
What’s New for Java DB, JDBC,
and Database Web Services in
Oracle Database 10g

An Oracle White Paper
May 2005

What’s New for Java DB, JDBC, and Database Web
Services in Oracle Database 10g

Introduction ... 3
What’s NEW FOr JDBC ... 3

Reminder - JDBC Features in Oracle Database 10g R1.......................... 3
New JDBC Features in Oracle Database 10g R2 4

What’s NEW FOr JAVA-IN-THE-DATABASE 14
Tell me Again - Why Java In the Database? ... 14
Reminder – Java DB Features in Oracle Database 10g R1................... 14
New Java DB Features in Oracle Database 10g R2 14
WHAT’S NEW FOR JPUBLISHER & DATABASE WEB
SERVICES .. 15
Tell Me Again -- Why Database Web Services....................................... 15
Reminder -- JPublisher and Database Web Services Features in Oracle
Database 10g R1.. 15
New JPublisher and Database Web Services Features in Oracle
Database 10g R2.. 16

Conclusions .. 16

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 2

What’s New for Java DB, JDBC, and Database Web
Services in Oracle Database 10g

INTRODUCTION
Oracle Database 10g Release 1 brought major enhancements to the Java runtime
in the database (OracleJVM), to the Oracle JDBC, and to the Oracle Database
Web Services. Release 2 goes further and brings completeness in terms of
standard support, integration with the Oracle database, manageability, and
performance. In this paper I will give you an overview of Java, JDBC and Web
Services features across Oracle Database 10g, (Release 1 and Release 2).
Through these capabilities, database developers will: (i) reduce their costs
through productivity gain; (ii) reduce their risks through increase scalability, load
balancing, high-availability; and (iii) extend the outreach and reach-in of their
Oracle databases. The white paper “ Java and Web Services Devlpers Perspective on
Oracle Database 10g” looks at those features from the developer’s perspective.

WHAT’S NEW FOR JDBC

Reminder - JDBC Features in Oracle Database 10g R1

Standard Support

The Oracle9i Release 2 JDBC drivers initiates JDBC 3.0 support with the following
features: transaction savepoints, toggling between local and global transaction, reuse of
PreparedStatement, and JDK 1.4.x support for client JDBC drivers. The Oracle Database
10g Release 1 JDBC brought the following JDBC 3.0 features:
Named Parameters: named parameters in CallableStatement and PreparedStatement,
will enable JDBC applications to pass parameters by name as well as registering,
and retrieving output parameters by name.
New Ref interface and Datalink: a DATALINK value references a file outside of the
underlying data source that the data source manages. The JDBC 3.0 specification
maps this new JDBC data type to the Java type java.net.URL.
J2EE Connector Architecture Resource Adapter: the Oracle JDBC driver can function as
a JCA resource adapter for Oracle databases.
Connection Pool: the Implicit Connection Cache (see below) is Oracle’s
implementation of JDBC 3.0 connection pool. Furthermore this implementation
brought advanced capabilities such as connection tagging for faster search and
retrieval, weight and attribute-based search

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 3

JDBC Web RowSet (JSR-114): this standard API allows applications such as Web
Services clients or J2EE components to fetch a collection of rows from
database tables (or other data sources) and emit the result set in XML format,
disconnected from the Data-Source. The Oracle Database 10g R1 JDBC
implementation is based on the draft specification for JSR-114.

Manageability / Scalability/ High-Availability/ Ease of Use / Performance

End-to-end Tracing: JDBC drivers to propagate the middle-tier Web client id to the
RDBMS engine so as to trace resource consumption from a Web Browser to the
SQL corresponding operations.
Enhanced Oracle JDBC Datum support: the separation of datum classes from the rest
of jdbc for "small" download size for datum users. Better (finer-grain)
SQLException handling; enhanced conversion and arithmetic operations methods
on datum to-and-from other datum.

