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1. Introduction 

The Oracle TimesTen Application-Tier Database Cache accelerates business processes, enables real-time 

business intelligence, and facilitates the personalization of customer-facing applications. 

The Oracle TimesTen Application-Tier Database Cache (TimesTen Cache) is an Oracle Database 

product option ideal for caching performance-critical subsets of an Oracle database in the application 

tier.  Using the TimesTen Cache improves an application’s response time and throughput.  The 

TimesTen Cache consists of three key technology components – the Oracle TimesTen In-Memory 

Database (TimesTen) for application-tier real-time data management; caching technology to cache 

frequently-accessed tables from an Oracle Database server to the application tier and maintain 

consistency of cached data; and a transactional data replication component to ensure cross-tier high 

availability. 

TimesTen is a memory-optimized relational database that delivers very low response time and very high throughput 

to performance-critical systems.  It is targeted to run in the application tier, close to applications, and optionally in 

process with applications.  A TimesTen database may be used as the database of record, and/or as a cache to an 

Oracle database. 

Applications may create and manage database tables in TimesTen or cache frequently-accessed subsets of an 

Oracle Database in the TimesTen Cache.  Cached tables and non-cached tables may coexist in the same in-

memory database, and are all persistent and recoverable.  Queries and updates to cached and non-cached data are 

performed by applications through SQL92 or PL/SQL using ODBC, JDBC, ADO.NET, the Oracle Call Interface 

(OCI), or TTClasses, as well as Pro*C. The Oracle TimesTen In-Memory Database is a memory-optimized relational 

database that delivers very low response time and very high throughput for performance-critical systems. It is 

targeted to run in the application tier, close to applications, and optionally in process with applications. It can be used 

as the database of record or as a cache to the Oracle Database. 

Cache Grids are available for horizontal scalability in performance and capacity where a Cache Grid consists of a 

collection of TimesTen Caches that collectively manage an application’s cached data.  Cached data is distributed 

between grid members, and the Cache Grid provides applications with location transparency, effectively making the 

aggregate of data cached in all grid members available to the application. Cache Grids enable incremental 

scalability through the online addition (and removal) of grid members.  They maintain consistency of cached data 

between the Cache Grid members and the Oracle Database. 

The TimesTen Cache manages the availability of data across the application tier and the database server tier.  It 

ensures high availability and no transaction loss no matter where a failure may occur.  Whether a failure occurs in 

one of the cache nodes, one of the Oracle RAC nodes, at the network level or even for an entire RAC cluster, high 

availability and no transaction loss are guaranteed. 

TimesTen and the TimesTen Cache have a proven track record with production deployments in real-time 

enterprises and time-critical industries that include network telecommunication services, operational support 

systems, contact centers, airline and reservation systems, command and control systems and securities trading. 
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Thousands of companies worldwide use TimesTen and the TimesTen Cache in production applications, including 

Alcatel-Lucent, Aspect, Avaya, Bank of America Merrill Lynch, Bridgewater Systems, BroadSoft, Cisco, Deutsche 

Börse, Ericsson, JPMorgan, KDDI, NEC, NYFIX, Smart Communications, United States Postal Office and Verizon 

Wireless.  

2. Application-Tier Caching 

Application-tier caching is typically used to improve data access latency and to reduce workload on the back-end 

database. 

Various caching techniques have been developed to improve database access performance or to reduce contention 

on back-end database servers.  Fast response time is particularly important for real-time applications and customer-

facing applications.   In addition, reducing the workload on the back-end database is important to applications with 

an ever-growing community of users such as hosted software services, eCommerce sites or telecommunication 

services. 

There are many choices as to what information to cache and where to cache it, with each option offering advantages 

and tradeoffs.  Some of the caching techniques that have been developed include: 

» Query results caches.  This is typically done in the application tier and is managed by special software that hides 

the presence of the cache from the application.  Under this scenario, the caching software automatically saves the 

results of queries that are submitted to the database system.  A cache hit is recognized and serviced from the 

cache if a query is an identical match to a previously-submitted query, including identical values of parameters.  

The advantage of such caching is that it is simple and it caters to access scenarios where the same query is likely 

to be submitted over and over.  However, it is limited in scope, as it cannot handle query processing on the 

content of the cache. 

» Object-Relational mapping tool caches.  Object-Relational mapping tools (O/R mapping tools) hide relational 

databases from object-oriented programmers by providing transparent mapping between objects and relational 

data.  Once relational data is mapped to an object representation, it may be cached by the O/R mapping tool until 

it is no longer needed or until it becomes stale.  Caching by O/R mapping tools is a common technique to avoid 

the expensive mapping between the programming language’s object model and the database’s relational model. 

» Object caches.  The word caching is somewhat of a misnomer here because objects that end up in these caches 

are not necessarily subsets of objects that are stored elsewhere.  These “caches” are repositories of objects that 

are independent of the objects’ origins.  They are not typically transparent to applications.  Applications “put”, 

“get”, “insert” and “delete” objects from the caches.  There are a few products on the market that offer such 

caches and they vary in the level of functionality they support. The caches may be strictly memory resident or 

they may be backed to disk, or to another data management system. Some products provide concurrency control, 

some provide transparent distribution over multiple nodes in a network, and some provide high availability. 

 

The Oracle TimesTen Application-Tier Database Cache has full relational and SQL functionality, automatic 

maintenance of data consistency with the Oracle Database and real-time performance . 

Oracle TimesTen Application-Tier Database Cache (TimesTen Cache) takes a unique approach by enabling the 

caching of tables or table fragments from an Oracle Database to the application tier.  The table fragments are 

described through an extended SQL syntax, and are cached into the Oracle TimesTen In-Memory Database 

(TimesTen).  Applications read and update cached data using SQL, PL/SQL, or Pro*C and the TimesTen Cache 

automatically propagates updates from the Oracle Database to the cache and vice versa. 
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A collection of TimesTen Caches may be configured as a Cache Grid.  Cached data is distributed between grid 

members, and the Cache Grid provides applications with location transparency and concurrency control, effectively 

making the aggregate of all data cached in grid members available to applications.  As an application’s performance 

or capacity needs increase, additional nodes may be added to the Cache Grid with no interruption to service.  Thus, 

the TimesTen Cache offers applications the full generality and functionality of a relational database, incremental 

scalability coupled with location transparency, automatic maintenance of cache consistency with the Oracle 

Database, and the real-time performance of an in-memory database. 

