ORACLE®

ORACLE

Exadata Technical Overview

Exadata Database Machine

The ultimate platform for all database workloads

OLTP, Warehousing, Database as a Service

Most advanced <u>hardware</u>

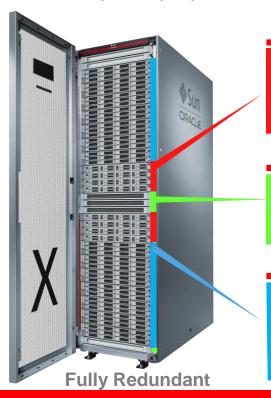
 Fully scale-out servers and intelligent storage with unified InfiniBand connectivity and PCI flash

Most advanced <u>software</u>

- Database optimized compute, storage, and networking algorithms dramatically improve performance and cost
- Standardized, optimized, hardened end-to-end

1000s of Deployments at Leading Companies

Half are Warehouses, Half are OLTP or Mixed Workloads


- Petabyte Warehouses
- Online Financial Trading
- E-Commerce Sites
- Consolidation of 100s of Databases

Exadata for Packaged Applications

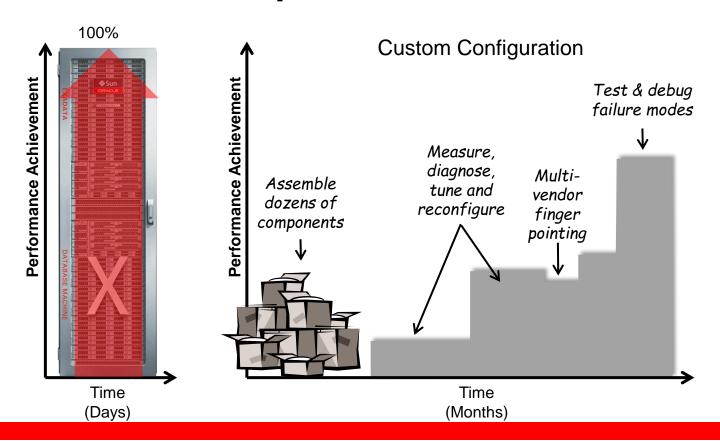
Exadata Architecture

Complete | Optimized | Standardized | Hardened Database Platform

Standard Database Servers

- 8x 2-socket servers → 192 cores, 2TB DRAM
 - 2x 8-socket servers → 160 cores, 4TB DRAM

Unified Ultra-Fast Network


- 40 Gb InfiniBand internal connectivity → all ports active
- 10 Gb or 1 Gb Ethernet data center connectivity

Scale-out Intelligent Storage Servers

- 14x 2-socket servers → 168 cores in storage
- 168 SAS disk drives → 672 TB HC or 200 TB HP
- 56 Flash PCI cards → 44 TB Flash + compression

Pre-built and Optimized Out-of-the-Box

Exadata Engineered System Transformation

Less Risk, Better Results

- Hundreds of engineer years spent optimizing and hardening the system end-to-end
 - Frees I/T talent to focus on business needs.
- Standard platform improves support experience
- Runs all existing Oracle Database workloads
- Building block of the Oracle Cloud

Exadata Hardware

Exadata X4 Compared with X3

Much More Performance and Capacity - Same Price

X4 Storage

2X Larger Physical Flash Memory

Up to 4X Larger Logical Flash Memory

77% More Flash IOs/sec on X4-2

33% Larger High Capacity Disks

2X Larger High Performance Disks

44 TB of Flash Memory

88 TB using Flash Cache Compression

2.66M Reads, 1.96M Writes from SQL

672 TB using 4TB Disks

200 TB using 1.2 TB Disks

Per DB **Machine** Full Rack

X4-2 Compute

50% More Database Cores

192 Cores using 12-Core Xeon® CPUs

2X Larger DB Server Local Storage

2.4 TB per server using 600GB Disks

2X Faster InfiniBand

InfiniBand PCI-3 Card. All Ports Active

ORACLE

X4-2 Database Server

New 12-core "IvyBridge" CPUs, Faster InfiniBand Card, Larger Disks

Processors	2 Twelve-Core Intel® Xeon® E5-2697 v2 Processors (2.7GHz)
Memory	256 GB (16 x 16GB) – Expandable to 512GB (16 X 32GB) via memory kits
Local Disks	4 x 600GB 10K RPM SAS Disks (Hot-Swappable)
Disk Controller	Disk Controller HBA with 512MB Cache - Battery Online Replaceable
Network	2 x InfiniBand 4X QDR (40Gb/s) Ports (PCle 3.0) – Both Ports Active 4 x 1GbE/10GbE Base-T Ethernet Ports 2 x 10GbE Ethernet SFP+ Ports (1 Dual-port 10GbE PCle 2.0 network card based on the Intel 82599 10GbE Controller technology)
Remote Management	1 Ethernet port (ILOM)
Power Supplies	Redundant Hot-Swappable power supplies and fans

X4-2 Storage Server

6-core IvyBridge CPUs, Larger disks, Larger Flash Cards, Flash Compression

Processors	2 Six-Core Intel® Xeon® E5-2630 v2 Processors (2.6 GHz) - Faster clock
Memory	96 GB (4 x 8GB + 4 x 16GB) - More memory needed to manage larger flash
Disks	12 x 1.2 TB 10K RPM High Performance SAS (hot-swap) – 2.5" disk size OR 12 x 4 TB 7.2K RPM High Capacity SAS (hot-swap) – 3.5" disk size
Flash	4 x 800 GB Sun Flash Accelerator F80 PCIe Cards – Hardware Compression
Disk Controller	Disk Controller HBA with 512MB Cache - Battery Online Replaceable
Network	2 InfiniBand 4X QDR (40Gb/s) Ports (PCle 3.0) – Both Ports Active Embedded Gigabit Ethernet Ports for management connectivity
Remote Management	1 Ethernet port (ILOM)
Power Supplies	Redundant Hot-Swappable power supplies and fans

X3-8 Database Server

Processors	8 x Ten-Core Intel® Xeon® E7-8870 Processors (2.40 GHz)
Memory	2 TB (128 x16 GB)
Local Disks	8 x 300GB 10K RPM SAS Disks (Hot-Swappable)
Disk Controller	Disk Controller HBA with 512MB Battery Backed Cache
Network	8 x InfiniBand 4X QDR (40Gb/s) Ports (4 Dual-port PCE 2.0 Express Modules)
	Two Network Express Modules (NEM), providing a total of
	8 x 1GbE Ethernet Ports
	 8 x 10 GbE Ethernet SFP+ Ports (via 4 Fabric Express Modules (FEM) based Intel 82599 10GbE Controller technology)
Remote Management	1 Ethernet port (ILOM)
Power Supplies	Redundant Hot-Swappable power supplies and fans

