

An Oracle White Paper

October 2013

Oracle XML DB: Choosing the Best XMLType
Storage Option for Your Use Case

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

 1

Introduction

XMLType is an abstract data type that provides different storage and indexing models to

best fit your data and your use of it. As an abstract data type, your applications and database

queries gain in flexibility: the same interface is available for all XMLType operations.

XML is being used in a variety of ways – e.g., sometimes XML is constructed from relational

data sources, so it is relatively structured, sometimes it is used in the ETL scenario, which is

also very structured, sometimes it is used for storing free-form documents like resumes, etc.

In addition, the retrieval pattern is different for different kinds of data. The data-centric

users usually have a fixed set of queries, whereas the document-centric users issue more ad-

hoc queries.

Because the XML usage falls in a broad spectrum, there is no one-size-fits-all storage to

offer the best performance and flexibility for each of these use cases. Hence Oracle offers

three different storage models for XMLType. Because different storage (persistence) models

are available, you can tailor performance and functionality to best fit the kind of XML data

you have and the pattern of its use. Therefore, one key decision to make when using Oracle

XML DB for persisting XML data as XMLType is which storage model to use for which

kind of XML data. This paper guides you on how to choose the best storage option, given

your use case.

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

2

Storage Options

XMLType tables and columns can be stored in the following ways:

 Binary XML storage – This is the default storage for Oracle XML Database. XMLType

data is stored in a post-parsed binary format specifically designed for XML data. Binary

XML is compact, post-parsed, and XML schema-aware XML. The biggest advantage of

Binary XML storage is its flexibility – you can use it for schemaless documents, or when

the schema allows for high variability. The format also provides efficient partial update

and stream-able query execution.

 Structured storage – XMLType data is stored relationally. The biggest advantage of

structured storage is the performance. This provides the best performance in structured

cases – the query performance matches that of relational tables, and updates can be

performed in-place. It also provides relational-like schema evolution capability.

 Unstructured storage – This storage form, also known as XMLType CLOB storage, is

deprecated in Oracle 12cR1. Despite ability to store document byte for byte in original

form and providing “document fidelity”, this storage is extremely inefficient for partial

document updates retrieval. If XMLType as CLOB format is already used for storage,

customers should consider moving their data to Binary XML storage format using Oracle

Golden Gate. If “Document Fidelity” is important for your usecase, you could store a

copy of XML document in a relational CLOB column.

In addition, Oracle supports the following kinds of indexes on XMLType:

 B-Tree index on Structured storage

 XMLIndex with Structured and Unstructured components on Binary XML and

Unstructured storage

 Secondary B-Tree indexes on the secondary tables created by XMLIndex (for both

Structured and Unstructured components)

 XML Full Text Index on Binary XML.

Each of these storage models and index combinations has its own advantages and

disadvantages in different dimensions, such as performance and flexibility. No single storage

or index is right for every use case. The advantages and disadvantages of different storage

options are summarized in Appendix 1.

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

3

XMLType Use Cases

Most XMLType use cases fall into well defined categories listed below. If your use case falls

into any of these categories, you could start by using the recommended solution for that use

case. If the recommended solution doesn’t satisfy your needs, then look at the remaining

sections to fine-tune the storage/indexing model.

Note that this whitepaper is about the use cases where the data is persisted as XMLType.

Although a common XML use case is “XML generation from relational data”. This use case

is not discussed here, because the storage is relational and the user is using XML generation

functions to generate XML which is not persisted.

Use Case 1: An XML store with very little query requirements

There are several reasons why an application will want to store XML data and perhaps

retrieve the full XML. In this use case, there is no requirement to update or query XML

fragments. If in case XML fragments do need to be queried or updated, such operations are

done in the application-tier, so the database is unaware of them. In such cases, the user has 2

options:

Option 1 is to store the XML into the XMLType Binary XML storage.

Option 2 is to just store the XML into a relational BLOB or CLOB column, preferably as

SecureFile.

However, when using option 2, Oracle will not parse the XML, so we cannot guarantee the

validity of the XML data. In addition, in option 2, users cannot perform XMLType

operations on this column.

Use Case 2: ETL: XML used only as a staging area

ETL stands for “extract-transform-load” and refers to XML use cases where customers need

to store XML in the database before transforming it into their operational systems (mainly

relational). The XML data is highly structured and conforms to an XML schema. Producing

relational values from XML as well as generating XML from relational data is covered under

this category. The storage we recommend for ETL is XMLType Structured Storage, also

known as Object Relational storage.

Use Case 3: XML persistence requiring interoperability with relational systems
(including updates)

This use case is similar to use case 2 above, except that the XMLType data require updates.