Instant Client JDBC-OCI drive: a downloadable, low footprint bundling for
simplifying JDBC-OCI install

New database types: IEEE DOUBLE, and IEEE FLOAT: Java and J2EE
applications will retrieve and perform faster arithmetic calculations without loss
of information, using reduced database storage space.
LONG-to-LOB conversion: conversion function for CLOBs and BLOB to/from
LONG, RAW and LONG RAW, will simplify their manipulation and improve
their performance.
Unlimited size LOB: ever wanted to manipulate more than 4 Giga binary data?
Enhanced support for VARRAY: data mining applications will perform
aggregation, collection and general set operations, more efficiently.
PL/SQL Index table: this feature lets you send and receive PL/SQL tables in the
type-4 “thin” JDBC driver.
New encryption algorithms: the type-4 “thin” JDBC driver now supports 3DES112
and 3DES168.
Direct XA: performance optimization of JDBC XA operations when using the
type-4 “thin” JDBC driver.
JDBC-Thin Proxy authentication: multiple middle-tier users/threads can share the
same database connection under the same authenticated user.

New JDBC Features in Oracle Database 10g R2

Standard Support

Oracle Database 10g JDBC Release 2 achieves 100% JDBC 3.0 compatibility by
adding support for Auto-Generated Key Retrieval, Result Set Holdability as
described below.

JDBC 3.0 Retrieval of Auto-Generated Keys: Oracle database sequences and triggers can
be used to generate a unique key when a new row is inserted. JDBC 3.0 introduce
three interfaces that support the retrieval of the auto-generated keys; namely

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 4

java.sql.DatabaseMetaData, java.sql.Statement and
java.sql.Connection

• JDBC also offers “DML in the RETURNING clause” ss Oracle extension to
support Retrieval of Auto Generated Keys.

JDBC 3.0 Result Set Holdability: this feature enables applications to decide whether
the ResultSet object should be open or closed, when a commit operation is
performed. The commit operation could be either implicit or explicit. The Oracle
JDBC supports ResultSet.HOLD.CURSORS_OVER_COMMIT which is the
default option for the Oracle database itself.

In addition, Oracle Database 10g JDBC Release 2 supports the final specification of
JDBC RowSet JSR-114, a JDK 5.0 requirement. All 5 types of RowSets as JavaBeans:
JdbcRowSet, CachedRowSet, WebRowSet, FilteredRowSet, and JoinRowSet are
supported. In addition JAXP 1.2 (SAX 2.0 and DOM), and W3C XML schema, are
also supported.

Manageability / Scalability/ High-Availability/ Ease of Use / Performance

JDBC-OCI support for Proxy Authentication: parity with JDBC-Thin Proxy
Authentication (see above

JDBC-Thin support for SSL: JDBC leverages JSSE to provide a secure
communication between client and server when specified (presence of
(PROTOCOL=tcps) in the connection description).

JDBC-Thin support for TNSNAMES.ORA Lookup: similar to JDBC-OCI, both
client-side and server-side JDBC-Thin can now read the local TNSNAMES.ORA
file to resolve service name or TNS alias. Consequently Java in the database will
also be in position to reference external Oracle database, using service name. See
the JDBC documentation for more details.

Caching XAConnections: The JDBC connection cache has been enhanced to cache
XAConnections, since this is a first implementation of such capability and we are
looking for feedback (mostly Application Servers and ERP vendors).

New JDBC Connection Services
The Oracle Database 10g JDBC drivers introduce new connection services in term
of performance, scalability and high-availability. In this section I’ll describe the new
Implicit Connection Cache (performance, scapalability), the Fast Connection
Failover, (scalability, high-availability), and Runtime Load Balancing of JDBC
Connection Requests (performance, scalability) in RAC and GRID environments,

Connection Cache Manager

The Connection Cache Manager provides a centralized way to manage one or more
connection caches. It consists in a single instance of Connection Cache Manager
per VM. Each Connection Cache Manager instance manages all connection caches

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 5

existing in the JDK/JVM. This instance of the Connection Cache Manager must be
obtained before using any of the Connection Cache Manager functionality.

The Connection Cache Manager plays two major roles: cache management and
binding connection caches to data sources.
Cache Management and Maintenance

The Connection Cache Manager is responsible for creating, destroying and
maintaining the sanity of each cache. A programmatic API allows interaction with
the Connection Cache Manager (i.e., explicitly create a cache). A connection cache
may also be created transparently during the DataSource access. In fact, the first
connection request on a DataSource attempts to create the cache, however, if it
already exists then, the cache creation is skipped and the connection request is
simply routed to the cache, which retrieves a connection.