Exadata Database Machine X4-2 Full Rack

Pre-Configured for Extreme Performance

- 8 Xeon-based Dual-processor Database Servers
 - 192 cores (24 per server)
 - 2 TB memory expandable to 4 TB (256 GB per server expandable to 512GB)
 - 10 Gig E-connectivity to Data Center
 - 40 x 10Gb E-ports (5 per server)
- 44.8 TB High Speed Flash
- 14 Exadata Storage Servers X4-2
 - All with High Performance 12 x 1.2 TB SAS disks OR
 - All with High Capacity 12 x 4 TB SAS disks
- 2 Sun Datacenter InfiniBand Switch 36
 - 36-port Managed QDR (40Gb/s) switch
- 1 "Admin" Ethernet switch
- Redundant Power Distributions Units (PDUs)

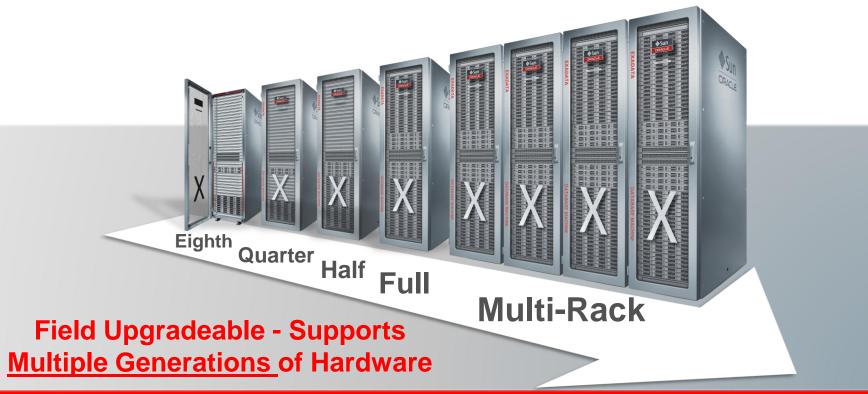
Exadata Database Machine X3-8 Full Rack

Larger Database Servers with X4-2 Storage Servers

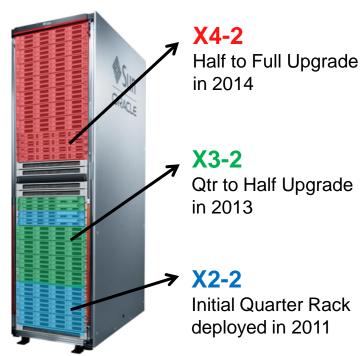
- 2 Xeon-based Eight-processor Database Servers
 - 160 CPU cores (80 per server)
 - 4 TB memory (2TB per server)
 - 10 GigE connectivity to Data Center
 - 16 x 10Gb E-ports (8 per server)
- 44.8 TB High Speed Flash
- 14 Exadata Storage Servers X4-2
 - All with High Performance 12 x 1.2 TB SAS disks OR
 - All with High Capacity 12 x 4 TB SAS disks
- 2 Sun Datacenter InfiniBand Switch 36
 - 36-port Managed QDR (40Gb/s) switch
- 1 "Admin" Ethernet switch
- Redundant Power Distributions Units (PDUs)

Add more racks for additional scalability

Exadata Storage Expansion X4-2 Full Rack


For additional storage - backups, historical data, unstructured data

- 18 Exadata Storage Servers X4-2
 - All with High Performance 12 x 1.2 TB SAS disks OR
 - All with High Capacity 12 x 4 TB SAS disks
- 57.6 TB High Speed Flash
- 2 Sun Datacenter InfiniBand Switch 36
 - 36-port Managed QDR (40Gb/s) switch
- 1 "Admin" Ethernet switch
- Redundant Power Distributions Units (PDUs)


Add storage capacity to Database Machine online

Scalable from Eighth-Rack to Multi-Rack

Seamless Upgrades and Expansions

<u>Upgrade Example</u>

 A single Database Machine can have servers from different generations

- Databases and Clusters can span across multiple hardware generations
- New software runs on older hardware

Operating System Updates in 11.2.3.3.0

- Oracle Linux distribution updated to 5.9
 - Including all recent security updates

 Same kernel on database servers (2-socket and 8-socket) and the storage servers

Oracle Solaris updated to S11 Update 1 SRU 9

X4-2 Database Machine IO Performance from SQL

		X4-2 Full Rack	X4-2 Half Rack	X4-2 Quarter	X4-2 Eighth
Flash Cache	High Cap Disk	100 GB/s	50 GB/s	21.5 GB/s	10.7 GB/s
SQL Bandwidth ^{1,3}	High Perf Disk	100 GB/s	50 GB/s	21.5 GB/s	10.7 GB/s
Flock SOL IOBS23	8K Reads	2,660,000	1,330,000	570,000	285,000
Flash SQL IOPS ^{2,3}	8K Writes	1,960,000	980,000	420,000	210,000
Disk SQL	High Cap Disk	20 GB/s	10 GB/s	4.5 G/s	2.25 GB/s
Bandwidth ^{1,3}	High Perf Disk	24 GB/s	12 GB/s	5.2 GB/s	2.6 GB/s
Disk SQL IOPS	High Cap Disk	32,000	16,000	7,000	3,500
	High Perf Disk	50,000	25,000	10,800	5,400
Data Load Rate ⁴		20 TB/hr	10 TB/hr	5 TB/hr	2.5 TB/hr

^{1 -} Bandwidth is peak physical scan bandwidth achieved running SQL, assuming no compression. Effective data bandwidth will be much higher when compression is factored in.

^{2 -} IOPS - Based on read IO requests of size 8K running SQL, typically with sub-millisecond latencies. Note that the IO size greatly effects flash IOPS. Others quote IOPS based on smaller IOs that are not relevant for databases and measure IOs using low level tools instead of SQL.

³⁻ Actual Performance varies by application.