These updates could update partial XML data (known as “piecewise updates”). The storage

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

4

we recommend for this use case is the XMLType Structured Storage, also known as the

Object Relational storage, since it has excellent support for piecewise updates.

Use Case 4: Semi-structured XML persistence that includes updates

In this use case, either the schema is variable, or large portions of schema are not well

defined. Hence the use of XMLType Structured Storage is not feasible. Binary XML is the

ideal storage option for this use case. For value searches, use structured XMLIndex when

paths are known, and use path-subsetted unstructured XMLIndex when paths are not

known beforehand.

Use Case 5: Business intelligence

SQL constructs such as order-by, group-by, and window enable powerful business

intelligence (BI) queries over relational data. The XMLTable function allows values in XML

to be projected out as a virtual table. Order-by, group-by, and window constructs can

operate on columns of the virtual table. Structured XMLIndex internally organizes its

storage tables in a manner that reflects the virtual table(s) exposed by XMLTable. Therefore,

structured XMLIndex is well suited for indexing XML data in a way that makes such

XMLTable-based queries very efficient. A query that uses the XMLTable function can be

rewritten to simple access of the relational tables of a structured XMLIndex. This means that

order-by, group-by, and window constructs operating on columns of the virtual table are

translated to order-by, group-by, and window constructs operating on the corresponding

physical columns of the structured XMLIndex tables.

For BI-style queries, we recommend that the user store their data as binary XML, with

structured XMLIndex on it. Furthermore, the user should create relational views over XML

using XMLTable, where the views project all columns of interest to the BI application.

Application queries should be written against these relational views. If structured XMLIndex

is created in one-to-one correspondence to these views, Oracle RDBMS will make sure that

queries over the views are seamlessly translated into queries over the relational tables of the

structured XMLIndex, thereby providing relational performance.

Use Case 6: XML content store with full text searches

If your application needs to do full text searches on XML data, you should use binary XML

with XML Full Text index on it.

Use Case 7: Data integration from diverse data sources to allow a uniform query
interface

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

5

If your XML data comes from several different data sources, each having its own schema,

then you should store it in the binary XML format.

There are two different flavors of this use case:

1. If data from different data sources share some structured islands that can be normalized,

XMLIndex structured component can be created over these structured islands. An RSS

news aggregator is a good example of such use case.

2. If there are no common structured islands from different data sources, Unstructured

XMLIndex can be created.

If your use case doesn’t fit into one of the buckets described above, you need to take

additional considerations detailed in the following sections on how to choose your storage.

The Rule of Thumb – Data Centric vs. Document Centric

The first thing to consider when choosing an XMLType storage model is the nature of your

XML data and the ways you use it. A spectrum of XML use cases has data-centric use of

highly structured data at one end and document-centric use of highly unstructured data at

the other. The first question to ask yourself is whether your use case primarily data-centric or

document-centric. These considerations are summarized in Figure 1 followed by detailed

descriptions.

FIGURE 1: XML USE CASES AND XMLTYPE STORAGE MODELS

 Data-centric – Your data is, in general, highly structured, with relatively static and

predictable structure, and your applications take advantage of this structure. Your data also

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

6

conforms to an XML schema. This kind of data typically follows an entity relation (ER)

model.

 Document-centric – there are two cases:

 Your data is relatively structured, but your applications do not take advantage of that
structure: they treat the data as if it were without structure.

 Your data is generally without structure or with a variable structure. Document structure
can vary over time (evolution) and the content is mixed (semi-structured) with many
elements contain both text nodes and child elements. Furthermore, many XML
elements can be absent or can appear in different orders. Finally, documents might or
might not conform to an XML schema.

 Semi-structured – Your data has structured (data-centric) and unstructured (document-

centric) parts. The primary document could be structured, with islands of unstructured

content, or the primary document could be unstructured, with structured islands.

Once you have determined the data-centric or document-centric half of the spectrum

appropriate for your use case and data, consider whether your case is at an end of the

spectrum or closer to the middle. That is, just how data-centric or document-centric is your

case?

 Employ structured storage for purely data-centric uses. A typical example of this use case

would be an employee record (fields’ employee number, name, address, and so on). The

structured storage is an entity-relationship decomposition of the XML. Use B-tree

indexing with structured storage. This storage model gives the best performance for data-

centric cases as the metadata (i.e., tags) is pulled out into column level, and hence queries

can do a metadata lookup, which is extremely fast.

 Employ binary XML storage for all document-centric use cases. This option gives the

storage flexibility because the metadata (i.e, tags) is stored with the data, so schema

changes are easily handled. XMLIndex is the indexing method of choice here.