The TimesTen Cache approach has two major benefits that contribute to improving overall performance.   First, 

applications that use the TimesTen Cache experience significantly reduced response time and increased throughput 

due to the in-memory architecture of TimesTen and the elimination of communication between the application tier 

and the database server.  Second, this approach reduces the workload on the back-end database thus improving 

overall throughput for all applications.   

The ability to provide all the advantages of relational databases, coupled with real-time performance, incremental 

scalability, and automatic cache management are unique to the TimesTen Cache.  It is ideal for caching 

performance-critical subsets of an Oracle database, enabling both reads and updates of cached data, and 

automatically managing data consistency. 

The next few sections will give a brief introduction to the Oracle TimesTen In-Memory Database (more details can 

be found in 1), a description of how data is cached and managed by the Oracle TimesTen Application-Tier Database 

Cache, and a few illustrative caching scenarios. 

3. The Oracle TimesTen In-Memory Database 

The TimesTen In-Memory Database provides transactional access to data and relational functionality through 

standard APIs. 

The Oracle TimesTen In-Memory Database is a memory-optimized relational database that supports SQL92 and 

PL/SQL through the ODBC, JDBC, ADO.NET, Oracle Call Interface (OCI), and TTClasses2  APIs, as well as 

through Pro*C/C++.  By supporting standard interfaces and popular Oracle interfaces, TimesTen ensures ease of 

adoption by already-existing applications. 

Although TimesTen operates on data that is in main memory, TimesTen databases are persistent and recoverable 

in case of software, hardware or power failures.  Durability is ensured through checkpointing and logging to disk.  

Applications may choose ACID properties for their transactions, but more relaxed options are also available for 

higher performance.  TimesTen provides a cost-based query optimizer and applications may view and influence 

query plans.  The TimesTen database is available as a library that may be linked by applications as well as through 

a client/server option.  When TimesTen is accessed through the client/server option, each request to TimesTen 

incurs the overhead of inter-process communication even if the application and the TimesTen server are running on 

the same machine.  By contrast, when TimesTen is linked with the application, requests to TimesTen are nothing 

but local calls that incur a negligible overhead and any data transfers between the application and TimesTen are 

                                                             

1 Extreme Performance Using Oracle TimesTen In-Memory Database.  An Oracle White Paper, June 2014. 

2 TimesTen C++ Interface Classes (TTClasses) is a C++ class library that provides wrappers around the most common ODBC 

functionality.  It is easier to use than ODBC and promotes best practices while maintaining fast performance. 
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nothing but inexpensive memory copying operations. High availability is provided through replication.  A number of 

utilities are also available, including an interactive SQL utility, a graphical tool for database development and cache 

configuration, on-line backup and restore, and bulk loading.  Database maintenance operations are also available 

through programmatic APIs. 

A copy of the database resides in main memory at run time.  It is managed in a shared memory segment that is 

accessed by all processes connected to that database.  Figure 1 shows the architecture of a TimesTen In-Memory 

Database system. 

 

                       Figure 1. TimesTen Architecture 

 

The Oracle TimesTen In-Memory Database data structures and algorithms are optimized around the memory 

residence of data. 

TimesTen data structures and access algorithms exploit the memory residence of the database for breakthrough 

performance.  Compared to a fully cached disk-based database, TimesTen’s memory-optimized architecture uses 

far fewer CPU cycles, because the overhead to manage memory buffers and account for multiple data locations 

(disk and memory) is eliminated. 

Oracle TimesTen’s memory-optimized performance is complemented by functionality that supports transactional 

properties, persistence mechanisms and recovery from system failures. A variety of choices is available for locking, 

multi-user isolation and logging, accommodating a range of application scenarios from transient look-up caches to 

core transactional financial trading and telecommunications billing systems. 

TimesTen databases are persistent and recoverable. 

Durability is achieved in TimesTen by logging the changes from committed transactions to disk and periodically 

updating a disk image of the database through checkpoints. The timing of the disk write for the log is configurable by 
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the application, either synchronous with the end of the transaction, or deferred until afterward, resulting in higher 

performance. Many situations favor higher throughput over synchronous logging, particularly when the monetary 

value of a transaction is low or the transaction data is short-lived, such as when tracking the location of mobile 

phones in a network which communicate their cell location every few seconds. 

TimesTen allows applications to track changes to specific tables.  This is useful in environments where applications 

are sensitive to the occurrence of certain events.  For example, an application may want to know when the price of a 

certain stock has risen above a given threshold.  This change notification feature is particularly useful as it allows the 

tracking of changes not only to base tables, but to materialized views as well. 

3.1 Oracle TimesTen Performance 

Very low response times cannot be achieved through hardware additions.  TimesTen delivers very low latency due 

to its unique architecture. 

TimesTen can achieve response times in the microseconds due to its in-memory architecture.  With TimesTen, a 

transaction that reads a database record can take fewer than 2.5 microseconds, and transactions that update or 

insert a record can take fewer than 8 microseconds. 

 

Figure 2. TimesTen Response Times 

Figure 2 shows the response times for an application executing read and update transactions on an Intel E5-2680 

@2.7GHz 2 sockets 8cores/socket system running Oracle Linux.  

4. Data Caching Using Oracle TimesTen Application-Tier Database Cache 

A TimesTen Cache contains subsets of an Oracle Database tables. 

The TimesTen Cache enables the caching of subsets of tables from an Oracle Database to the application tier.  