^{4 -}Load rates are typically limited by database server CPU, not IO. Rates vary based on load method, indexes, data types, compression, and partitioning

Note on Compression and Measurements

- Note that all capacity and performance numbers are shown without including the benefits of compression
 - Compression rates very greatly by application and compression type
 - Therefore it is inaccurate to quote a single number for all users
 - Capacity and performance will greatly improve over the quoted numbers when compression benefits are factored in
- When comparing Exadata capacity and performance to other vendors note:
 - Many vendors (especially flash array vendors) quote capacity and performance assuming some rate of compression
 - Many vendors quote flash IOs per second running low level IO utilities and using very small blocks. These are several times higher than can be achieved using SQL.
 - All Exadata measurements are from SQL workloads using standard 8K block sizes

X3-8 Database Machine IO Performance from SQL

		X3-8 Full Rack
Flash Cache	High Cap Disk	100 GB/s
SQL Bandwidth ^{1,3}	High Perf Disk	100 GB/s
Flash SQL IOPS ^{2,3}	8K Reads	1,500,000
FIASII SAL IOFS-1	8K Writes	1,000,000
Disk SQL Bandwidth ^{1,3}	High Cap Disk	20 GB/s
DISK SQL Balluwidili"	High Perf Disk	24 GB/s
Disk SQL IOPS	High Cap Disk	32,000
DISK SQL TOPS	High Perf Disk	50,000
Data Load Rate ⁴		16TB/hr

- 1 Bandwidth is peak physical scan bandwidth achieved running SQL, assuming no compression. Effective data bandwidth will be much higher when compression is factored in.
- 2 IOPS Based on read IO requests of size 8K running SQL, typically with sub-millisecond latencies. Note that the IO size greatly effects flash IOPS. Others quote IOPS based on smaller IOs that are not relevant for databases and measure IOs using low level tools instead of SQL. Exadata Flash read IOPS are so high they are typically limited by database server CPU, not IO.
- 3- Actual Performance varies by application.
- 4 Load rates are typically limited by database server CPU, not IO. Rates vary based on load method, indexes, data types, compression, and partitioning

X4-2 Storage Expansion IO Performance from SQL

		X4-2 Full Rack	X4-2 Half Rack	X4-2 Quarter	X4-2 Single Cell
Flash Cache	High Cap Disk	130 GB/s	65 GB/s	29 GB/s	7.25 GB/s
SQL Bandwidth ^{1,3}	High Perf Disk	130 GB/s	65 GB/s	29 GB/s	7.25 GB/s
Flash SQL IOPS ^{2,3}	8K Reads	3,420,000	1,710,000	760,000	190,000
FIASII SQL IUFS-19	8K Writes	2,520,000	1,260,000	560,000	140,000
Disk SQL Bandwidth ^{1,3}	High Cap Disk	26 GB/s	13 GB/s	6 GB/s	1.5 GB/s
	High Perf Disk	30 GB/s	15 GB/s	7 GB/s	1.75 GB/s
Disk SQL IOPS	High Cap Disk	42,000	21,000	9,500	2,400
	High Perf Disk	64,000	32,000	14,400	3,600

^{1 -} Bandwidth is peak physical scan bandwidth achieved running SQL, assuming no compression. Effective data bandwidth will be much higher when compression is factored in.

^{2 -} IOPS - Based on read IO requests of size 8K running SQL, typically with sub-millisecond latencies. Note that the IO size greatly effects flash IOPS. Others quote IOPS based on smaller IOs that are not relevant for databases and measure IOs using low level tools instead of SQL. Exadata Flash read IOPS are so high they are typically limited by database server CPU, not IO. This is especially true for expansion racks.

³⁻ Actual Performance varies by application.

Database Machine Capacity (Uncompressed)

		X3-8 or X4-2 Full	X4-2 Half	X4-2 Quarter	X4-2 Eighth
Raw Flash Capacity ^{1,4}		44.8 TB	22.4 TB	9.6 TB	4.8 TB
Effective Flash Capacity	Due to Caching⁴	440 TB	220TB	96TB	48TB
Dow Diels Conneits 4	High Cap Disk	672 TB	336 TB	144 TB	72 TB
Raw Disk Capacity ¹	High Perf Disk	200 TB	100 TB	43.2 TB	21.6 TB
Usable Mirrored	High Cap Disk	300 TB	150 TB	63 TB	30 TB
Capacity ^{2,3}	High Perf Disk	90 TB	45 TB	19 TB	9 TB
Usable Triple Mirrored Capacity ^{2,3}	High Cap Disk	200 TB	100 TB	43 TB	21.5 TB
	High Perf Disk	60 TB	30 TB	13 TB	6.3 TB

- 1 Raw Disk Capacity defined using standard disk drive terminology of 1 TB = 1000 * 1000 * 1000 * 1000 bytes.
- 2 Capacity calculated using normal space terminology of 1 TB = 1024 * 1024 * 1024 * 1024 bytes.
- 3 Actual space available for a database after mirroring (ASM normal or high redundancy). For the ASM normal redundancy case, assume one disk (Quarter and Half) or two disks (Full Rack) of free space to automatically remirror after disk failures.
- 4 Effective Flash Capacity is larger than the physical flash capacity and takes into account the high flash hit ratios due to Exadata's intelligent flash caching algorithms, and the size of the underlying disk storage. It is the size of data files that often can be stored in Exadata and be accessed at the speed of flash memory.

Effective Flash Capacity for Typical Database Workloads

- Exadata flash cache delivers flash performance for data sets that are much bigger than the size of flash – often 10x bigger
 - 440 TB of effective flash on full rack
- Exadata Flash Cache automatically moves frequently accessed data into flash
 - With a very fine granularity and in real-time
 - Flash cache does not need to hold mirror copies
- Typical flash cache hit rates in 95% 99% range when caching 10x as much disk space
- HCC and OLTP compression further increase effective flash capacity when measured in terms of user data in flash

Storage Expansion Capacity (Uncompressed)

		X4-2 Full	X4-2 Half	X4-2 Quarter	X4-2 Single Cell
Raw Flash Capacity ¹		57.6 TB	28.8 TB	12.8 TB	3.2 TB
Effective Flash Capacity	Due to Caching⁴	570 TB	280 TB	128 TB	32 TB
Dow Diek Conscitud	High Cap Disk	864 TB	432 TB	192 TB	48 TB
Raw Disk Capacity ¹	High Perf Disk	258 TB	129 TB	57 TB	14.4 TB
Usable Mirrored	High Cap Disk	387 TB	194 TB	85 TB	20 TB
Capacity ^{2,3}	High Perf Disk	116 TB	58 TB	25 TB	6 TB
Usable Triple Mirrored Capacity ^{2,3}	High Cap Disk	260 TB	130TB	58 TB	14.5 TB
	High Perf Disk	78 TB	39 TB	17 TB	4 .25 TB

- 1 Raw Disk Capacity defined using standard disk drive terminology of 1 TB = 1000 * 1000 * 1000 * 1000 bytes.
- 2 Capacity calculated using normal space terminology of 1 TB = 1024 * 1024 * 1024 * 1024 bytes.
- 3 Actual space available for a database after mirroring (ASM normal or high redundancy). For the ASM normal redundancy case, assume one disk (Quarter and Half) or two disks (Full Rack) of free space to automatically remirror after disk failures.
- 4 Effective Flash Capacity is larger than the physical flash capacity and takes into account the high flash hit ratios due to Exadata's intelligent flash caching algorithms, and the size of the underlying disk storage. It is the size of data files that often can be stored in Exadata and be accessed at the speed of flash memory.