Binding a Connection Cache to the DataSource

The Connection Cache Manager associates a connection cache with its DataSource,
during the creation and re-initialization of the cache. The associations ends when
the cache is removed/destroyed. This ensures an efficient access and connections
retrieval when getConnection() request is invoked on the DataSource object.

Multi-cache Support: The Connection Cache Manager supports coexistence of more
than one cache. Each cache identified by a unique name, is tightly bound to a
DataSource. Each cache is either created transparently when getConnection()
requests are made on a cache enabled DataSource or is created explicitly in the
middle tier via the Connection Cache Manager API. Using multiple cache enabled
DataSources, provides the following benefits:

Request connections to more than one DataSource, especially when each of these
DataSources point to a separate underlying database.

Manage all caches configured, via the Connection Cache Manager. This makes
managing caches easy, without the burden of unnecessary book keeping in
Application Server code (code using Connection Cache Manager).

There are no limits imposed by the Connection Cache Manager on the number of
caches that can be created. This number is limited by the resources available on the
JVM and the Oracle database server.

Once a cache is created, it may either be explicitly removed via the Connection
Cache Manager, or is removed when the DataSource is closed after use, via the
DataSource close() API.

Connection Cache Properties

It is easy to set limits and tuned the connection cache using a set of connection
cache properties. Cache properties are set either while creating the cache for the
first time, on the DataSource, or when the re-initializing the cache, via the
Connection Cache Manager.

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 6

MinLimit: this sets the minimum number of PooledConnections the cache
maintains. This guarantees that the cache will not shrink below this minimum limit.
This property does not initialize the cache with minimum number of connections1.
Refer to InitialLimit property for priming of cache information. The default
value is 0.

MaxLimit: this sets the maximum number of PooledConnections the
cache can hold. The default value is unbound, meaning that there is no MaxLimit
assumed. Since the connection cache does not assume the maximum limit, the
connection cache is only limited by the number of database sessions configured for
the database. In other words, connections in the cache could reach as much as the
database allows.

InitialLimit: this sets the size of the connection cache when the cache is
initially created or reinitialized. When this property is set to a value greater than 0,
that many connections are pre-created and ready to use. This property is typically
used to reduce the “ramp up” time in priming the cache to its optimal size. The
default value is 0.

Dynamic Reconfiguration Support

Implicit Connection Cache allows dynamic reconfiguration of the cache properties
by reinitializing the cache using the specified new set of cache properties. The new
properties take effect on all PooledConnections newly created as well as
PooledConnections that are not in use. For connections that are in use, the new
properties take effect only after they are returned to the cache.

MONITORING THE CONNECTION CACHE
These APIs may be invoked on the Connection Cache Manager to obtain cache
information, such as the number of connections checked out, or the number of
connections available in the cache.

int getNumberOfAvailableConnections(String cacheName)

This API returns the number of connections in the connection cache, that are
available for use. The value returned is a snapshot of the number connections
available in the connection cache at the time the API was processed and hence a
statistical value.

int getNumberOfActiveConnections(String cacheName)

This API returns the number of checked out connections. These are connections
that are active or busy, and hence not available for use. The value returned is a
snapshot of the number of checked out connections in the connection cache at the
time the API was processed and hence a statistical value.

java.util.properties getCacheProperties(String

cacheName)

1 As was the case with OracleConnectionCacheImpl

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 7

Retrieves the properties of the specified cache.

String[] getCacheNameList()

This API returns all the connection cache names that are known to the Connection
Cache Manager. The cache name(s) may then be used to manage connection caches
using the Connection Cache Manager APIs.

Implicit Connection Cache

The Implicit Connection Cache provides a rich set of features including:
transparent or implicit access to the connection cache, support for heterogeneous
authenticated connection, the ability to refresh or recycle stale connections from
the cache, connection retrieval based on user defined attributes, connection
retrieval based on attributes and weights.