 For general indexing of document-centric XML data, use Unstructured XMLIndex. A
typical example of this use case would be an XML Web document or a book chapter.

 If your data contains some predictable, fixed structures that you query frequently, then
you can use XMLIndex indexes with structured components on those parts. A typical
example of this use case would be a free-form specification, with author, date, and title
fields.

 To handle islands of structure within generally unstructured content, please create a
structured XMLIndex and as well as unstructured XMLIndex. A use case where you
might use both components would be to support queries that extract an XML fragment
from a document whenever some structured data is present. The unstructured
XMLindex is used for the fragment extraction; the structured component is used for the
predicate that checks for the structured data (e.g., the SQL WHERE clause).

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

7

These considerations are summarized in Figure 1 above. The figure shows the spectrum of

use cases, from most data-centric, at the left, to most document-centric, at the right. The

table in the figure classifies use cases and shows the corresponding storage models and

indexing methods.

Query Pattern

Another important consideration in choosing your storage and indexing option is your query

patterns. The question to ask yourself is whether you have a single root hierarchy or a multi-

root hierarchy.

 Single root hierarchy – This happens when you have purely content data, and you always

query from the root down the tree to the leaves. For example, your XML instance is a

book, and you always query from the root down to the text.

 Multi-root-hierarchy – This happens when your query can originate from different

elements in the schema. For example, you have a Department-Employee-Project schema,

and sometimes your query searches using the “department id”, sometimes using “project

id”, and sometimes using “employee id”. This case frequently happens when XML is used

as a data-exchange vehicle.

If you have a multi-root hierarchy, then structured storage will give you the best

performance because it will perform relational-style lookups starting from any storage table

to the parent/child tables. If, for some reason, you are unable to use the structured storage,

the next best choice is to use Binary XML with structured XML Index. Single root hierarchy

case is amenable to different storage options, as specified in the “Advanced considerations”

section below.

If your use case is primarily structured, when do you choose Structured storage or Binary

storage with Structured XMLIndex? Structured XMLIndex lets you leverage the flexibility of

Binary XML while maintaining relational performance. One way to determine if Structured

XMLIndex is right for you, is to ask yourself – are your queries known ahead of time? If the

queries are known ahead of time, and the list of Xpaths queried is known, you can create a

structured XMLIndex on those paths. Note that the queries can change over time, in which

case you can ALTER your structured XMLIndex. However, if the queries are not known

ahead of time, you are better off choosing the object-relational storage.

Advanced considerations

Of course, not all use cases are easy to classify into the spectrum outlined in the above

sections. Even when they are, other constructs of the schema may dictate the storage model.

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

8

Three storage solutions are described below. Following that, we give a flowchart guiding you

on how to choose a storage model.

The storage solutions

Here are the three storage options Oracle XMLDB provides. Please see “The flowchart” in

the next subsection to decide which solution is right for you.

Solution Binary: Choose Binary XML storage. Choose your indexing options:

 Does your data have predictable structured islands in it?

 Choose Structured XML Index for the structured islands.

 Do you need to support full text queries?

 Create XML Full Text index.

 Does your need to support ad-hoc XML queries involving predicates ?

 Create Unstructured XMLIndex.

Solution Object Relational: Choose Structured storage.

 Create B-tree and bitmap indexes just like you would for relational storage.

Solution Clob: Choose relational CLOB column storage. Choose your indexing options:

 Do you need to support full-text queries?

 Create XML Full Text index.

The Flowchart

This flowchart guides you on how to choose the storage.

1. Do you need Document Fidelity for your XMLType? In other words, do you want

to maintain the original XML data, byte for byte, with all original white spaces

preserved?

Yes

storing your data using Solution Binary for XMLType operations. Note that it will

be your responsibility to keep the 2 copies in sync.

2. Do you usually just insert and select the entire XML data? In other words, do you

rarely select or update part of the XML?

Yes e “Solution Binary” for storage.

3. Do you want to store XMLType instances conforming to multiple schemas in 1

table/column? (Note: This kind of usage is not recommended because your queries

will not be able to take advantage of the schema to make optimizations.)

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

9

Yes

4. Do you have a schema for your XMLType?

Yes

5. (You do not have a schema.) Perhaps your XMLType is data-centric. Is it possible

for you to generate a schema using a schema generation tool?

No ution Binary”

6. If you came here, it means that your data conforms to a single schema, so you may

be able to get the best performance out of using the Structured storage. However,

there are several schema constructs that are incompatible with structured storage.

You will need to massage your schema and/or use case to make it structured-

storage-friendly. Here are some factors that may affect your choice.