Exadata Database Machine Hardware Summary

		X3-8 Full	X4-2 Full	X4-2 Half	X4-2 Quarter	X4-2 Eighth
Database Servers		2	8	4	2	2
Database Grid Cores		160	192	96	48	24
Database Grid Memory (GB)		4096	2048 (max 4096)	1024 (max 2048)	512 (max 1024)	512 (max 1024)
InfiniBand switches		2	2	2	2	2
Ethernet switch		1	1	1	1	1
Exadata Storage Servers		14	14	7	3	3
Storage Grid CPU Cores		168	168	84	36	18
Raw Flash Capacity		44.8 TB	44.8 TB	22.4 TB	9.6 TB	4.8 TB
Pay Storage Consoity	High Perf	200 TB	200 TB	100 TB	43.2 TB	21.6 TB
Raw Storage Capacity	High Cap	672 TB	672 TB	336 TB	144 TB	72 TB
Llookle mirrored conseity	High Perf	90 TB	90 TB	45 TB	19 TB	9 TB
Usable mirrored capacity	High Cap	300 TB	300 TB	150 TB	63 TB	30 TB
Usable Triple mirrored	High Perf	60 TB	60 TB	30 TB	13 TB	6.3 TB
capacity	High Cap	200 TB	200 TB	100 TB	43 TB	21.5 TB

Exadata Storage Expansion Rack Summary

		X4-2 Full	X4-2 Half	X4-2 Quarter	Single Cell
InfiniBand switches		3	3	2	-
Ethernet switch		1	1	1	-
Exadata Storage Servers	S	18	9	4	1
Storage Grid CPU Cores	3	216	108	48	12
Raw Flash Capacity		57.6 TB	28.8 TB	12.8 TB	3.2 TB
Raw Storage Capacity	High Perf	258 TB	129 TB	57 TB	14.4 TB
	High Cap	864 TB	432 TB	192 TB	48 TB
Usable mirrored	High Perf	116 TB	58 TB	25 TB	6 TB
capacity	High Cap	387 TB	194 TB	85 TB	20 TB
Usable Triple mirrored capacity	High Perf	78 TB	39 TB	17 TB	4 .25 TB
	High Cap	260 TB	130TB	58 TB	14.5 TB

Hardware Generational Advances

Exadata Innovations

Unique Software Optimizes Database Processing

Query offload in storage

- Data intensive query operations offloaded to storage CPUs
- -100 GB/sec SQL data throughput
- Storage Index data skipping

Database storage <u>compression</u>

- Hybrid Columnar for 10x DB size reduction and faster analytics

Database optimized PCI Flash

- Smart caching of database data
- -2.66 Million Database IOs/sec
- Smart Flash log speeds transactions

Database optimized QoS

End-to-end prioritization from application to DB and storage

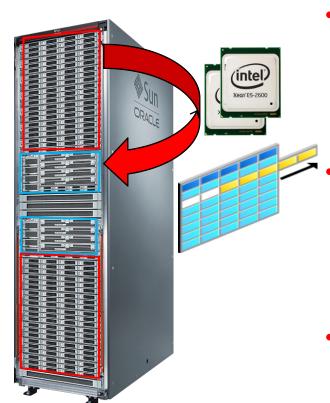
Database optimized <u>availability</u>

- -Fastest recovery of failed database, server, storage or switch
- -Fastest backup. Incremental offload
- Exachk top-to-bottom validation of hardware, software, settings

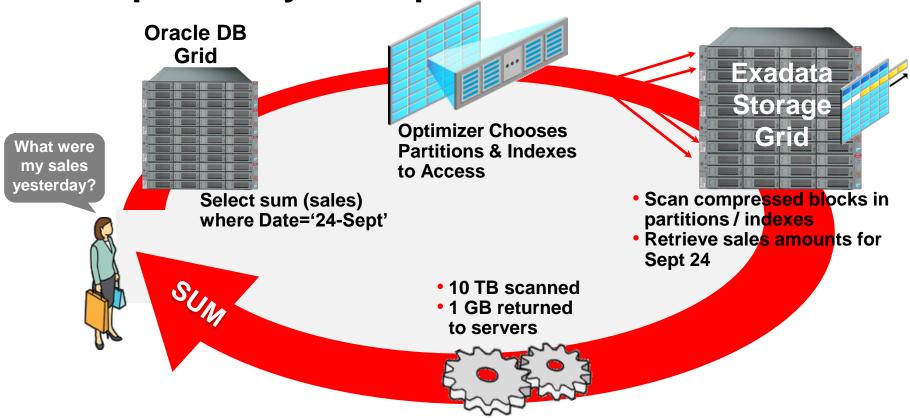
Database optimized <u>messaging</u>

 SQL optimized InfiniBand protocol for high throughput low latency SQL

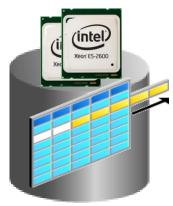
Innovation Continues: Recent Enhancements


Query offload in storage

- -Offload searches on LOBs (12c)
- -Offload joins for non-parallel queries (11.2.0.4)
- Database optimized compression
 - Hybrid Columnar enhanced for OLTP
 - and for Spatial and Text data (12c)
- Database optimized PCI Flash
 - Ultra high speed flash compression (X3 & X4) at multi-million IOs/sec
 - Automatic caching for table scans
 - Faster file initialization


- Database optimized QoS
 - -Prioritization of CPU and IO by multitenant pluggable database (12*c*)
- Database optimized <u>availability</u>
 - Prioritize recovery of critical DB files (11.2.0.4)
- Database optimized <u>messaging</u>
 - End-to-End prioritization of critical database messages (11.2.0.4), including log writes and RAC

Exadata Intelligent Storage Grid



- Data Intensive processing runs in Exadata Storage Grid
 - Filter rows and columns as data streams from disks (168 Intel Cores)
- Example: How much product X sold last quarter
 - Exadata Storage Reads 10TB from disk
 - Exadata Storage Filters rows by Product & Date
 - Sends 100GB of matching data to DB Servers
- Scale-out storage parallelizes execution and removes bottlenecks

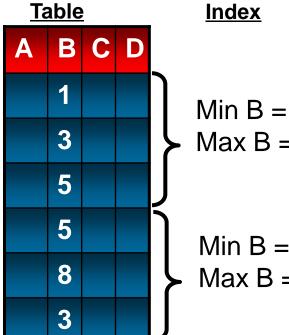
Simple Query Example

Exadata Intelligent Storage

Exadata Intelligent Storage Grid

- Exadata storage servers also run more complex operations in storage
 - Join filtering
 - Incremental backup filtering
 - I/O prioritization
 - Storage Indexing
 - Database level security
 - Offloaded scans on encrypted data
 - **Data Mining Model Scoring**
- 10x reduction in data sent to DB servers is common

Exadata is Smart Storage


Database Servers

 Perform complex database processing such as joins, aggregation, etc.

