

An Oracle White Paper
February 2009

A Load-On-Demand Approach to Handling
Large Networks in the Oracle Spatial Network
Data Model

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions. The development, release, and
timing of any features or functionality described for Oracle’s products remains at the sole discretion of
Oracle.

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

Executive Overview... 2

Introduction ... 3

Oracle Spatial Network Data Model .. 5

Network Data Model Schema ... 5

Network Partitioning .. 7

NDM LOD Architecture and APIs.. 8

LOD Network Analysis Capabilities... 8

Java Representations of LOD Network Elements 9

Software Requirements... 9

Using LOD in Network Data Model ... 9

Creating a Network ... 10

Partitioning a Network ... 10

Configuring the Partition Cache .. 11

Analyzing the Network .. 12

Modeling and Analysis Enhancements ... 15

Network Constraints.. 15

Multiple Cost Support .. 16

Precomputed Connected Components ... 17

Dynamic Data Set ... 18

Partial Link Paths (Sub-paths) .. 19

Hierarchical Shortest Path Computation 19

Comparisons between NDM in-memory API and NDM LOD API 21

Approaches ... 21

Data Model.. 21

Analysis Functions .. 21

LOD Analysis Viewer .. 23

Conclusion .. 24

References.. 24

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

2

Executive Overview
Network modeling, management, and analysis are common tasks for enterprise

applications such as geographic information system (GIS), customer relationship

management (CRM), social network analysis, and in semantic web technologies such as

the resource description framework (RDF). Oracle10g introduced the Oracle Spatial

network data model (NDM), which lets users model and analyze networks. In Oracle10g,

NDM uses an in-memory approach to pre-load the whole network into memory before

analysis; however, this approach cannot handle networks that are too large to fit in

memory. To address this scalability issue, we developed a load-on-demand approach

(LOD) in Oracle11g. Large networks are first divided into manageable parts called

network partitions. Only partitions that are needed are automatically loaded during

analysis. In this paper we discuss how LOD works and how to use it.

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

3

Introduction
The network data model helps users analyze network connectivity relationships. It is

commonly used in transportation, utilities, life sciences, and semantic technologies. It

simplifies network modeling, analysis, and management so that users can focus on

application logic. It provides an open, generic data model with many common network

analysis capabilities. Application information is separated from connectivity information so

that the model can be applied to many network applications without customization. NDM

further provides a constraint mechanism, to let users guide analysis based on application

rules and attributes. For more information on the Oracle Spatial Network Data Model, see

references 1,2,3.

On Oracle10g, NDM APIs use an in-memory approach to analyzing networks. The entire

network is loaded into memory from the database. Once the network is loaded in

memory, users can query and edit it. This approach works well for networks that can be

completely loaded into memory; however, it cannot handle networks that are too big to be

fit in memory. To address this scalability issue, Oracle11g introduces a load-on-demand

approach to handle large networks. Instead of loading the whole network into memory,

the network is first divided into manageable subnetworks (network partitions), and only

partitions that are needed during analysis are loaded into memory. Loading and

unloading of network partitions are automatically managed, thus removing memory as a

limiting factor.

Figure 1 shows a US major highway road network. The complete US road network

contains around 20 million nodes and 50 millions links. (source: Navteq 2006). Networks

of this size cannot be handled in-memory and need to be handled by a load-on-demand

approach.

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

4

Figure 1. US road network (20 million nodes and 50 millions links, source: Navteq)

LOD uses the same network data model in database as the in-memory approach:

network node, link, and path tables, and the network metadata. In addition, though, LOD

requires networks to be partitioned first. NDM provides a partitioning procedure for spatial

networks, which enables users to partition their spatial networks into network partitions

and store the result in a partition table. To further speed up partition loading, this

procedure can also create blob representation for each network partition in a partition

blob table.

LOD provides the following analysis functions: shortest path and hierarchical shortest

path, nearest neighbors, within cost, and reachable and reaching nodes. Additional

features such as network constraints, multiple cost support, partial-link paths, and user-

defined data are also supported.

This paper is organized as follows: it presents the LOD network data model schema,

APIs and architecture; shows how to use the data model; discusses how to use features

such as network constraints, a dynamic data set, and multiple link costs to enhance

modeling and analysis capabilities; compares major differences between the in-memory

APIs and LOD APIs; and describes a tool for visualizing LOD networks and analysis

results.

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

5

Oracle Spatial Network Data Model

The network data model consists of two parts: a network schema and network APIs. The
network schema is the persistent data storage for storing network information. LOD uses the
same NDM tables but with additional tables for partitions. The network APIs contain a PL/SQL
package for data management in the database, a Java API for data management and analysis on
the client side or middle tier, and an XML API for middle-tiered integration.