6.1. Schema evolution:

Note: It is conceivable that your use case during product development may be

different from that of a production product. For example, it is conceivable that

your data is structured, and your schema may evolve frequently during product

development. However, once your product is released, it may evolve

infrequently. In this case, it is important to consider the production time

schema evolution (as opposed to development time schema evolution).

6.1.1. Will the XML Schema be evolved very frequently?

No

6.1.2. Can you take advantage of in-place evolve, or will you need to do copy-

evolve?

In-

Copy-evolve → Stop. Choose “Solution Binary”.

6.2. Sparseness of data: Is your data extremely sparse (like HL7, XBRL)?

lution Binary”.

6.3. Use of ANY, Choice: A lot of automatic schema generators add

constructs like ANY, Choice in the schema to make it more flexible. Many

times, these are not strictly needed. These constructs make it hard to

register the schema as Object Relational.

6.3.1. Does your schema use constructs that make it hard to register as

Object Relational, e.g., ANY, Choice etc?

No

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

10

6.3.2. Is it possible to modify your schema to remove these constructs?

6.4. Stop. Choose “Solution Object Relational”.

7. If you are still unable to decide what storage / indexing option is right for you, try

out both Solutions Binary & Object Relational and run performance experiments

with your workload to see what works best for you.

Conclusion

XML has diverse use cases ranging from data-centric to document-centric, so there is no

one-size-fits-all storage model to give the best performance and flexibility for each of these

cases. XMLType is an abstract data type that provides different storage and indexing models

to best fit your data and your use of it. One key decision to make when using Oracle

XML DB for persisting XML data as XMLType is which storage model to use for which

kind of XML data. In general, default Binary XML storage provides a good option for most

of the use cases. In specialized scenario of extremely structured document with an XML

schema, object relational storage can be used. This paper has guided you in looking at

various properties of your XML data to decide the best storage and indexing option, given

your specific use case.

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

11

Appendix 1: Storage options relative advantages

The advantages and disadvantages of different storage options are summarized in Table-1

below:

QUALITY BINARY XML STORAGE STRUCTURED STORAGE

Throughput + High throughput. Fast DOM

loading. There is a slight overhead

from the binary encoder / decoder.

– XML decomposition can result in

reduced throughput when ingesting

or retrieving the entire content of an

XML document.

Indexing

support

+ XMLIndex, function-based, and

Oracle Text indexes.

++ B-tree, Bitmap, Oracle Text,

XMLIndex, and function-based

indexes.

Queries +. Fast when using XMLIndex. User

queries which cannot use the index

use streaming Xpath evaluation,

which is reasonably fast as well.

++ Extremely Fast. Relational query

performance. Users can create B-

tree indexes on the exploded

columns.

Update

operations

(DML)

+ In-place, piecewise update for

SecureFile LOB storage.

++ Extremely fast. Relational column

gets updated in-place.

Space efficiency

(disk)

+ Extremely space-efficient because

of encoded representation

++ Space-efficient.

Data flexibility + Flexibility in the structure of the

XML documents that can be stored

in an XMLType column or table.

– Limited flexibility. Only documents

that conform to the XML schema can

be stored in the XMLType table or

column.

XML schema

flexibility

++ Can store schemaless or

schema based documents. An

XMLType table can store

documents conforming to any of the

registered schemas.

– One XMLType table can only store

documents conforming to one

schema. Also provides relational-like

in-place schema evolution capability.

XML fidelity + DOM fidelity (see structured

storage description).

+ DOM fidelity: A DOM created from

an XML document that has been

stored in the database will be

identical to a DOM created from the

original document. However,

insignificant white space may be

discarded.

Oracle White Paper— Oracle XML DB : Choosing the Best XMLType Storage Option for Your Use Case

12

QUALITY BINARY XML STORAGE STRUCTURED STORAGE

Optimized

memory

management

+ XML operations can be optimized

to reduce memory requirements.

+ XML operations can be optimized

to reduce memory requirements.

Validation upon

insert

++ XML schema-based data can be

fully validated when it is inserted,

though this is an expensive

operation.

+ XML data is partially validated

when it is inserted.

Partitioning ++ Partition based on relational or

virtual columns.

++ Available

Streams based

replication

++ Available ++ Available

Compression

and Encryption

Binary XML with SecureFile storage

can be compressed / encrypted

Each element/attribute can be

compressed / encrypted individually

Oracle XML DB : Choosing the Best XMLType

Storage Option for Your Use Case

October 2013

Author: Geeta Arora, Sriram Krishnamurthy

Contributing Authors: Oracle XML DB

Development and Product Management Team

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective

owners.

0109