Cached tables are updatable and the TimesTen Cache synchronizes data between the Oracle Database and the 

cache. 

The database engine that manages the cached data is the Oracle TimesTen In-Memory Database.  It is augmented 

by the ability to load and synchronize cached data.  One of the background processes associated with the TimesTen 
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Cache is the Cache Agent, which manages some of this synchronization.  Figure 3 shows the architecture of a 

TimesTen Cache. 

 

Figure 3. TimesTen Cache Architecture 

A Cache Grid is a collection of TimesTen Caches that collectively manage the application data. A cache grid 

consists of one or more grid members each backed by a TimesTen Cache. Grid members cache tables from a 

central Oracle database or Real Application Cluster (RAC). Cached data is distributed across multiple nodes or 

TimesTen Caches without shared storage. A Cache Grid ensures that data is consistent across nodes.  Grid 

members may be replicated. 

 

Figure 4. Cache Grid with Three Replicated Grid Members 
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Figure 4 shows a Cache Grid consisting of three replicated grid members.  Additional grid members may be added 

incrementally with no interruption to operations.  The replication configuration that must be used with the TimesTen 

Cache is the active standby pair configuration. 

4.1 Defining the Content of a Cache 

The content of a TimesTen Cache is defined through an extended SQL syntax. 

A Cache Group is a set of TimesTen Cache tables that corresponds to a set of frequently-used Oracle database 

tables that are related through foreign key constraints.  SQL syntax is used to define Cache Groups and to choose 

the columns and rows that are to be cached from the Oracle database tables.  Users may define Cache Groups 

programmatically or via the interactive ttIsql utility. 

Example: 

Assume that the following tables exist in the Oracle Database: 

- Customer (CustId, Name, Age, Gender, StreetAddress, State, ZipCode, PhoneNo) 

- Order (CustId, OrderId, PurchaseDate, Amount) 

- CustInterest (CustId, Interest) 

» An application may want to cache the profiles of customers who have placed orders since January 1, 

2014.  To that end, it may define the following two cache groups: 

» The first cache group contains subsets of the three tables above for customers who have placed orders 

since January 1, 2014, and who also live in the Pacific region of the United States.  Furthermore, the 

application may choose to cache only a subset of the tables’ columns.  For example, it may cache the 

following columns: 

- Customer (CustId, Name, Age, Gender, State) 

- Order (CustId, PurchaseDate, Amount) 

- CustInterest (CustId, Interest) 

» The second cache group contains the same information as the first cache group, but for customers in the 

Mountain region of the United States. 

The two cache groups may be cached on different nodes running TimesTen Cache. 

An additional concept used by the TimesTen Cache is that of a Cache Instance.  A Cache Instance is a collection of 

related records that are uniquely identifiable, and is used to model a complex object.  Cache Instances form the unit 

of cache loading and cache aging as will be described below.  In the example above, all records in the Customer, 

Order, and CustInterest tables that belong to a given customer ID (CustId) belong to the same Cache Instance, and 

are related to each other through foreign key constraints.  CustId uniquely identifies the Cache Instance and is 

referred to as the Cache Instance Key. 

TimesTen supports the same data types as the Oracle Database. 

In addition to supporting its own data types, TimesTen supports the same basic data types as the Oracle Database 

so there is no need to map Oracle Database data types to TimesTen data types.  But it is possible to map Oracle 
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Database data types to more efficient TimesTen implementations.  For example, an application may map an Oracle 

Database NUMBER data type to a TimesTen INTEGER data type. 

Note that application developers can create indexes on the in-memory cache tables. The in-memory cache indexes 

may match the indexes in the Oracle Database or may be different.  The application designer can use the flexibility 

of TimesTen to create multiple indexes on the same table and may define indexes over multiple columns. Index 

Advisor is a tool that evaluates a given SQL workload and recommends optimal indexes to improve the performance 

of associated queries inside a TimesTen database.  

4.2 Loading Data and Managing the Cache 

An application must decide how to load Cache Group data into the TimesTen Cache for processing.  The following 

techniques are available for loading data: 

» Explicit Loading.  This can be done in one of several ways: 

» Load the entire Cache Group at once.  This is a suitable technique to use if the content of the entire Cache 

Group can fit in the cache.  The ability to unload an entire Cache Group is also available. 

» Load Cache Instances “by WHERE clause”.   In this case, a WHERE clause is used to describe the subset 

of the Cache Instances that should be brought into the cache.  Applications can also unload Cache 

Instances “by WHERE clause”. 

» Load Cache Instances “by ID”.  In this case, a list of Cache Instance Ids is used to specify Cache Instances 

that should be brought into the cache.  Applications can also unload Cache Instances “by ID”. 

» Dynamic Loading.  This technique is available for loading cache instances.  Dynamic Loading is useful when the 

Cache Group is too large to fit in the cache, and hence only an application’s working set is to be kept in the 

cache.  In this case, the records that make up a Cache Instance are loaded into the cache automatically on a 

cache miss, i.e., when a SQL statement3 does not find the requested data in the cache.  If the Cache Instance is 

already in the cache, the statement is handled directly from the cache. 

 

Dynamic Loading is typically coupled with automatic Cache Aging.  Cache Instances can be automatically aged 

out of the cache when the cache capacity is exceeded.  TimesTen Cache supports Usage-Based Aging and 

Time-Based Aging.  Usage-Based Aging uses an LRU (least recently used) scheme to age out Cache Instances 

when the cache capacity is exceeded.  Time-Based Aging grants Cache Instances a Lifetime of certain duration in 

the cache, and requires the presence of a timestamp column in one of the tables of the Cache Group.  The value 

of the timestamp column is managed by the application.  Cache Instances can remain in the cache as long as 

their timestamp value plus Lifetime does not exceed the current time.  Note that Cache Aging can be used 

independently of dynamic loading, and in fact may be used with regular TimesTen tables that are not cached from 

an Oracle database. 