Network Data Model Schema

A network contains network metadata that includes network tables (node, link, path, and sub-
path tables). User-defined data can also be managed by NDM in Oracle11g. In addition to NDM
network schema, LOD requires additional partition tables. Figure 2 shows the NDM schema.

Network

Node Table
Link Table
Path Table

SubPath Table

Partition Table
Partition Blob Table

Network

User Defined Data

+

Network Metadata

Figure 2. Oracle Network Data Model (Schematic View)

Network Metadata

Network metadata provides general information about networks. Partition information needs to
be inserted into the network metadata after a network is partitioned.

Network Tables

An Oracle network contains at least a node table and a link table, and a path table can be added if
needed. Figure 2 shows the schema for the network data model, which includes these tables. The
schema represents the information necessary for network management and analysis. User-
defined data (application attributes) can be added to these tables. Node views and link views are
also supported.

The network data model can also handle geometry information. That is, the network data model
can represent both logical and spatial network applications. Adding geometric data to a logical
network will allow the logical network to be displayed.

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

6

User Defined Data

In Oracle11g, users can define their own data in the user data metadata view, and NDM will
manage the user data as well as the connectivity information. Each specified user-defined data
contains the following information:

The following example shows how to insert link user data into the metadata:

• DATA_NAME: the name of the user data. It corresponds to the column name of the data in
node/link/path table.

• TABLE_TYPE: the table type of the user data {NODE, LINK, PATH, SPATH}

• DATA_TYPE: the data type of the user data {VARCHAR2, NUMBER, INTEGER,
SDO_GEOMETRY}. The corresponding data types in Java are: {String, Double, Integer,
JGeometry}.

• DATA_LENGTH: length for VARCHAR2 user data

The following example shows how to insert link user data into the metadata:

 -- Insert link user data named ‘interaction’ of type varchar2 (50) in

 -- network ‘bi_test’.

 -- ‘interaction’ is a column of type varchar2(50) in the link table of

 -- network ‘bi_test’.

 insert into user_sdo_network_user_data

 (network,table_type,data_name,data_type,data_length)

 values ('bi_test',‘LINK','interaction','VARCHAR2',50) ;

 -- Insert link user data named 'PROB' of type Number.

 --'PROB’ is a column of type NUMBER in the link table of network ‘bi_test’.

 insert into user_sdo_network_user_data(network,table_type,data_name,data_type)

 values ('bi_test',‘LINK','PROB','NUMBER') ;

Once a network or network partition is loaded, user-defined data is available in NDM Java
representations. You can access user-defined data through the getUserData and setUserData
methods for the Node, Link, Path, and SubPath interfaces. For example:

 String interaction = (String)link.getUserData(“interaction”);

 double prob = ((Double)link.getUserData(“PROB”)).doubleValue();

Partition Tables

LOD requires networks to be partitioned. Once a network is partitioned, the partition result is
stored in the partition tables, which are described as follows:

Network Partition Table

• NODE_ID (NUMBER): network node ID

• PARTITION_ID (NUMBER): network partition ID

• LINK_LEVEL (NUMBER): network link level

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

7

Network Partition Blob Table

• PARTITION_ID (NUMBER): network partition ID

• LINK_LEVEL (NUMBER): network link level

• BLOB (BLOB): partition Blob

• NUM_INODES (NUMBER): number of internal partition nodes

• NUM_ENODES (NUMBER): number of external partition nodes

• NUM_ILINKS (NUMBER): number of internal partition links

• NUM_ELINKS (NUMBER): number of boundary partition links

• NUM_INLINKS (NUMBER): number of incoming partition links

• NUM_OUTLINKS (NUMBER): number of outgoing partition links

• USER_DATA_INCLUDED (VARCHAR2(1)): ‘Y’ if the partition contains user-defined data,
‘N’ otherwise

The partition table name and partition blob table name are stored in network metadata.

Network Partitioning

The NDM node-based partition approach divides network nodes into partitions. Each node is
associated with a partition ID. In addition, NDM considers link priorities, so that link priority
levels (link levels) can be considered. Each link is assigned a priority to its link_level column.
Link priorities have positive integer values starting from 1.

For example, in road networks links are assigned with priorities based on their speed limits. One
way to represent such link priorities is to designate local roads as link_level = 1 and state or
interstate highways as link_level = 2, thus creating a two-level network. In such multilevel
networks, routing can be computed based on the target link level where primary path
computation occurs. Note that lower link levels contain all nodes and links of its higher levels.