Abandoned Connection Support

Abandoned or orphaned connections are those that have been checked out of the
connection cache, but never returned to the cache, for numerous reasons. Implicit
Connection Cache automatically detects and reclaims these connections back to the
cache, based on the AbandonedConnectionTimeout property on the
connection cache. Setting this property to a valid timeout value, starts a heartbeat
monitoring process2 on this connection that is checked out.. When a heartbeat is
not registered on the connection for the specified period of time, the connection is
considered abandoned and is automatically claimed and put back to the cache.

Statement Caching Support

The MaxStatementsLimit connection cache property sets the maximum
statements to keep open for a connection cache. If cache is reinitialized with this
property and if more cursors are cached than specified, the extra cursors are closed.
The default is 0.

Connection Recycling Support

Over a period of time, connection cache accumulates stale connections. There are
two modes for recycling or refreshing stale connections in the cache:
REFRESH_INVALID_CONNECTIONS and REFRESH_ALL_CONNECTIONS.

• With REFRESH_INVALID_CONNECTIONS each PooledConnection in the
cache is checked3; if invalid, the connection’s resources are removed and
replaced with a new PooledConnection.

• WIth REFRESH_ALL_CONNECTIONS, all the available connections in the
cache are closed and replaced with new valid physical connections.

Connection Retrieval based on User defined Attributes

2 Any SQL activity on the connection
3 The validity test is as simple as: select 1 from dual;

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 8

The implicit connection cache supports the idea of striping (i.e., tagging) a
connection with user-defined attributes before returning it to the cache. These
attributes can later be used to retrieve the same connection from the cache.
Example 1: Retrieval based on Connection Attribute
NLS_LANG
// Look up the datasource object
javax.sql.DataSource ds = (javax.sql.DataSource)
ctx.lookup(MyOracleDataSource);

// get a connection from MyCache
java.util.Properties connAttr = null;
connAttr.setProperty(“NLS_LANG”, “ISO-LATIN-1”);
conn = ds.getConnection(connAttr); // retrieve
connection - NLS_LANG
…
conn.applyConnectionAttributes(connAttr); // apply
attributes

Statement stmt = conn.createStatement();
stmt.execute(“select empname from emp”);
…
conn.close(); // release the connection back to MyCache

Example 2: Retrieval based on Connection Attribute
Isolation level
…
java.util.Properties connAttr = null;
connAttr.setProperty(“TRANSACTION_ISOLATION”,
“SERIALIZABLE”);
conn = ds.getConnection(connAttr); // retrieve
connection that matches Transaction Isolation
…
conn.close(connAttr); // another way to apply
attributes to the connection

Example 3: Retrieval based on Connection Attribute,
Connection tags (Reserved connection)
…
java.util.Properties connAttr = null;
connAttr.setProperty(“CONNECTION_TAG”,
“JOE’S_CONNECTION”);
conn = ds.getConnection(connAttr); // retrieve
connection that matches Joe’s connection
…
conn.close(connAttr); // apply attributes to the
connection
…
conn = ds.getConnection(connAttr); // This will retrieve Joe’s connection

Connection Retrieval Based on Attributes and Weights

The cache property CacheAttributeWeights are
java.util.Properties that allows setting attribute weights. Weights are
assigned to each Key in a ConnectionAttribute. Each weight is an integer
value that defines the cost of the Key. Once the weights are specified on the cache,
connections may be retrieved using

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 9

getConnection(connectionAttributes)which searches for a
connection that satisfies a combination of:

• Key/Value match on a connection from the cache

• Maximum total weight of all the keys of the connectionAttributes
that were matched on the connection

Consider the following example.