 

An application may choose to have some Cache Groups subject to aging and others not.  For example, the 

application may want to keep catalog information in the cache at all times, but may want to load users’ profiles on 

demand when users connect to the application, and age out the profiles automatically when users disconnect.  

Cache Instances can also be explicitly unloaded by the application.  

Data that has been loaded into in-memory cache tables is available for SQL, PL/SQL processing through JDBC, 

ODBC, ADO.NET, TTClasses, OCI and Pro*C. 

 

 

                                                             
3 Dynamic loading of a Cache Instance is available for SQL statements with an equality expression on the primary key or foreign 

key of any of the records in the Cache Instance. 
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4.3 Sharing Data Across a Cache Grid 

Cache Groups may be local or global.  With Local Cache Groups, cached data is not shared across members of the 

same Cache Grid.  Grid members may have disjoint data or overlapping data, and it is up to the application to 

determine how data is distributed among them.  For example read-only catalog data may be cached in all grid 

members for best performance, and updatable customer information may be partitioned by geography in different 

grid members.  Committed updates on cached tables are propagated to Oracle tables with no coordination with 

other grid members. A Local Cache Group can be defined as explicitly loaded or dynamically loaded.  Cache 

Groups are local by default, unless they are defined as global. 

In a Global Cache Group, cached data is shared across members of the same Cache Grid.  Concurrency control is 

enforced across the grid and a transaction running anywhere in the grid always sees the most recent committed 

version of a Cache Instance.  Committed updates to the same Cache Instance by different grid members are 

propagated to the Oracle database in the order in which they were committed within the grid to ensure data 

consistency. 

4.4 Maintaining Data Consistency 

The Oracle TimesTen Cache supports updates to cached data and automatically maintains consistency between 

caches and the Oracle Database. 

Cached data may be updated in the TimesTen Cache or in the Oracle Database. The TimesTen Cache provides the 

ability to automatically propagate updates from the cache to the Oracle Database, and vice versa.  However, an 

underlying assumption is that a Cache Group is either mostly or exclusively updated in the cache, or in the Oracle 

Database.  It is a major design flaw to cache a set of tables that are expected to be heavily updated in both the 

cache and the back-end database.  There are, however, scenarios where it is appropriate to allow updates in both.  

The updates in the Oracle database may, for example, occur only at night for maintenance reasons while updates 

take place in the cache(s) during the day; or updates to central data may occur in the Oracle database, while 

updates to regional data occur in the cache(s). 

Cache Groups may be System-Managed or User-Managed.  There are three types of System-Managed Cache 

Groups: 

» Read-Only Cache Groups.  These Cache Groups may not be updated in the cache.  They may be updated in the 

Oracle database, and the TimesTen Cache manages the propagation of updates from the Oracle database to the 

cache. 

» Asynchronous Writethrough (AWT) Cache Groups.  These Cache Groups may be updated in the cache but not in 

the Oracle database.  The TimesTen Cache propagates updates from the cache to the Oracle database 

asynchronously after the commit of a transaction. 

» Synchronous Writethrough (SWT) Cache Groups.  These Cache Groups may be updated in the cache but not in 

the Oracle database.  Updates in the in-memory cache tables are propagated to the Oracle database 

synchronously with the commit of a transaction. 

System-Managed Cache Groups have well-defined semantics and restrictions to enforce these semantics.  By 

contrast, the semantics of User-Managed Cache Groups are left to the application.  For example, a User-Managed 

Cache Group may be updatable in both the cache and the Oracle database. 

Read-only, AWT, SWT, and User-Managed Cache Groups may all be Local Cache Groups.  However, only AWT 

Cache Groups may be specified as Global Cache Groups. 
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The table below summarizes the various Cache Group loading, Cache Grid sharing, and consistency maintenance 

options that are available. 

    Loading data into a Cache Group 

    Explicit Loading Dynamic Loading 
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in
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Read-Only 
Cache Group 

x   x   

AWT 
Cache Group 

x x  x x 

SWT 
Cache Group 

x   x   

User-Managed 
Cache Group 

x   x   

    
Local 

Cache Group 
Global 

Cache Group 
Local 

Cache Group 
Global 

Cache Group 

    Sharing data across a Cache Grid 

 

TimesTen Cache applications can send SQL statements to either a Cache Group or to the Oracle Database through 

a single connection to a TimesTen Cache database. This single-connection capability is enabled by a PassThrough 

feature that checks if the SQL statement can be handled locally by the in-memory cache tables or if it must be 

redirected to the Oracle Database. The PassThrough feature provides settings that specify what types of statements 

are to be passed through and under what circumstances.  One particularly useful setting is the one that specifies 

that all statements that update the database are to be passed to the Oracle Database.  This setting allows an 

application to have updates executed in the Oracle Database and reads executed in the TimesTen Cache through a 

single connection. 

The sections below describe the TimesTen Cache operations available to maintain the consistency of cached data.  

Some of these operations are initiated automatically by TimesTen Cache; others are initiated explicitly by the 

application. 

4.4.1 Update Propagation from TimesTen Cache to Oracle Database and Among Cache Grid Members for 

Global Cache Groups 

As we have already seen, Global Cache Groups are also Dynamic AWT Cache Groups.  An application with Global 

Cache Groups will be connected to one of the grid members.  Most of the time, it will access Cache Instances that 

are already cached in the grid member.  However, in case it tries to access a Cache Instance that is not in the grid 

member, the TimesTen Cache will load that Cache Instance dynamically either from another grid member of from 

the Oracle Database, depending on where the most recently updated version of the Cache Instance resides.  This is 

done automatically with no intervention from the application. The TimesTen Cache determines where the most 

recent copy resides and uses peer-to-peer communication to exchange information with other TimesTen Cache 

databases in its grid. 

If a transaction updates a Cache Instance in any of the grid members, the following mechanism is available to keep 

the Oracle database in sync with the cache: 

» Propagate.  The TimesTen Cache propagates the updates to the Oracle Database after the transaction commits.  