NDM provides a spatial partitioning procedure to help users partition networks. This procedure
generates network partitions based on the maximum number of nodes per partition as specified
by the user. A bisecting approach is performed recursively on a network until the desirable
number of nodes per partition is achieved. The number of partitions is always a power of 2. In
the beginning there is only one big partition that contains all nodes. Each subsequent bisecting
will divide the partitions into halves until the number of nodes in each partition is smaller than or
equal to the given maximum number of nodes per partition. The partitions are of equal size for
each link level.

For example, partitioning a network of 1,000,000 nodes with the maximum number of node per
partitions equal to 5000 will generate 256 partitions (3907 nodes/partition). The following
formula can be used to obtain the number of partitions, P based upon the total number of nodes,
Tv, and maximum number of nodes per partition, Pv:

P = 2N where N = CEIL(LN(Tv/Pv)/ LN(2)), the number of bisections

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

8

Note:

• CEIL returns the smallest integer value that is greater than or equal to the argument and LN
returns the natural logarithm of the argument.

• The actual nodes per partition = Tv/Pv

The result is stored in a partition table. To further speed up partition loading, blob
representations can be generated and stored in a partition blob table. This procedure
automatically inserts partition information into its network metadata.

NDM LOD Architecture and APIs

LOD can be deployed in a simple client-server or a multi-tier environment. Figure 3 shows a
typical 3-tiered architecture for LOD.

Network
Information

Application
Information

Database
Schema

Network
Constraints

Network
Partitions

LOD Network
Analysis

Network Data
Management
Using SQL and
PL/SQL package

Network Partition
Loading
And Analysis
using Java or
XML API

Metadata
Node/Link/Path/SubPath
Tables
User Data

Application
Related Tables

+

Clint GUI
Network analysis
Visualization

Database Back End

Application Tier

Client Tier

Partition Table
Partition Blob Table Partition

Dynamic
Data Set

JAVA API

XML API

Figure 2. Oracle Network Data Model Architecture

LOD Network Analysis Capabilities

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

9

The following analysis functions are supported in the LOD API:

• Shortest Path: The shortest path from node A to node B

• Accessibility Analysis: Is node A accessible from node B?

• Within Cost Analysis: What nodes are within a given cost from (to) a given node?

• Nearest Neighbors: What are the N nearest neighbors of a given node?

• Connected Components Analysis: Label connected components with component IDs.

• Hierarchical Shortest Path: The shortest path based on link priority (link level)

Java Representations of LOD Network Elements

The Java network representations (network, nodes, links, paths, and sub-paths) are defined as
Java interfaces and can therefore be extended. These interfaces specify the necessary behaviors
for the network and its elements.

The following are some common LOD Java interfaces in the package oracle.spatial.network.lod:

• LogicalNode, LogicalLink, LogicalPath, and LogicalSubPath

 Representations of logical node, link, path and subpath

• LogicalPartition and SpatialPartition

 Representations of network partitions

• LODNetworkManager

 For getting the NetworkIO, NetworkAnalyst, etc.

• NetworkIO

 For reading network information from the database

• NetworkAnalyst

 For handling network analysis

• LODNetworkConstraint and LODAnalysisInfo

 Representations of network constraint and analysis information

For information about each interface, see the Javadoc.

Software Requirements

The load-on-demand feature in network data model is shipped with Oracle Database release 11g.
The PL/SQL package is pre-loaded in the database and required Java .jar files are provided; the
Java API supports JDK (or JRE) version 1.5 or later. The LOD viewer is included as a utility
tool. For more information, see the Oracle Spatial Topology and Network Data Models manual.

Using LOD in Network Data Model

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

10

This section explains how to use the LOD approach. There are four major steps: network
creation, network partition, partition cache configuration, and load-on-demand analysis.

Creating a Network

Create the network in the database by creating and populating node, link, and (optionally) path
tables.

Partitioning a Network

Partition the network by using a spatial partitioning procedure, specifying the maximum number
of nodes in each partition. The partition result is stored in a partition table, which is automatically
generated, and partition metadata information is inserted into the network metadata. To enhance
the performance of network loading, you can store partitions as blobs in a network partition blob
table. (Note that LOD will still work on networks that are not partitioned -- these networks will
be treated as single-partition networks; however, the use of multiple partitions is recommended
for LOD analysis.)

A good partition strategy is to minimize the number of links between partitions, which reduces
the number of partitions that need to be loaded and the probable number of times that the same
partitions need to be reloaded. Moreover, partitions that are too small require excessive loading
and unloading of partitions during analysis.

The recommended maximum number of nodes per partition, assuming 1 GB of memory, is
between 5,000 and 10,000. You can tune the number and see what is best for your applications,
considering the available memory, type of analysis, and network size. You should also consider
configuring the partition caching size.