A cache is configured with CacheAttributeWeights as follows:
java.util.properties cacheProps = new Properties();
java.util.properties cacheWeights = null;

cacheWeights.setProperty(“NLSLANG”, “10”);
cacheWeights.setProperty(“SecurityGroup”, “8”);
cacheWeights.setProperty(“Application”, “4”);
…
// set weights on the cache
cacheProps.put(CacheAttributeWeights, cacheWeights);

…
Once the weights are set, a connection request could be made as:
java.util.properties connAttr = null;
connAttr.setProperty(“NLSLANG”, “ISO-LATIN-1”);
connAttr.setProperty(“SecurityGroup”, “1”);
connAttr.setProperty(“Application”, “HR”)

// Request connection
ds.setCacheName(“MyCache”);
// First retrieval of connection from myCache
conn = ds.getConnection(connAttr);
…
conn.close(connAttr); // apply attributes on the
connection
…
// Next retrieval finds the connection in the cache
conn = ds.getConnection(connAttr);
…
This getConnection() request tries to retrieve a connection from the cache,
MyCache. The connection matching and retrieval from the cache involves the
following:

• An exact match: a connection that satisfies the same attribute values and all the
Keys (NLS_LANG, SecurityGroup, and Application).

• An exact match is not found: if the ClosestConnectionMatch property
is set, a closest match based on the attribute key/value and their associated
weights are used. For example, a closest match may be a connection that
contains attribute match of NLS_LANG and APPLICATION, but not
SECURITY_GROUP. It is also possible to find connections that match some
keys of the original list, but their combined weights are the same. For example,
connection1 could have a match of NLS_LANG with its associated weight of
10, where as connection2 may have an attribute match of
SECURITY_GROUP and APPLICATION with their combined weight of 12.
In this case, it is desired that connection2 is returned. In other words,

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 10

connection2 is the closest match and more expensive to reconstruct (from the
caller’s perspective) as opposed to connection1. When none of the
connectionAttributes match a new connection is returned. The new connection is
created using the user and password set on the DataSource.

Once the connection is returned, the user can invoke
getUnMatchedConnectionAttributes() API on the connection object
to return a set of attributes (java.util.Properties) that did not match
the criteria. These unmatched attribute list is used by the caller (or application) to
re-initialize these values before using the connection.

Applying Connection Attributes to a Cached Connection

There are two ways to apply a connection attribute to a connection. (1) By calling
applyConnectionAttributes(java.util.properties

connAttr) API on the connection object. This simply sets the supplied
attributes on the connection object. Its possible to apply attributes incrementally
using this API, allowing users to apply connection attributes over multiple calls. For
example, NLS_LANG may be applied by calling this API from module A. The
next call from module B, may then apply the TXN_ISOLATION attribute, and so
on. (2) By calling close(java.util.properties connAttr) API on
the connection object. This API closes the logical connection and then applies the
supplied connection attributes on the underlying PooledConnection (physical
connection). The attributes set via this close() API overrides the attributes, if
any, set using the applyConnectionAttributes() API.

The following example shows a call to close(connectionAttributes)
API on the connection object, that lets the cache apply the matched
connectionAttributes back on the PooledConnection, before returning it
to the cache. This ensures that when a subsequent connection request with the
same connection attributes is made, the cache would find a match.

// Sample connection request and close
java.util.properties connAttr = null;
connAttr.setProperty(“NLSLANG”, “ISO-LATIN-1”);
conn = ds.getConnection(connAttr); // request connection
based on attributes
java.util.properties unmatchedAttr =
conn.getUnMatchedConnectionAttributes();
…
--- App Server code applies unmatched attributes to the
connection, either by
 calling PL/SQL procedures or SQL, before using the
connection. ---
--- work ---
…
conn.close(connAttr); // apply attributes to connection

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 11

Fast Connection Fail-Over

Fast Connection Failover works in conjunction with the Implicit connection
caching mechanism and a RAC database.

When a connection cache is setup for a multi-instance RAC database, database
connections may end up on any of the RAC instances, as distributed by the
database listener. When an instance goes down, due to an instance or host failure, it
brings down all the connections with it. For example, in a two node, two instance
RAC cluster, consider a scenario where each of the instances were to have 50
connections each, for a connection cache primed up to 100 connections in the
cache. If one of RAC instances goes down, there would instantly be 50 bad
connections in the cache. This could potentially result in multiple bad connections
being returned from the cache, which in turn could result in application or browser
page errors.

The Fast Connection Failover support enables an automatic detect-and-fix
mechanism to handle any instance or host failures in a RAC environment. The
mechanism is enabled on a cache enabled DataSource, by simply flipping the
DataSource property FastConnectionFailoverEnabled to true.