If another transaction updates the same Cache Instance in another grid member shortly thereafter and commits, 

the TimesTen Cache guarantees that the commits are propagated to the Oracle Database in the correct order. 
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Figure 5 shows a Cache Grid consisting of three Grid Members.  All grid members cache the same Global Cache 

Group, and each grid member has in its cache only a few Cache Instances from the Global Cache Group. These 

instances are cached because they have been recently accessed in their respective grid members.  As time 

elapses, each instance either continues to be accessed in its grid member and thus remain there, or gets accessed 

in another grid member and is moved to that member, or is not accessed at all, in which case it ages out of the 

Cache Grid entirely. 

 

Figure 5. Update Propagation and Cache Consistency for Global Cache Groups 

 

4.4.2 Update Propagation from TimesTen Cache to Oracle Database for Local Cache Groups 

For Local Cache Groups that may be updated in the cache, the following mechanisms are available to keep the 

Oracle database in sync with the cache: 

» Propagate.  With the propagate option turned on, all modifications to a Cache Group, i.e., all insert, update and 

delete operations are automatically propagated to the Oracle Database. The time at which the propagation takes 

place differs for SWT and AWT Cache Groups.  With SWT Cache Groups, when the application completes a 

transaction that has modified one or more Cache Groups, the transaction is first committed in the Oracle 

Database, and then in the TimesTen Cache.  This technique allows the Oracle Database to apply any required 

logic related to the data before it is committed in the TimesTen Cache.  With AWT Cache Groups, when the 

application completes a transaction, the transaction is committed in the TimesTen Cache and control returns to 

the application.  The changes made by the transaction are then asynchronously propagated to the Oracle 

Database. 

» Flush.  This operation is driven by an explicit request from the application and may be applied to Cache Groups or 

Cache Instances.  It is only allowed on Cache Groups or Cache Instances that have the Propagate option turned 

off.  The operation updates the records in the Oracle Database with the values of the records in the cache.  This 

operation is useful when frequent updates take place for some period of time over the same set of records.  

Rather than propagate a play-by-play of each update, the final image of each record is sent and applied to the 

Oracle Database.  

An application may configure a Cache Grid with several updatable Local Cache Groups in different grid members.  

The propagation of updates from the grid members to the Oracle Database will be managed by the TimesTen 

Cache, but it is recommended that Local Cache Groups in different grid members be non-overlapping lest different 
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updates against the same data take place at the same time in different nodes, resulting in unpredictable data values 

on the back-end. 

 

Figure 6. Update Propagation and Updatable Local Cache Groups 

 

4.4.3 Update Propagation from Oracle Database to TimesTen Cache for Local Cache Groups 

For a Local Cache Group4 that is updated in the Oracle database, the following mechanisms are available to keep 

the content of the cache in sync with the Oracle database: 

» Refresh.  This is an explicit request from the application to refresh either an entire Cache Group or specific Cache 

Instances.  It is equivalent to an unload operation followed by a load operation. 

» Full Autorefresh.  With Full Autorefresh, the application indicates how frequently refreshes ought to take place, 

and TimesTen Cache automatically refreshes the Cache Group at the time intervals indicated by the application. 

» Incremental Autorefresh.  Unlike Full Autorefresh, an Incremental Autorefresh updates only the records that have 

been modified in the Oracle database since the last refresh.  As with Full Autorefresh, the application must 

indicate the frequency of the refreshes, and TimesTen Cache automatically performs the incremental refresh at 

that frequency. 

 

Incremental Autorefresh may be used with Time-Based Aging to keep a sliding window in the cache.  For 

example, a customer support application may want to keep in the cache all incidents reported in the last 5 days.  

In this case, it can specify that the Cache Group should use Incremental Autorefresh, and Time-Based Aging with 

a Lifetime of 5 days.  As new incidents are inserted into the Oracle database, Incremental Autorefresh will 

propagate them automatically to the in-memory cache tables.  If these incidents are updated in the Oracle 

database, the updates will be propagated automatically to the in-memory cache tables.  The incidents must have 

a timestamp that is maintained by the application.  Once the value of a timestamp is more than 5 days older than 

the current date, the associated incident will be aged out of the cache automatically. 

The three techniques described above are useful under different circumstances.  Assume a Cache Group that 

needs to be refreshed only once a day at 2 a.m. when activities at a content provider site are minimal.  In this case, 

                                                             
4
   Note that Global Cache Groups may not be updated on the Oracle Database. 
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Full Autorefresh may be the best choice.  On the other hand, a Cache Group that needs to be refreshed once every 

five minutes should use Incremental Autorefresh.  Finally, a Cache Group that needs only infrequent refreshes, but 

at unpredictable times that are known only to the application, should use the Refresh option. 

An application may configure a Cache Grid with several read-only Local Cache Groups in different grid members.  

The Cache Groups in the different grid members may be completely disjoint, partially overlapping, or identical.  The 

propagation of updates from the Oracle Database to all the grid members will be managed by the TimesTen Cache. 

 

 

Figure 7. Incremental Autorefresh of Read-Only Local Cache Groups 

 

4.5 High Availability 

The TimesTen Cache supports high availability across the application tier and the database server tier. 

When Oracle TimesTen is used exclusively as the database of record as opposed to a database cache to the Oracle 

Database, it ensures the high availability of its data through replication, various on-line operations and a number of 

utilities that support failover, recovery, and on-line upgrades.  Automatic failure detection and failover of database 

and applications is available through integration with Oracle Clusterware.  Similarly, the Oracle Database supports 

high availability of its data through a set of features that includes Oracle Real Application Clusters (RAC), Oracle 

Automatic Storage Management (ASM), and Oracle Data Guard.  In addition, the Replication component of 

TimesTen Cache provides a number of features that ensure the high availability of cached data, and automatic 

recovery from failures that span the application tier and the Oracle database in the database tier.  They are 

described below. 