The following PL/SQL example code shows how to partition a spatial network:

exec sdo_net.spatial_partition

(network->‘NYC_NET’, -- network name

partition_table_name->’NYC_PART$’, -- partition table name

max_num_nodes->5000, -- max. number of nodes per partition

log_loc->’MDDIR’, -- partition log directory

log_file->’nyc_part.log’, --partition log file name

open_mode->’w’, -- partition log file open mode

link_level->1); -- link level

The following example creates partition blobs:

exec sdo_net.generate_partition_blobs(

network->‘NYC_NET’, ,-- network name

link_level ->1, -- link level

partition_blob_table_name->’NYC_PBLOB$’, -- partition blob table name

includeUserdata->FALSE, --whether to include user data in partition blobs

log_loc->’MYDIR’, -- partition log directory

log_file->’nyc_part.log’, --partition log file name

open_mode->’a’); -- partition log file open mode

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

11

The preceding two examples generate the necessary partition tables for the NYC_NET network.
After executing these examples, you can check the nyc_part.log file for the current status or any
errors encountered during partitioning or blob generation.

Configuring the Partition Cache

Before you perform network analysis, you can configure the network partition cache to optimize
performance, by modifying an XML configuration file to override the default configuration. You
can specify the following:

· Cache size: the maximum number of nodes in partition cache

· Partitions source: from a partition table or a partition blob table

· Resident partitions: ID of partitions that will not be flushed out of the cache

· Cache flushing policy: least recently used (LRU) or frequency based

A sample configuration is shown below:

<?xml version="1.0" encoding="UTF-8" ?>

<LODConfigs xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.oracle.com/spatial/network/lodLODConfigs.xsd"

 xmlns="http://www.oracle.com/spatial/network/lod">

 <!-- default configuration for networks not configured -->

 <defaultLODConfig>

 <LODConfig>

 <readPartitionFromBlob>false</readPartitionFromBlob>

 <partitionBlobTranslator>

 oracle.spatial.network.lod.PartitionBlobTranslator11g

 </partitionBlobTranslator>

 <userDataIO>oracle.spatial.network.lod.LODUserDataIOSDO</userDataIO>

 <cachingPolicy>

 <linkLevelCachingPolicy>

 <linkLevel>1</linkLevel>

 <maxNodes>500000</maxNodes>

 <residentPartitions>-1</residentPartitions>

 <flushRule>oracle.spatial.network.lod.LRUCachingHandler</flushRule>

 </linkLevelCachingPolicy>

 </cachingPolicy>

 </LODConfig>

 </defaultLODConfig>

 …

 <!-- network to be configured -->

 <networkLODConfig>

<networkName>NYC_NET</networkName>

 <LODConfig>

 <!- read partitions from partition table or from partition blob table -->

 <readPartitionFromBlob>true</readPartitionFromBlob>

 <partitionBlobTranslator>

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

12

 oracle.spatial.network.lod.PartitionBlobTranslator11g

 </partitionBlobTranslator>

 <userDataIO>oracle.spatial.network.lod.LODUserDataIOSDO</userDataIO>

 <cachingPolicy>

 <linkLevelCachingPolicy>

 <linkLevel>1</linkLevel>

 <!-- Maximum number of nodes allowed in cache -->

 <maxNodes>500000</maxNodes>

 <!-- resident partitions -->

 <residentPartitions>-1</residentPartitions>

 <flushRule>oracle.spatial.network.lod.LRUCachingHandler</flushRule>

 </linkLevelCachingPolicy>

 <linkLevelCachingPolicy>

 <linkLevel>2</linkLevel>

 <maxNodes>500000</maxNodes>

 <residentPartitions>*</residentPartitions>

 <flushRule>oracle.spatial.network.lod.LRUCachingHandler</flushRule>

 </linkLevelCachingPolicy>

 </cachingPolicy>

 </LODConfig>

 </networkLODConfig>

</LODConfigs>

The configuration can be reloaded if necessary.

LOD provides functions to help you estimate the best caching size. The recommendation,
however, is based on logical network information; so if additional user-defined information is
stored in network partitions, caching size should be reduced accordingly.

The following PL/SQL function returns the estimated size in bytes for a given network partition:

SELECT SDO_NET.GET_PARTITION_SIZE (

 NETWORK->’NYC_NET’,

 PARTITION_ID->1,

 LINK_LEVEL ->1,

 INCLUDE_USER_DATA->false,

 INCLUDE_SPATIAL_DATA->’Y’) FROM DUAL;

Analyzing the Network

After you have created and partitioned the network, and optionally configured the partition
cache, you can issue analysis queries. Analysis results are returned in Java representation or XML
responses, depending on whether you used the Java or XML API. See the LOD Javadoc or XML
schemas for details.