// Example to show binding of OracleDataSource to JNDI
// with relevant cache properties set on the
DataSource.

import oracle.jdbc.pool.*; // import the pool package

Context ctx = new IntialContext(ht);
OracleDataSource ods = new OracleDataSource();

// Set DataSource properties
ods.setUser(“Scott”);
ods.setPassword(“tiger”);
ods.setConnectionCachingEnabled(True);
ods.setConnectionCacheName(“MyCache”);
ods.setConnectionCacheProperties(cp);
setURL("jdbc:oracle:thin:@(DESCRIPTION=
 (LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))");
ods.setFastConnectionFailoverEnabled(true); // Enable
fast connection failover
ctx.bind(“MyDS”, ods);
…
ds = lookup(“MyDS”); // lookup DataSource from the
cache
// implicitly create connection cache, that is set up
for fast connection failover
conn = ds.getConnection();
…
conn.close(); // return connection to the cache
…
ods.close() // close datasource and cleanup the cache

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 12

The Fast Connection Failover mechanism works by handling Service DOWN or
UP events and Host DOWN events. The DOWN event processing always cleans
up the bad connections from the cache. The UP event processing does Load
Balancing of connections in the cache.

The Fast Connection Failover functionality provides the following advantages:

Fast shutdown of connections in the connection cache, when RAC instance/node failures are
detected: this prevents bad or invalid connections being handed out to application
connection requests. For an application that depends on the Implicit connection
cache for total connection management, the Fast Connection Failover mechanism
provides maximum connection availability.

Load Balancing of connections when a RAC UP event is generated: in this model,
connections are established and load balanced to all active RAC instances, without
waiting for application connection retries/requests. Note that for RAC setups, the
service is almost always instantly available, except when the entire service is down.

Runtime Load-Balancing of Connection Requests

In Oracle Database Release 1, connections to RAC instances were randomly
established by the TNS Listener, without any consideration of how busy an
instance already was. In Oracle Database 10g Release 2, RAC nodes emit Service
Metrics every 30 seconds (i.e., RLB events), for each service on each instance.
Each event payload contains a state or health of the service in question and the
percentage of idleness (in other words, the percentage of additional work related
to the service in question that the instance can handle). The RAC Automatic
Workload Repository (AWR) contains the directives for the workload
management goal (i.e., throughput or service time). The Oracle JDBC connection
cache and the Connection Cache Manager have been extended to exploit RAC
service metrics. When RLB is enabled (see configuring RLB, later), a connection
belonging to the least loaded instance for the service is retrieved from the cache
and returned to the requestor. By routing connections requests based on workload
feedback, the workload will be evenly distributed across all nodes that furnish the
service in question; thereby optimizing resource utilization (which is the whole
purpose of Enterprise Grid Computing).

Configuring Runtime Load-Balancing

 The connection pool Manager routes the connection request to the least loaded
RAC instance using different policies.

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 13

WHAT’S NEW FOR JAVA-IN-THE-DATABASE

Why Java In the Database?
Java in the database is a response to customers in quest for portability, reuse and
the ability to do things that cannot be done in PL/SQL (a lot of things!). Java is
indeed portable across hardware platform, across RDBMS (no vendor lock-in), and
across tiers – furthermore Java can be migrated to/from middle-tier (J2EE,
POJOS, JDBC) to the database (Java stored procedures). Other important benefits
Java brings are the ability to just reuse, the huge Java class libraries produced over
years by millions of developers; and also the ability to reuse the pervasive Java
skills.

Reminder – Java DB Features in Oracle Database 10g R1
On standard support front, the OracleJVM runtime achieved full compatibility with
J2SE 1.4 including stringent Java Security (JCE, JSSE, etc), headless AWT, JAXP,
etc. On the performance front, OracleJVM implements self-tuning Java pool;
optimized memory management (end-of call migration) for dedicated processes;
implemented a new, faster server-side JDBC driver; rewrote a new, faster bytecode
verifier (loadjava). Fixed EJB Call-out, which completed the set of call-out
capabilities: HttpClient, RMI/JRMP, RMI/IIOP, and SOAP Client. JPublisher
utility now offers the generation of client-side stub for direct invocation of Java in
the database, without a user-supplied Call Spec (PL/SQL Wrapper).