4.5.1 Handling of Failure of an In-Memory Cache Node 

To protect against failure of cache nodes and ensure continuous availability of cached data, TimesTen replication 

provides failure and recovery handling of cache nodes.  The Active Standby Pair replication configuration with 

multiple Read-Only Subscribers is designed to include an Oracle Database as part of the configuration and to 

provide failover and recovery of cache nodes. 
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With Active Standby Pair, all updates are always applied first on the Active node.  Updates are then replicated to the 

Standby node, and are afterwards replicated from the Standby node to all Read-Only Subscriber nodes.  Thus, the 

Standby node is always ahead of all Read-Only Subscriber nodes, and therefore if the Active node goes down, there 

is no doubt as to which of the subscriber nodes should become the new Active node. 

Read-Only Cache Groups 

The Active Standby Pair replication configuration is designed to work with both Read-Only and Writethrough Cache 

Groups.  With Read-Only Cache Groups, updates that are applied in the Oracle database are propagated to the 

Active node only.  TimesTen replication then propagates the updates to all the other nodes by going through the 

Standby node first. 

 

Figure 8. Read-Only Cache Groups Using Active-Standby Pair Configuration 

 

If the Active node fails, the Standby node becomes the new Active node.  From that point on, updates from the 

Oracle Database are propagated to the new Active node (the former Standby), and are then replicated to the Read-

Only Subscribers.  Once the old Active node is brought back online, it becomes the new Standby.  TimesTen 

Replication handles automatically the switch of update propagation from the Active to the Standby, and the recovery 

of the failed node. 

Similarly, if the Standby node fails, replication from the Active node will automatically be redirected to the Read-Only 

Subscriber nodes.  Once the Standby node is brought back on line, Replication will ensure that it catches up with all 

the updates that it missed before resuming its role as a Standby node. 
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Writethrough Cache Groups 

With Writethrough Cache Groups, updates are applied to the Active node.  They are then replicated to the Standby 

node.  Once there, they are propagated to the Oracle Database, and replicated to all the Read-Only Subscriber 

nodes. 

 

Figure 9. Writethrough Cache Groups Using Active-Standby Configuration 

 

If the Active node fails, the Standby node becomes the new Active node.  From that point on, all updates must be 

sent to the new Active node, i.e., the former Standby node.  Updates to the new Active node will be propagated to 

the Oracle Database and replicated to the Read-Only Subscriber nodes.  Once the old Active node is brought back 

online, it becomes the new Standby node.  TimesTen Replication handles automatically the recovery of the new 

Standby node and the transfer of responsibility of propagating updates to the backend to the new Standby node. 

Similarly, if the Standby node fails, replication from the Active node will automatically be redirected to the Read-Only 

Subscriber nodes, and the Active node will start propagating updates directly to the Oracle Database.  Once the 

Standby node is brought back on line, Replication will ensure that it catches up with all the updates that it missed 

before resuming its role as a Standby node, and will have the Standby node resume propagating updates to the 

Oracle Database and the Read-Only Subscribers. 

4.5.2 Handling of Failure in the Oracle Database 

If the Oracle Database becomes inaccessible to TimesTen Cache for any reason such as network failure, hardware 

failure, or Oracle Database failure, TimesTen Cache is designed to be resilient to such failures.  The in-memory 

cache will continue to be accessible to applications.  Furthermore, in case of an AWT Cache Group, updates to the 

cache will continue to be logged in Oracle TimesTen so that once the Oracle Database becomes accessible again, 

the updates are propagated to it.  Similarly changes to Read-Only Cache Groups that were made on the Oracle 

Database but not yet propagated to the in-memory cache will remain recorded on the Oracle database and will be 

propagated to the cache(s) once the Oracle database is accessible again. 
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In addition, TimesTen Cache takes full advantage of RAC’s high availability features.  A RAC configuration consists 

of a single physical database that is accessible by several nodes.  The runtime configuration on a single node is 

called an instance.  RAC provides load balancing, high availability, and data consistency across all instances. 

TimesTen Cache recovers quickly from a RAC node failure without requiring user intervention.  To do this, 

TimesTen Cache uses Oracle’s Transparent Application Failover (TAF) and Fast Application Notification (FAN) 

features whenever they are available, i.e., depending on the version of the Oracle client, server and the TAF 

configuration.  If an Oracle instance to which TimesTen Cache is connected fails, the connection is automatically 

switched to another instance.  If a Refresh, Full Autorefresh or Incremental Autorefresh operation was in progress 

when the failure occurs, the operation will automatically rollback the changes that took place in the in-memory 

database, and will restart the operation.  If a Propagate operation for an AWT Cache Group was in progress when 

the failure occurs, the transaction will automatically rollback the changes that took place in the Oracle Database if 

they need to be rolled back, and will restart the Propagate operation. 

If the Oracle database is replicated to a standby database using Synchronous Data Guard, then in the event of a 

failure of the active Oracle database, the TimesTen Cache will failover automatically to the standby Oracle database 

with no data loss. 

5. Performance 

To measure the performance of TimesTen Cache, we developed a benchmark that simulates a Home Location 

Register (HLR) application as used in cellular networks. The benchmark consists of a set of 7 transactions, each of 

which models a typical operation executed by an HLR such as setting up or deleting call forward or updating 

information about a mobile phone subscriber. 

We ran the benchmark in two different configurations.  In the first configuration, the HLR application ran against the 

Oracle Database with the benchmark application running on one server, and Oracle Database 11g on a second 

server.  In the second configuration, we added TimesTen Cache in front of the Oracle Database; the HLR 

application program was linked directly with the TimesTen cache database running on one server, and Oracle 

Database 11g running on the other server.  The cached data was stored in AWT Cache Groups, enabling all 

updates against cached data to be propagated automatically to the Oracle Database. 

The application was implemented in Java using JDBC for data access.  All four servers had identical configurations 

with Intel Xeon CPU E5-2680 @2.7GHz processors with hyper-threading running on Oracle Linux.  