Java API (oracle.spatial.network.lod)z

The following sample code uses the LOD Java API to issue a shortest path query on a network:

// load LOD Configuration (XML)

InputStream config = LODTest.class.getResourceAsStream(configXmlFile);

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

13

LODNetworkManager.getConfigManager().loadConfig(config);

// get database connection

Connection conn = LODNetworkManager.getConnection(

 dbUrl, dbUser, dbPassword);

// get LOD network IO Adapter

String networkName = “NYC_NET”;

NetworkIO reader = LODNetworkManager.getCachedNetworkIO(

 conn, networkName, networkName, null);

// get analysis module

NetworkAnalyst analyst = LODNetworkManager.getNetworkAnalyst(reader);

// compute the shortest path

LogicalSubPath path = analyst.shortestPathDijkstra(

 new PointOnNet(startNodeId),

 new PointOnNet(endNodeId), null);

…

XML API (oracle.spatial.network.xml)

The following example shows the LOD XML query and result (request and response) for a
shortest path query:

<?xml version="1.0" encoding="UTF-8"?>

<ndm:networkAnalysisRequest

 xmlns:ndm="http://xmlns.oracle.com/spatial/network"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:gml="http://www.opengis.net/gml">

 <ndm:networkName>NYC_NET</ndm:networkName>

 <ndm:shortestPath>

 <ndm:startPoint>

 <ndm:nodeID>65</ndm:nodeID>

 </ndm:startPoint>

 <ndm:endPoint>

 <ndm:nodeID>115</ndm:nodeID>

 </ndm:endPoint>

 <ndm:subPathRequestParameter>

 <ndm:isFullPath> true </ndm:isFullPath>

 <ndm :startLinkIndex> true </ndm:startLinkIndex>

 <ndm:startPercentage> true </ndm:startPercentage>

 <ndm:endLinkIndex> true </ndm:endLinkIndex>

 <ndm:endPercentage> true </ndm:endPercentage>

 <ndm:geometry>false</ndm:geometry>

 <ndm:pathRequestParameter>

 <ndm:cost> true </ndm:cost>

 <ndm:isSimple> true </ndm:isSimple>

 <ndm:startNodeID>true</ndm:startNodeID>

 <ndm:endNodeID>true</ndm:endNodeID>

 <ndm:noOfLinks>true</ndm:noOfLinks>

 <ndm:linksRequestParameter>

 <ndm:onlyLinkID>true</ndm:onlyLinkID>

 </ndm:linksRequestParameter>

 <ndm:nodesRequestParameter>

 <ndm:onlyNodeID>true</ndm:onlyNodeID>

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

14

 </ndm:nodesRequestParameter>

 <ndm:geometry>true</ndm:geometry>

 </ndm:pathRequestParameter>

 </ndm:subPathRequestParameter>

 </ndm:shortestPath>

</ndm:networkAnalysisRequest>

<?xml version = '1.0' encoding = 'UTF-8'?>

<ndm:networkAnalysisResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ndm="http://xmlns.oracle.com/spatial/network"

 xmlns:gml="http://www.opengis.net/gml">

 <ndm:networkName>NYC_NET</ndm:networkName>

 <ndm:shortestPath>

 <ndm:subPathResponse>

 <ndm:isFullPath>true</ndm:isFullPath>

 <ndm:startLinkIndex>0</ndm:startLinkIndex>

 <ndm:startPercentage>0.0</ndm:startPercentage>

 <ndm:endLinkIndex>17</ndm:endLinkIndex>

 <ndm:endPercentage>1.0</ndm:endPercentage>

 <ndm:pathResponse>

 <ndm:cost>6173.212694405703</ndm:cost>

 <ndm:isSimple>true</ndm:isSimple>

 <ndm:startNodeID>65</ndm:startNodeID>

 <ndm:endNodeID>115</ndm:endNodeID>

 <ndm:noOfLinks>18</ndm:noOfLinks>

 <ndm:linkIDs>145477046 145477044 …… 145476905</ndm:linkIDs>

 <ndm:nodeIDs>65 64 …… 115</ndm:nodeIDs>

 <ndm:geometry>

 <gml:LineString>

 <gml:coordinates>-71.707462,43.555262 -71.707521,43.555601…

 </gml:coordinates>

 </gml:LineString>

 </ndm:geometry>

 </ndm:pathResponse>

 </ndm:subPathResponse>

 </ndm:shortestPath>

</ndm:networkAnalysisResponse>

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

15

Modeling and Analysis Enhancements

Several features enhance the flexibility of modeling and analysis, and greatly simplify the
customization of application requirements. These features and described in this section.

