assigns
each a shorthand 'context' number. For example:

Tables:
 0 = EMPLOYEES
 1 = DEGREES
 2 = EMPLOYEES

The context numbers are subsequently used in the detailed strategy preceding table names and
column names. For example:

Index only retrieval of relation 2:EMPLOYEES

A table name is separated from its context number by a colon. By contrast, a column name is
separated from its context number by a period. For example:

Conjunct: 0.EMPLOYEE_ID = '00164'

Indicates creation of a temporary table to store intermediate results. The temporary table can exist
either in memory or on disk.

12 of 14

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Notation

<var>
<varn>

(zig-zag)

[l:h]

[(l:h)n]

Description and Examples

This notation appears only in detailed strategies. It indicates the use of a declared variable. For
example:

Conjunct: <var> = '100'

In versions of Rdb after V7.0-62 and V7.1.0.0, variables will be distinguished one from the other
by number, as in,

Conjunct: <var1> = <var3>

Indicates a variation of the match retrieval strategy in which keys are skipped when switching
retrieval from one leg of the Match join to the other.

Indicates the number of low index key (low Ikey) segments and high index key (high Ikey)
segments in an index key range. l represents the number of low Ikey segments and h represents the
number of high Ikey segments for the given index range.

Indicates OR optimization in which the optimizer uses a single sorted index to locate two or more
ranges of data rows. l represents the number of low Ikey segments in the range; h represents the
number of high Ikey segments in the range; and, n represents the total number of ranges. For
example:

WHERE EMPLOYEE_ID IN ('00164', '00177', '00200')

Leaf#01 FFirst EMPLOYEES Card=100
BgrNdx1 EMP_EMPLOYEE_ID [(1:1)3]

In this case, the three ranges correspond to the three employee ID numbers.

13 of 14

The notation [0:0] indicates that a full scan of the index is done.

The notation [1:1] indicates there is one low index key segment and one high index key
segment in the index key range. Sometimes this indicates the presence of an equality
predicate in the query, such as EMPLOYEE_ID = '00164'. In this case the range is a single
value.

The notation [1:0] indicates there is one low index key segment but no high index key
segment. That is, the range of index keys to be scanned has a starting point, such as,
EMPLOYEE_ID > '00164', but no upper limit.

The notation [0:1] indicates there is one high index key segment but no low index key
segment. That is, the range of index keys to be scanned starts at the beginning of the index
and ends at the high index key bound, such as, EMPLOYEE_ID < '00164'.

Feature - Rdb Optimizer Detailed StrategyOracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Available in Rdb 7.0.6.2 and Rdb 7.1
The ability to enable detailed strategy output exists as
early as Rdb 7.0.6. However, for that version the
capability was highly experimental and had a number
of deficiencies. The versions considered good enough
for general use are Rdb 7.0.6.2 and 7.1.

Work in Progress
The addition of the detailed strategy dump was done
gradually over the period of a year as the need arose
in engineering to see details of the query strategy to
make problem diagnosis easier. More remains that
could be done. If you wish to make a case for further
changes, please post an enhancement request,
component Rdb Optimizer, and reference the detailed
strategy output. Also, please provide a small sample
database and representative queries.

14 of 14

Rdb

0101 010101010101010
01010101010 101010
0 101010101010

01010101010101010
01 010101010101

0 10101010101010101

Jean-Claude Proteau is a Principal Member of Technical Staff within Oracle Rdb Engineering located in Oracle's
New England Development Center in Nashua, New Hampshire, USA. Jean-Claude, who prefers to be called Claude,
has worked with Rdb since 1985 as a developer of what is today the Replication Option for Rdb. Claude joined the
Rdb Engineering Group in 1996 to continue support of the Replication Option for Rdb and later to become a
member of the Rdb Optimizer team.