We measured the average response time for each type of transaction when run against the Oracle Database and 

when run against TimesTen Cache. The graph below shows a significant reduction in application response time 

when using TimesTen Cache 
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                                    Figure 10. Response Time Comparison for HLR Benchmark Application 

 

This benchmark shows the benefits of using TimesTen Cache. As shown in the above graph, the application 

response time improved by a factor of 10 to 69 times. In general, the TimesTen Cache improvement ratio varies 

depending upon the hardware and platforms. 

6. Examples 

In this section, we examine a few caching scenarios and the recommended TimesTen Cache configurations and 

Cache Group types for these scenarios.  Note that while each example focuses on a specific type of Cache Group, 

different types of Cache Groups may co-exist in the same TimesTen Cache to best suit an application’s needs. 

6.1 Read-Only Cache 

Read-Only Cache Groups with Incremental Autorefresh are ideal for caching frequently-referenced data. 

There are many applications that can benefit from read-only caches.  The main characteristic of these applications is 

that some set of records is queried over and over.  These records may be frequently or infrequently updated, but the 

ratio of reads to writes is high.  Examples of such records include price lists for online shopping applications, airline 

schedules for airline reservation applications, and room availability for hotel booking applications. 

The best cache configuration for such data is a (System-Managed) Read-Only Local Cache Group with Incremental 

Autorefresh.  The data may be updated on the back-end database.  The updates will be propagated automatically to 

the cache.  The frequency of propagation is determined by the application and should depend on the frequency of 

updates on the back-end and the currency of the data needed by the application. 

If the cache is to be deployed on multiple grid members of a Cache Grid, then Local Cache Groups should be 

defined on the grid members and each member will be updated directly from the back-end database. 

Note that an online shopping application will typically have no need to update cached price lists frequently since 

changes to price lists are infrequent.  On the other hand, a flight tracking application, while it is read intensive, also 

needs to keep the cached status of flights fairly current.  The updates are best applied to the Oracle Database with a 

reasonably small Incremental Autorefresh interval, e.g., 5 minutes, defined for the Read-Only Cache Groups. The 

TimesTen Cache will automatically propagate all the updates to the grid members that include the updated data.  An 
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application connected to a grid member can set up a single connection to the TimesTen Cache and use the 

PassThrough option to route all updates to the Oracle Database while executing all reads in the cache. 

6.2 Read-Only Sliding Window Cache 

Read-Only Cache Groups with Incremental Autorefresh and Time-Based Aging are ideal for caching frequently-

referenced data that falls in a sliding window. 

In many cases, the read-only data that is needed by an application is data with a time component where newer data 

is more frequently accessed than older data.  New data is constantly generated, and older data gets less valuable 

for this specific class of applications.  So, one can think of a fixed-length time interval that is constantly moving 

forward with data coming into the interval on one end, and falling off the interval on the other end.  The application is 

only interested in the data that is within the interval, typically referred to as a sliding window. 

Examples of applications that may have a need for data that falls in a sliding window are a stock trading application 

that may want the last 3 days of trading, or a news delivery application that may want the last 24 hours of news 

clips. 

To cache data that falls in a sliding window, we want new data to be brought into the cache automatically and old 

data to age out of the cache automatically.  We also want data that is in the cache to be updated automatically 

should changes be made to the back-end.  The best cache configuration for such data is a (System-Managed) 

Read-Only Cache Group with Incremental Autorefresh and Time-Based Aging. 

As in the previous example, if the cache is to be deployed on multiple grid members of a Cache Grid, then Local 

Cache Groups should be defined on the grid members and each member will be updated directly from the Oracle 

Database. 

6.3 Updatable Cache 

Asynchronous Writethrough Cache Groups are ideal for updatable caches. 

Some applications need immediate, real-time update to cached data with eventual propagation of updates to an 

Oracle Database.  For example, an application that manages and provisions phone subscription services and 

authenticates access to such services will typically cache subscriber information in the TimesTen Cache.  Changes 

to a user’s service must be reflected immediately in the cache, and should be propagated to the back-end database. 

The best configuration for such data is an Asynchronous Writethrough Cache Group. 

If the subscriber population is large enough to require that the application be deployed over multiple grid members of 

a Cache Grid, then Local Cache Groups should be defined on the grid members with the Cache Group in each 

member owning a subset of the subscriber population and with no overlap among the subsets owned by different 

grid members.  For example, the subscribers may be partitioned by area code. 
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6.4 Updatable Dynamic Cache 

Asynchronous Writethrough Global Cache Groups with Dynamic Loading and Usage-Based Aging are ideal for 

updatable dynamic caches. 

For some applications, access to active data must be very fast, but the set of active data varies over time and is a 

subset of a much larger amount of data that cannot be held entirely in a cache because it is too large.  The active 

data needs to be brought in the cache on demand, and the content of the cache needs to be dynamic so that active 

data can replace stale data. 

An example of such applications is a call center that manages a large volume of concurrent customer sessions.  The 

application will typically be deployed over several application server nodes. Customers who contact the call center, 

are automatically routed to an available application server node, and the appropriate customer profile should ideally 

be available on that server node. 

The best configuration for this scenario is an AWT Global Cache Group with dynamic loading and usage-based 

aging and with a grid member configured on each application server node. 

With this configuration, when a customer is routed to an available server node, the appropriate customer profile is 

dynamically loaded from the Oracle database to the grid member.  When the customer completes a call, changes to 

his/her profile are propagated from the TimesTen Cache to the Oracle database.  LRU aging will automatically 

remove the profiles of inactive customers from the TimesTen Cache.  If the same customer contacts the call center 

shortly after the first call and is routed to a different node, the customer profile will be dynamically loaded in the new 

node from either the Oracle database or from the grid member where it was previously loaded depending on where 

the most recent copy resides.  The TimesTen Cache determines where the most recent copy resides.  It also 

manages concurrent updates to data within the grid. 