Exadata Storage Servers

- Storage Server is smart storage, not a DB node
- Search tables and indexes filtering out data that is not relevant to a query
- Cells serve data to multiple databases enabling **OLTP** and consolidation
- Simplicity, and robustness of storage appliance

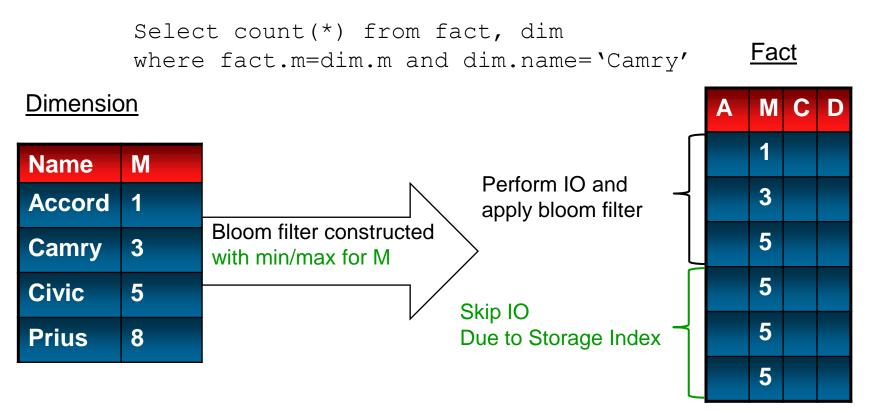
Exadata Storage Index Transparent I/O Elimination with No Overhead

Min B = 1Max B = 5

Min B = 3

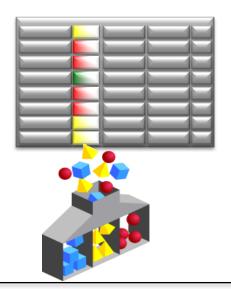
- Exadata Storage Indexes maintain summary information about table data in memory
 - Store MIN and MAX values of columns
 - Typically one index entry for every MB of disk
- Eliminates disk I/Os if MIN and MAX can never match "where" clause of a query
- Max B =8 Completely <u>automatic and transparent</u>

Select * from Table where B<2 - Only first set of rows can match


Storage Index with Partitions Example

Orders Table

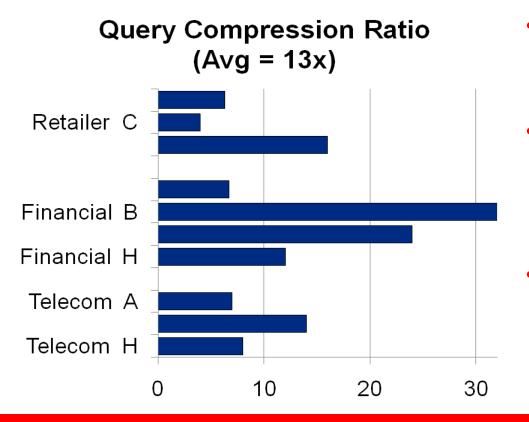
Order#	Order_Date Partitioning Column	Ship_Date	Item
1	2007	2007	
2	2008	2008	
3	2009	2009	


- Queries on Ship Date do not benefit from Order Date partitioning
 - However Ship_date and Order# are highly correlated with Order_Date
 - e.g. Ship dates are usually near Order_Dates and are never less.
- Storage index provides partition pruning like performance for queries on Ship Date and Order#
 - Takes advantage of ordering created by partitioning or sorted loading

Storage Index with Joins Example

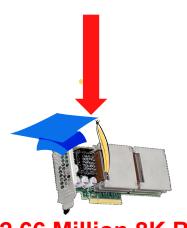
Exadata Hybrid Columnar Compression

Highest Capacity, Lowest Cost


Faster and Simpler Backup, DR, Caching, Reorg, Clone

- Data is organized and compressed by column
 - Dramatically better compression
- Speed Optimized Query Mode for Data Warehousing
 - 10X compression typical
 - Runs faster because of Exadata offload!
- Space Optimized Archival Mode for infrequently accessed data
 - 15X to 50X compression typical

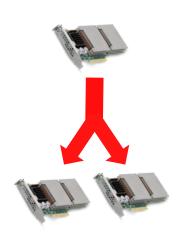
Benefits Multiply


Compression Ratio of Real-World Data

- Compression Ratio varies by customer and table
- Trials were run on largest table at 10 ultra large companies
 - Average revenue > \$60 BB
- Average Query Compression ratio was 13x
 - On top of Oracle's already highly efficient format

Exadata Smart Flash Cache

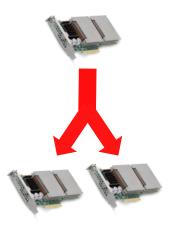
I/Os



2.66 Million 8K Read 1.96 Million 8K Write IOPS from SQL

- Caches Read and Write I/Os in PCI flash
- Transparently accelerates read and write intensive workloads
 - Up to 2.66 million 8K read IOPS from SQL
 - Up to 1.96 million 8K write IOPS from SQL
- Persistent write cache speeds database recovery
- Exadata Flash Cache is much more effective than flash tiering architectures used by others
 - Caches current hot data, not yesterday's
 - Caches data in granules 8x to 16x smaller than tiering
 - Greatly improves the effectiveness of flash

Exadata Flash Cache Compression



- Exadata uses compression to expand smart flash cache
 - Data automatically compressed as it is written to flash cache
 - Automatically decompressed when it is read out of flash cache
 - Up to 2X more data fits in smart flash cache, so flash hit rates will improve and performance will improve for large data sets
- Flash cache compress/decompress implemented in hardware
 - Performance is same as uncompressed millions of I/Os per second
 - ZERO performance overhead
 - Supported on X3 or X4 storage servers (requires F40 or F80 cards)
- Note Flash cache compression does not change DB format, so does not improve backups, buffer cache, network, scan rates, etc.