New Java DB Features in Oracle Database 10g R2

Optimize OracleJVM Garbage Collector behavior

A new parameter PGA_AGGREGATE_TARGET influences OracleJVM GC
behavior at the end of the SQL call. Low values will optimize memory at the
expense of the speed while high values will optimize execution speed at the expense
of memory.

Java Audit
With pre-Release 2 of Oracle Database 10g, only Java classes/methods published to
SQL through PL/SQL wrapper can be audited through SQL Audit. With this
enhancement, java sources, java classes or java resources can be directly/explicitly
audited. The following table summarizes the options and scope of Java audit.

Java Audit Option SQL Statement to be Audited

CREATE JAVA SOURCE CREATE JAVA SOURCE
CREATE OR REPLACE JAVA SOURCE

ALTER JAVA RESOURCE ALTER JAVA RESOURCE

DROP JAVA SOURCE DROP JAVA SOURCE

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 14

CREATE JAVA CLASS CREATE JAVA CLASS
CREATE OR REPLACE JAVA CLASS

ALTER JAVA CLASS ALTER JAVA CLASS

DROP JAVA CLASS DROP JAVA CLASS

CREATE JAVA
RESOURCE

CREATE JAVA RESOURCE
CREATE OR REPLACE JAVA RESOURCE

ALTER JAVA RESOURCE ALTER JAVA RESOURCE

DROP JAVA RESOURCE DROP JAVA RESOURCE

WHAT’S NEW FOR JPUBLISHER & DATABASE WEB SERVICES

Why Database Web Services

Database Web Services bring three benefits to database users:

• Database as Web Services Provider extends database’s client-base to Web
Services clients by allowing the execution of database operations and data
retrieval through Web Services mechanisms.

• Database as Web Services Consumer extends database’s reach. The inclusion
of external data as part of a SQL query or database batch processing is not new
(see gateways and other related mechanisms), what's new is when the external
data is only available as dynamic data (produced on demand), typically available
as a Web services (i.e., temperature, stock price, IRS table, etc).

• Reusing the Web Services framework of Oracle Application Server with the
database, allows instant interoperability, consistent Web services development
and deployment; furthermore it integrates the Database in the Service Oriented
Architecture beyond basic SOAP/HTTP; Database Web Services inherit Web
Services Interoperability, WS-Security, WS-Reliability, and WS Management.

Reminder -- JPublisher and Database Web Services Features in Oracle
Database 10g R1
JPublisher

Complete JDBC types support: new supported types including: NCHAR,
Timestamp, SQLJ objects, and SQL Opaque. Easier access to native PL/SQL types
through predefined type conversions. And the generation of client stub for
invoking Java-in-the-database.

Database Web Services

Support for Database as Services Consumer

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 15

For a given WSDL, generate the Java proxy classes, the PL/SQL wrappers and load
the appropriate files in the database.

Support for Database as Web Services Provider

• Publishing PL/SQL, Java Stored Procedure, SQL Queries, and SQL DML as
Web Services

• Mapping PL/SQL Types (CLOB, BLOB)

• Mapping of REF CURSORs and Result Sets

New JPublisher and Database Web Services Features in Oracle
Database 10g R2
• Support JDBC types for server-side Java calling

• Publishing Streams/Advance Queue as Web Services

• Support complex types in Web Services callout

• Handle connection loss through data sources

• Generate SQLJ runtime free code (works as pure JDBC code)

CONCLUSIONS

This paper gave you a brief overview of Java, JDBC and Database Web services
enhancements in Oracle Database 10g release 1 and release 2. The net benefits are:
faster application development, low cost application development, faster
applications execution, low cost platform integration, dynamically scaling up and
down RAC/Grid configurations, extending the reach of the database, extending the
capabilities of the database, reuse of existing database entities as Web Services.

What’s New for Java DB, JDBC, and Database Web services in Oracle Database 10g Page 16

What’s New for Java DB, JDBC, and Database Web Services in Oracle Database 10g
May 2005
Author: Kuassi Mensah

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