All of the customer data is stored in the Oracle database. The Oracle database is much larger than the combined 

TimesTen Cache databases and is best accessed by applications that do not require the real-time performance of 

TimesTen Cache but do require access to large amounts of data. Such applications may include a billing application 

and a data mining application. 

As the customer base increases and demands to serve more customers concurrently increases, the call center may 

decide to deploy additional application server nodes.  New TimesTen Cache members can join the TimesTen Cache 

grid with no disruption to ongoing requests in the grid. Similarly, failures or removal of individual nodes do not disrupt 

operations in the rest of the grid. 

6.5 Data Capture Cache with Uneven Arrival Rate 

Asynchronous Writethrough Cache Groups with Usage-Based Aging are ideal for capturing data with uneven arrival 

rates. 

There is a class of applications where new data is generated at a very high rate for some periods of time and 

moderate rate at other periods.  During the periods of high activity, the back-end database is often unable to keep 

up with the high throughput demanded by the application.  Such applications can benefit from a cache that, in effect, 

ends up “smoothing” the arrival rate of the newly-generated data. 
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For example, a stock ticker application will have the rate of arrival of new values vary greatly over time.  It will be 

particularly high when the market opens and closes, and will be lower at other times.  The peak arrival rate cannot 

be typically handled by a disk-based database, but can be sustained by TimesTen Cache. 

The best cache configuration for such data is a (System-Managed) Asynchronous Writethrough Cache Group with 

Usage-Based Aging.  Inserts to Writethrough Cache Groups are automatically propagated to the back-end Oracle 

database. And, Usage-Based Aging will automatically remove data from the in-memory cache to free up space. 

6.6 Data Capture Cache with Constant High Arrival Rate 

Asynchronous Writethrough Cache Groups with Usage-Based Aging coupled with regular TimesTen tables with 

Usage-Based Aging are ideal for capturing data with a constantly high arrival rate. 

There is another class of applications where new data is also generated at a high rate, but where the high arrival 

rate does not necessarily subside.  Caching temporarily data whose arrival rate is too high to be absorbed by a 

back-end database does not solve the problem if the arrival rate does not subside as there is no interlude for the 

back-end database to catch up.  But, it is often the case for such applications that the newly-generated data can be 

aggregated into a more condensed form prior to being permanently stored in the back-end database.  It is also 

typical for these applications to analyze the data they collect in real time to detect interesting or anomalous patterns. 

An example of such an application is one that collects data from sensors or RFID readers.  The data is often 

repetitious and can be easily aggregated and it often needs real-time analysis. 

The best configuration for such applications is to insert the data as it arrives in one or more tables that are managed 

by Oracle TimesTen only, i.e., there is no image of this data in the back-end database.  The non-cached TimesTen-

only tables can be configured with Usage-Based Aging.  Once the data is aggregated by the application, it can be 

inserted in the cache in a (System-Managed) Asynchronous Writethrough Cache Group with Usage-Based Aging.  

TimesTen Cache will automatically propagate all the aggregates to the back-end database.  Since both the 

TimesTen-only tables and the cache tables are configured with Usage-Based Aging, least-recently used records will 

be aged out automatically to make room in the cache for new records. 

6.7 Updatable User-Managed Cache 

User-Managed Cache Groups with explicit Flush are best suited for applications with frequent updates, but 

infrequent business transactions. 

Some applications need to execute multiple updates in the cache for best performance, but need to permanently 

record the final transaction in the Oracle Database.  An example of such an application is an eCommerce 

application where the application might maintain a number of shopping carts for active users.  The shopping carts 

will be updated repeatedly in the cache.  These updates need not be propagated to the Oracle Database as they are 

of little value.  However, once a user executes a purchase, the transaction needs to be permanently recorded in the 

Oracle Database. 

The best configuration for such data is a User-Managed updatable Cache Group where the application issues 

explicit Flush requests whenever it needs to record a transaction in the Oracle Database.  This configuration may be 

coupled with Usage-Based Aging so that abandoned shopping carts get deleted from the cache automatically. 
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6.8 Read-Only Dynamic Distributed Cache 

Read-Only tables with Dynamic Load and Usage-Based Aging are best suited for a read-only dynamic distributed 

cache. 

In some cases, an application may be distributed over many nodes to handle a throughput rate that cannot be 

handled by a single node, and the set of active data needed by the application is dynamic, and is at any given time, 

a much smaller subset of the full data set.  An example of such an application may be a trading application where 

the active data is the profile of active traders. 

The best configuration for such data is to configure the in-memory cache on each node with a Read-Only cache 

group over the same set of tables in the Oracle Database, and to use Dynamic Load and Usage-Based Aging with 

these cache tables.  What will then happen is that each node will have the traders’ profiles that it needs loaded 

automatically as it needs them, and the profiles will be aged out of the caches when they are no longer needed to 

make room for needed profiles. 

7. Conclusion 

Oracle TimesTen Application-Tier Database Cache enables you to improve application transaction response time by 

caching the performance-critical subset of tables and table fragments from an Oracle database to the application 

tier. In contrast to simple result cache mechanisms, applications can execute SQL and PL/SQL commands over the 

cached data since the cache tables are managed as regular relational database tables in the TimesTen In-Memory 

Database.  The caches can be shared among different applications.  Updates can be applied to the caches, and the 

caches are kept consistent with the Oracle Database.  Caching data using TimesTen Cache is superior to other 

caching techniques as it brings full relational functionality, incremental scalability coupled with location transparency, 

stellar performance, automatic maintenance of data consistency with the Oracle Database, and cross-tier high 

availability to applications running in the application tier 

By bringing data closer to the application, and by processing queries in an in-memory database, Oracle TimesTen 

Application-Tier Database Cache reduces response time significantly.  By offloading some of the data processing 

work from the Oracle database server, overall application throughput is significantly improved without interfering with 

the centralized management and administration of the back-end database. 
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