Network Constraints

A network constraint is a user-implemented interface to interact with and guide the LOD
analysis engine, based on application information and logic. The interface contains a simple
Boolean function that must be implemented by users. Analysis information is passed to this
implementation to help determine the feasible links and nodes. The constraint implementation
also requires methods that indicate if the constraint requires complete path information and user-
defined data.

The following demonstrates how to implement the LODNetworkConstraint interface.

public class ProhibitedTurnConstraint implements LODNetworkConstraint

{

 // prohibited turns information

 private HashMap<Long, long[]> pTurnMap = null;

 // construct prohibited turns information

 public ProhibitedTurnConstraint() {

 pTurnMap = new HashMap();

 // add prohibited turns as start link : prohibited end links

 long [] startLinkIDs = {145485662, 145483032};

 long [][] prohibitedEndLinkIDs = {{145477663}, {145477866}};

 for (int i = 0; i < startLinkIDs.length ;i++)

 pTurnMap.put(startLinkIDs[i], prohibitedEndLinkIDs[i]);

 }

 // check if the given turn (start link ID, end link ID) is allowed

 private boolean validTurn(long startLinkID, long endLinkID) {

 if (pTurnMap == null) // no prohibited turns

 return true;

 else {

 long [] prohibitedEndLinks = pTurnMap.get(startLinkID);

 if (prohibitedEndLinks == null)

 return true;

 else {

 for (int i = 0; i < prohibitedEndLinks.length;i++) {

 if (prohibitedEndLinks[i] == endLinkID)

 return false; // prohibited turn found

 }

 return true; // OK

 }

 }

 }

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

16

 public boolean isSatisfied(LODAnalysisInfo info) {

 LogicalLink currentLink = info.getCurrentLink();

 if (currentLink == null)

 return true; // start node, current link == null

 LogicalLink nextLink = info.getNextLink();

 return validTurn(currentLink.getId(), nextLink.getId());

 }

 public boolean requiresUserData(){ return false; }

}

Multiple Cost Support

In Oracle11g, you can specify multiple costs on a node or a link, whereas in Oracle10g you can
associate only one set of costs (major cost) with links and nodes. The ability to specify multiple
costs, combined with the use of user-defined data, enables you to switch from different costs in
analysis. For example, travel time and travel distance are two commonly used costs for route
computation in road networks. In this scenario, you would simply implement a method that
returns a specific cost for a node or link and use it in an analysis function. The interface has the
following method:

public double getLinkCost(LogicalLink link);

With such an implementation, the user-specified cost will override the default cost specified in
network metadata. This interface can be applied on node cost as well.

The following shows how users can implement their own link cost function for use in cost-
related analysis. In this example, the default link cost is the value of the cost column of the link
table, and the user defined link cost is the travel time computed from the default link cost and
the speed limit for the link level.

 public class TravelTimeCalculator implements LinkCostCalculator

 {

 double SPEED_LIMIT_1 = 30;

 double SPEED_LIMIT_2 = 60;

 public double getLinkCost(LogicalLink link)

 {

 int linkLevel= link.getLevel();

 double linkCost = link.getCost();

 switch(linkLevel)

 {

 case 2:

 return linkCost/SPEED_LIMIT_2;

 default:

 return linkCost/SPEED_LIMIT_1;

 }

 }

 }

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

17

 public static void main(String[] args)

 {

 ...

 //get network analyst

 NetworkAnalyst analyst=LODNetworkManager.getNetworkAnalyst(reader);

 //Shortest path analysis using default cost

 LogicalPath path =

 analyst.shortestPathDijkstra(new PointOnNet(startNodeId),

 new PointOnNet(endNodeId), null);

 //Set travel time as cost

 LinkCostCalculator lcc = new TravelTimeCalculator();

 analyst.setLinkCostCalculator(lcc);

 //Shortest path analysis using travel time as cost

 LogicalPath path =

 analyst.shortestPathDijkstra(new PointOnNet(startNodeId),

 new PointOnNet(endNodeId), null);

 ...

 }

Precomputed Connected Components

Checking if two nodes are connected is a common query in network applications. You can use
this information to eliminate unnecessary computations if two nodes are not connected. In
Oracle11g, you can pre-compute connected component information and store it in a connected
component table. Each node at the various link levels is given a component ID.

Once the connected component table is generated, you can quickly decide if two nodes are
connected by checking the component IDs of these two nodes. (If node A can reach node B,
nodes A and B are considered to be connected.) If two nodes are not connected, there is no
possible path between node A and B. This information can be used as a filter to avoid
unnecessary path computations.