Exadata Flash Cache Compression

As always, compression benefits vary based on data

Data Type	Typical Compression	
Uncompressed Tables	1.3X to 4X	
OLTP Compressed Tables	1.2X to 2X	
Indexes	1.3X to 4X	
Oracle E-biz uncompressed DB	3x to 5x	
HCC Compressed Tables or Compressed LOBs	Minimal	

Many OLTP **Databases** will see 2x Flash Increase

- X4 with flash cache compression stores up to 80TB of data in flash
 - Up to 4X more than X3 (depending on compressibility of data)

Flash Cache Compression Commands

- Trivial to implement, no management
- Enable using simple cell command:
 - On X4 machines: alter cell flashCompression=TRUE
 - On X3 machines also run:
 - alter cell FlashCacheCompX3Support= TRUE
- Amount of data cached in Exadata Smart Flash Cache grows and shrinks dynamically and automatically based on data compressibility
- Monitor Flash Cache Compression using cell metric FC BY USED
 - Reported flash cache size will increase to up to double physical flash size

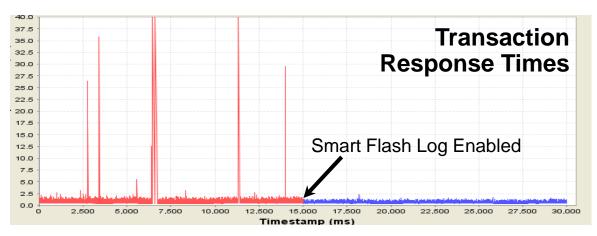
Exadata Smart Flash Table Caching

Smarter flash caching for large table scans

- Exadata software understands database table and partition scans and automatically caches then when it makes sense
- Avoids thrashing flash cache when tables are too big or scanned infrequently or scanned by maintenance jobs
- If scanned table is larger than flash, then subset of table is cached
- No need to manually "KEEP" tables that are only scanned

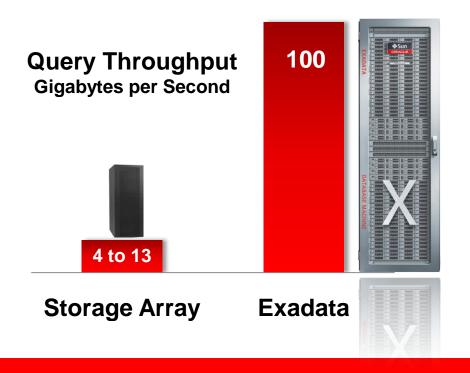
Exadata Smart Flash Log Accelerate Transaction Response Times Using Flash

Default (on left)


- Choppy Response
- High Outliers

Smart Flash Log

- 3x faster response
- Much lower outliers


Automatic and Transparent

- Uses Flash for Database Logs in a clever way
 - Flash is fast but has slow outlier ase cycles, wear leveling, etc
- Smart Flash Log feature transparently uses Flash as a parallel write cache to disk controller cache
 - Whichever write completes first wins (disk or flash)
- Better response time and more throughput
- Uses almost no flash capacity (0.1% of capacity)


Exadata Flash Performance Scales Linearly

Storage Array Architecture Limits Flash Performance

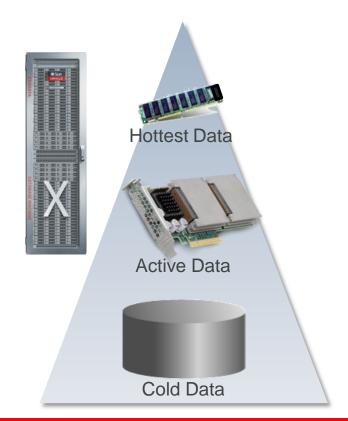
- Exadata scales using
 - True Scale-Out
 - InfiniBand
 - Smart Storage

Extreme Performance and Low Cost

Disks for Capacity

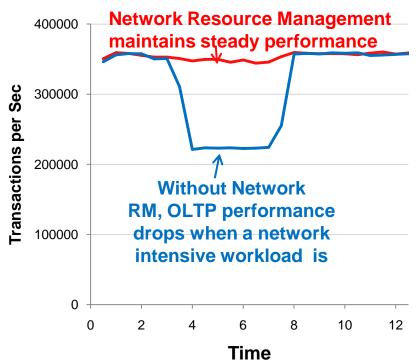
Flash for I/Os

Cost of Disk I/Os of Flash Speed of DRAM


Extreme Performance dramatically lowers cost

- Workloads that require huge traditional systems run on small Exadatas
- Hardware needed for an application is often reduced 10x

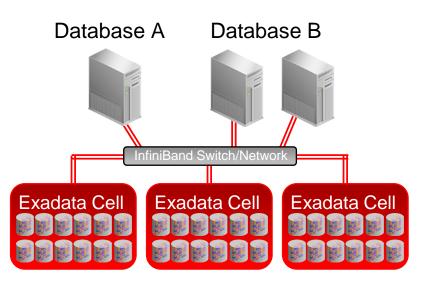
Exadata also delivers Extreme Capacity


- Huge disk footprint for large or less active data
 - 672 TB of disk per rack for historical data, low activity data, images, documents, backups, etc.
- Columnar compression expands disk and memory capacity 10x
- Blend of tiers gives highest performance at lowest cost
 - Placing all data in DRAM would cost \$20M just for chips

Business Benefits of X4 Database Machine

- Sub-millisecond latency
 - Interactive OLTP with millions of users
- Sub-second analytics
 - Real-time decision making, instant reports
- 10x faster parallel jobs
 - Quarter close, payroll, supply planning, field inventory, pricing, route planning, sub-ledger accounting

Exadata Network Resource Management



DB Version 11.2.0.4 or 12c, Switch 2.1.3-4

- Exadata Network Resource Management uniquely prioritizes critical database messages through the entire fabric
 - From database to InfiniBand card through InfiniBand switches to storage
 - Latency sensitive messages prioritized over batch, reporting, and backup messages
 - Log file writes have highest priority to ensure low latency transactions
- Combines with Exadata CPU and IO Resource management to ensure safe consolidation of workloads and databases
- Completely automatic & transparent

Exadata I/O Resource Management

Mixed Workloads and Multi-Database Environment

- Ensure different databases are allocated the correct relative amount of I/O bandwidth
 - Database A: 33% I/O resources
 - Database B: 67% I/O resources
- Ensure different users and tasks within a database are allocated the correct relative amount of I/O bandwidth
 - Database A:
 - Reporting: 60% of I/O resources
 - ETL: 40% of I/O resources
 - Database B:
 - Interactive: 30% of I/O resources
 - Batch: 70% of I/O resources

Secure Database Machine

Complete Security Portfolio

Near-Zero Overhead for fully encrypted database!