The connected component table is described as follows:

• NODE_ID (NUMBER): network node ID

• COMPONET_ID (NUMBER): network component ID

• LINK_LEVEL (NUMBER): network link level

Note that the information in connected component table is pre-computed and needs to be
recomputed if network connectivity is changed.

The PL/SQL procedure for generating the connected components of a network is:

exec sdo_net.find_connected_components(

network->’NYC_NET’, -- network name I

link_level->1, -- target link level

component_table_name->’NYC_COMP$’, -- component result table

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

18

log_loc->’MYDIR’, -- partition log directory

log_file->’nyc.log’, -- partition log file name

open_mode ->’a’); -- partition file mode

This procedure automatically inserts the connected component table name in the network
metadata.

Dynamic Data Set

The dynamic data set is network data (not metadata) that users can temporarily modify in order
to affect network analysis. For example, if you want to disable some links in the network
temporarily (such as to indicate road segments closed for repairs or by bad weather), you can put
the disabled link information in the network dynamic data set and pass the dynamic data set to
the analysis function. In this case, for example, when a shortest path is computed, any
temporarily disabled links will not be included in the path.

The dynamic data set contains element state, including any changes that need to be reflected in
subsequent analysis requests. Users first obtain network elements from the database, but they can
then modify attributes of these elements. During network analysis, the dynamic data set overrides
any matching element in the data originally loaded from the network partitions. The dynamic
data set can be used on a per-query basis or be reused for multiple queries.

The following example shows how the dynamic data set is used to make some links inactive
during analysis:

 ...

 //get network input/output object

 NetworkIO reader = LODNetworkManager.getCachedNetworkIO(

 conn, networkName, networkName);

 //construct dynamic data set

 NetworkUpdate networkUpdate = new NetworkUpdate();

 LogicalLink oldLink = reader.readLogicalLink(linkId, true);

 LogicalLink newLink = (LogicalLink) oldLink.clone();

 newLink.setIsActive(false);

 int pid = reader.readPartitionId(newLink.getStartNodeId(), 1);

 networkUpdate.updateLink(newLink, pid);

 pid = reader.readPartitionId(newLink.getEndNodeId(), 1);

 networkUpdate.updateLink(newLink, pid);

 //get network analyst

 NetworkAnalyst analyst = LODNetworkManager.getNetworkAnalyst(reader);

 //Set network update in the analyst

 HashMap<Integer, NetworkUpdate> networkUpdates =

 new HashMap<Integer, NetworkUpdate>();

 networkUpdates.put(1, networkUpdate);

 analyst.setNetworkUpdate(networkUpdates);

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

19

 //find the shortest path with updated network information

 LogicalSubPath path = analyst.shortestPathDijkstra(

 new PointOnNet(startNodeId), new PointOnNet(endNodeId), null);

 ...

Partial Link Paths (Sub-paths)

Oracle11g introduces the partial link path (sub-path) feature, to represent a part of a reference
path in which the start and end points are specified as, if each case, the start node of a link and
optionally a percentage of the distance along the link. A sub-path refers to an existing path by the
following parameters:

• Reference path ID: the path ID of the reference path

• Start link index: the start link index on the reference path

• Start percentage: the percentage of the sub-path's start node on the start link

• End Link index: the end link index on the reference path

• End percentage: the percentage of the sub-path's end node on the start link

The cost and geometry information is computed based on the percentage information.

Figure 4 shows a sub-path. It starts at 50% of the first link of the reference path and ends at 50%
of the last link of the reference path.

 Reference Path

SubPath
{ (0,50%), (6,50%) }

Reference Path

SubPath
{ (0,50%), (6,50%) }

Figure 4. Sub-path Representation

Hierarchical Shortest Path Computation

Shortest path computation could be expensive if the network is large and the path is long. In
some applications, sub-optimal solutions are acceptable if the performance (computation time) is
good. One common approach to trading path quality for performance is hierarchical path
computation.

For hierarchical path computation, a network is divided into different levels based on link
priorities. Links of higher priority will be traversed first. This approach dramatically reduces the
search space, and usually the results are good compared to the optimal solution. A typical
example is the route computation on a road network. A road network is classified into local
roads (link level 1), and state and interstate highways (link level 2). The speed limit indicates link
priority for computing travel time.

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

20

Figure 5 shows a two-level network. If the start and end nodes (denoted by Sn and En) are on
link level 1, the hierarchical path will first compute the nearest node (HSn) on link level 2 from
the start node (Sn) and the nearest node (HEn) of link level 2 to the end node (En). The
hierarchical path is just a path from SP(Sn -> HSn) + SP(HSn -> HEn) + Sp(HEn -> En),
where SP(A->B) is the shortest path from A to B. Note that hierarchical paths always try to
traverse links of the target link level if possible.