- Application transparent
- Decryption in hardware, not software (5x faster)

PREVENTIVE

Encryption

Redaction and Masking

Privileged User Controls

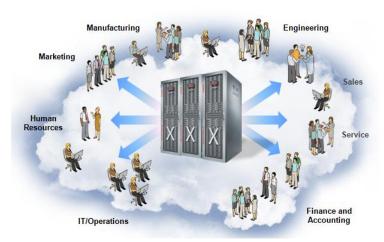
Controls

DETECTIVE

Activity Monitoring

Database Firewall

Auditing and Reporting


ADMINISTRATIVE

Privilege Analysis

Sensitive Data Discovery

Configuration Management management

Comprehensive Database as a Service Platform

Multitenant Database

Scale-Out Platform optimized for <u>Database</u>

Scale to any size

Deploy 100s of databases

 Using separate databases or 12c multitenant databases

Supports complex & varying mix of workloads

- No Performance Bottlenecks
- Performance Isolation CPU, I/O, Network

No Performance Bottlenecks for Consolidation

- Best way to ensure performance is to avoid bottlenecks
- Exadata has unique extreme performance for complex workloads that mix OLTP, DW, batch, reporting
 - Millions of I/Os per second, 100 GB/sec of throughput
 - Sub-millisecond response times
 - Highest bandwidth network
- Unique software optimizations that eliminate bottlenecks
 - e.g. Storage Offload, Smart Flash logging

Unique Performance Isolation for Consolidation

Application Database Network Storage

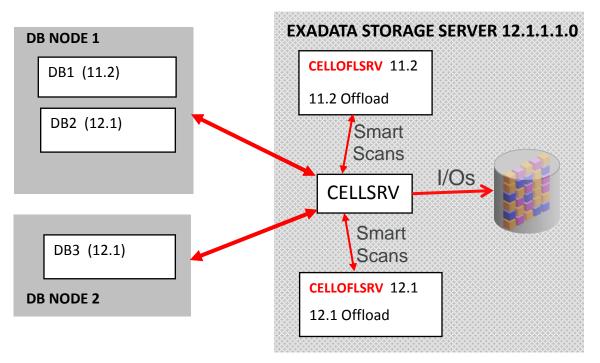
End-to-End Prioritization

- Database Resource Manager provides CPU resource management for normal and pluggable databases
 - Both CPU prioritization and limits on CPU usage
- Exadata <u>uniquely</u> provides I/O resource management by pluggable database, job, user, service, etc.
- Exadata <u>uniquely</u> provides database aware <u>network</u> resource management
 - Prioritizes critical DB messages through entire fabric

Exadata Storage Server Software

12.1.1.1.0

Available on all systems except **V1**


Exadata Storage Server 12.1.1.1.0

- Supports Database 12c Smart Scan offload
- Supports IORM for Database 12c pluggable database
- Cell-to-cell Data Transfer
 - With Database 12c, offload data movement for ASM operations like resynchronization, resilver, and rebalance
 - Cells transfer data directly to destination cell without going through the database server

Support for Multiple DB versions on Exadata

- Exadata Systems can run a mix of 11.2 and 12.1 databases
- Different offload server process for each DB version
 - Matches DB libraries
- Offload server startup/shutdown/ restarts automatic
- Offload server communicates only to cellsry

Exadata Management

Exadata Storage Management & Administration

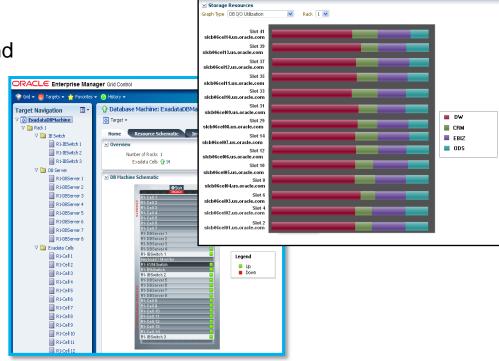
- Enterprise Manager
 - Manage & administer Database and ASM
 - Monitor the Exadata Database Machine Hardware
- Auto Service Request (ASR)
 - File SRs automatically for common hardware faults
- Comprehensive CLI
 - Local Exadata Storage cell management
 - Distributed shell utility to execute CLI across multiple cells
- Embedded Integrated Lights Out Manager (ILOM)
 - Remote management and administration of hardware

Enterprise Manager 12c

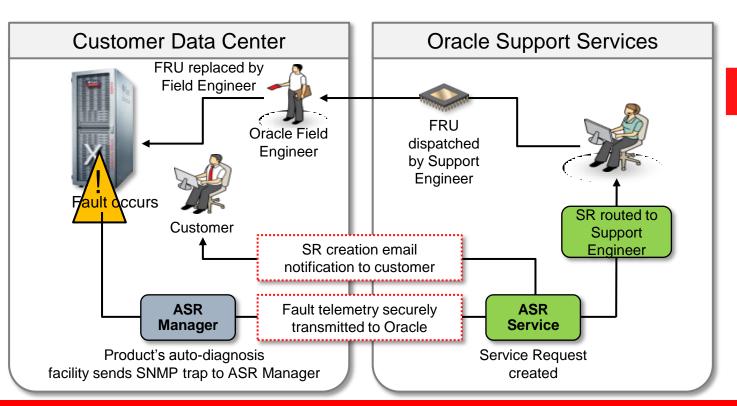
Integrated H/W + S/W management for Exadata

Hardware view

 Schematic of cells, compute nodes and switches


Hardware components alerts

Software/system view


- Performance, availability, usage by databases, services, clusters
- Software alerts db, cluster, ASM
- Topology view of DB systems/clusters

Configuration view

 Version summary of all components along with patch recommendations

Automated Service Request (ASR)

Comprehensive Fault Coverage

- CPU
- Disk controllers
- Disks
- Flash Cards
- Flash modules
- InfiniBand
- Cards
- Memory
- System Board
- Power supplies
- Fans

Platinum Support for Exadata

Complete. Integrated. Proactive.

- 24/7 support
- Specialized Engineered Systems Support Team
- 2-hour onsite response to hardware issues¹
- New Updates and Upgrades for Database, Server, Storage, and OS software
- My Oracle Support proactive support portal
- "Phone home" automated service requests (ASR)

ORACLE PLATINUM SERVICES

High Availability. No Additional Cost.