Figure 5. Hierarchical Shortest Path from Sn to En

The following assumptions apply for hierarchical path computation:

• The network is classified into different hierarchical link levels.

• Link level i ,Li needs to connect to link level L(i-1) and L(i+1) if it exists.

• A hierarchical path will always try to traverse links of the target link level.

The following example shows how to compute a hierarchical shortest path on link level 2:

...

int linkLevel = 2;

//Compute shortest path using the prefered link level

LogicalPath path = analyst.shortestPathDijkstra(

 new PointOnNet(startNodeId), new PointOnNet(endNodeId), linkLevel, null);

...

Sn En

HSn HEnLevel 2 (target
link level)

Level 1

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

21

Comparisons between NDM in-memory API and NDM LOD API

This section explains the differences between the in-memory API (using a Java API and its
associated SDO_NET_MEM PL/SQL package) and the LOD API (introduced in Oracle11g). It
compares their approaches, data model, and analysis functions:

Approaches

The in-memory and LOD APIs take the following basic approaches:

• The in-memory API requires that the entire network be loaded into memory before analysis
can be conducted. The in-memory API can be found under the Java package
oracle.spatial.network. A PL/SQL interface (SDO_NET_MEM) is built on top of the in-
memory API.

• The LOD API requires that the network be partitioned first, and then partitions are loaded
into memory whenever needed during LOD analysis. The LOD API can be found under the
Java package oracle.spatial.network.lod and in an XML API. The XML schema information is
described in the following file:

 $ORACLE_HOME/md/doc/sdondmxml.zip

The in-memory and LOD APIs cannot be mixed in an application. Choose the appropriate API
according to your application requirements and network size.

Data Model

The in-memory and LOD APIs use the same network data model, but the LOD API requires
additional partition information. (Although the LOD API can handle networks without partition
information, such networks will be treated as networks with a single partition.)

• The in-memory API can perform read, write, and edit operations on a network. All network
elements are available after a network is loaded.

• The LOD API can only perform read-only operation on a network. Network updates need to
be done at database level, and partitions (and partition blobs, if used) need to be updated
accordingly. Access to network elements needs to be done through the LOD API.

Analysis Functions

Both the in-memory and LOD APIs support shortest path, nearest neighbors, within cost, and
reachable and reaching analysis operations. The in-memory API also supports minimum cost
spanning, traveling salesman problem (TSP), and k-shortest paths. The LOD also supports
hierarchical shortest path computation, the resulting path of which prefers high-priority links.
Network constraints and user-defined data are supported in both the in-memory and LOD APIs.

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

22

The NetworkManager class is the main entry for in-memory analysis, and the
LODNetworkManager class is the main entry for LOD analysis. Supported analysis functions
can be found in the Javadoc for each class.

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

23

LOD Analysis Viewer

A viewer tool is provided to help users visualize LOD analysis results. This viewer is delivered on
Oracle companion CD, and is not officially supported. It is a standalone Java application built on
top of the LOD Java API and Oracle MapViewer client API. It supports most LOD analysis
functions and provides simple viewing capabilities.

To use the LOD viewer, first enter database connection information for the database where the
network data model (including partition information) is stored. Next, enter MapViewer
connection information. For information on how to install and use MapViewer, see the
OracleAS MapViewer User’s Guide [4]. After the connections are validated, you can perform
various analysis operations on the selected network. Zoom-in, zoom-out, and zoom-window
functions are available for viewing analysis results. A text window prints out analysis result and
statistics. Figure 6 shows a shortest path analysis result.

Figure 6. NDM LOD Analysis Viewer

Oracle White Paper— A Load-On-Demand Approach to Handling Large Networks in the Oracle Spatial Network Data Model

24

Conclusion

The load-on-demand feature in the Oracle Spatial network data model, available in Oracle
Database release 11g, is designed to handle analysis operations on large networks. It provides a
scalable and a flexible solution to many network applications. We are currently working with our
customers and partners to extend the modeling and analysis capabilities of the network data
model.

References

1. Oracle 10g, Oracle Spatial Network Data Model, A Technical White Paper, Oracle
Corporation, May 2005

2. Building GIS Applications Using the Oracle Spatial Network Data Model: A Technical White
Paper, Oracle Corporation, May 2005

3. Oracle Spatial Topology and Network Data Models, Oracle Corporation.

4. OracleAS MapViewer User's Guide, Oracle Corporation

A Load-On-Demand Approach to Handling

Large Networks in the Oracle Spatial Network

Data Model

Feb 2009

Author: Jack Chenghua Wang

Contributing Author: Huiling Gong

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective

owners.

0109