- Better support for the complete Oracle stack
 - Includes higher support levels for Database software
- Proactive remote monitoring for faults
- Industry leading service level response times:
 - 5 Minute Fault Notification
 - 15 Minute Restoration or Escalation to Development
 - **30 Minute** Joint Debugging with Development
- Oracle Engineers perform quarterly patching and updates

Available for certified configurations on Exadata

¹ Covered system must be within an Oracle two-hour service area to receive two-hour response as a standard service.

Exadata Maximum Availability Architecture

Comprehensive protection from failures Server – Storage – Network – Site – Corruptions

Active Disaster Recovery: Real-time standby open for guery offload Correction from human errors: database, table, row, transaction Online indexing and table redefinition Online patching and upgrades

Exadata Comparisons and Customer Use Cases

PayPal: Real-Time OLTP

Benefits

"We chose Oracle Exadata to help keep us nimble by delivering a response time of less than 100ms over petabytes of data."

- Sehmuz Bayhan, CTO PayPal

Faster Applications

10x Faster

Overall

Reduced **Risk Exposure**

99.99% Analysis

Maximum **Availability**

Increased **Payment Volume**

99.99%

200% Increase

Objectives

- Analyze 100% of payments for risk in < 100 milliseconds
- 99.999% uptime
- 2x increase in transaction volume

Solution

• 3 Pods, each with two X2-8's plus two X2 Storage Expansion Racks, and Active Data Guard to identical standby configuration

2x Exadata X2-8 2x Storage Expansion **Production (Primary Data Center)**

Active Data Guard WAN @ 650+ miles (30 ms)

Standby (DR Data Center)

2x Exadata X2-8

2x Storage Expansion

24 Exadata Systems in total, across 3 "pods"

> 120 TB database X 3 = 360 TB total

- 300,000+ executions per second
- 40 ms (avg) response times (99.99%)

VocaLink: OLTP Performance

Fast and Scalable Benefits Performance

Zero Unplanned Downtime

More Capacity Zero Data Loss **DR Protection**

"Our critical electronic payments service has been live on Exadata since early 2011 with 100% uptime. The service reliably processes the transfer of billions of Euros per week and achieves subsecond response times for online enquires." - Martin McGeough, Database Technical Architect

<540ms response

Objectives

- Enable real-time enquiries against transaction data
- Process 20 million financial transactions/day
- Sub-second response time
- Zero data loss DR protection

Solution

 Two Quarter-rack Exadata V2 systems - Oracle Maximum **Availability Architecture**

Pre-Exadata 4 ProdServers, 2 SANs

- Electronic Payment System
- Mixed workload, high volume **OLTP** and batch processing

Exadata V2 **Quarter Rack**

Active Data Guard Synchronous Zero Data Loss

Exadata V2 **Quarter Rack**

- Zero RPO. 15 minute RTO
- Auto block repair
- Standby-first maintenance

 Performance boost with no application change using Exadata **Smart Flash Cache and Smart Scan**

U.S. Customs and Border Protection

Benefits

"Oracle Exadata has changed our strategic IT focus from building systems to developing and supporting services."

- Ken Ritchhart, Deputy Assistant Commissioner

Faster Applications

10X speedup

32 billion queries/day

Storage Savings

1 Petabyte

Replaced \$\$ SAN

Maximum Availability

99.95%

Cost Savings

75% Cost Reduction

Objectives

- Real-time processing and monitoring of all cargo and every passenger crossing the US border
- Shrink data center costs

Solution

- 2010: Implement V2, X2-2
- 2011: Add X2-2, X2-8
- 2012: Add X2-8, Exalogic

Exadata V2 Primary/Standby

Automated Targeting Systems

Exadata X2-2 **Primary /Standby**

2010 - 2011

Automated Export **Systems**

Passenger & Cargo Systems Enterprise Data Warehouse

Oracle Beehive: Collaboration

96 V1 storage servers

Capacity for **Faster** 100% **Benefits** Growth Uptime Response 5x - 60x"Beehive is our largest application in-house. It is Oracle's largest backend database." - Campbell Webb, Vice-President IT, Oracle **Objectives** Exadata V1 Exadata X2-2 Exadata X2-2 **Storage Servers Production** Standby Company-wide collaboration for Utah Data Center > 100K users Austin (Texas) Data Center CPU/ storage growth 3+ years 2011

Solution

 2009: Move Beehive storage to Exadata V1 storage

Improved response times

Guarantee uptime

2011: Migrate to Exadata X2-2

Post-Sun 2.3 Petabytes raw disk acquisition, CPU and 48 TB flash disk oversubscribed

• 9 full-rack X2-2

Data Guard

> 5,000 peak TPS

- 9 full-rack X2-2
- Triple mirroring
- Disk backups/flashback enabled
 - 100% uptime since go-live

Turkcell: DW and DB Consolidation

Benefits

"In a word, Oracle Exadata is fantastic. Almost no report takes more than 10 minutes to run, versus hours before. It sounds unreal, but it's real."

- Power User, Finance Department, Turkcell

Faster Reports

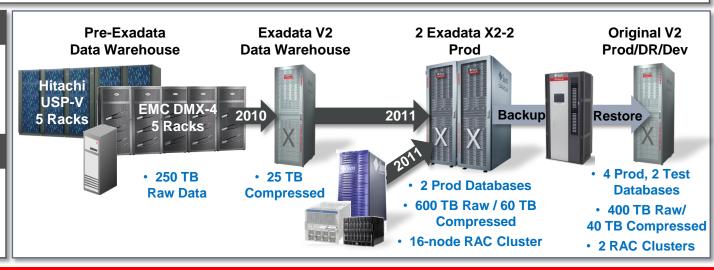
Storage Savings 900 TB Reduced **Admin**

20%

Data Center Cost Savings

80% Less Power 30 m² Less Space

10X 27 min to 3 min (avg for 50k rpts)


1,000 TB to 100 TB

Objectives

- Speed up BI
- Lean, green data center
- Prepare for big data growth

Solution

- 2010: Replace 11 racks with 1 full-rack Exadata V2 for DW
- 2011: Add 2 full-rack Exadata X2-2s for DB consolidation

SK Telecom: Revenue Assurance DW

Benefits

"Oracle Exadata Database Machine has overwhelmingly superior performance, with average data processing rates 8 to 20 times greater than other SK Telecom in-house systems."

- Jin-hyung Lee, Manager, Network Engineering Department, SK Telecom

Extreme Capacity

18+ TB/day

Exadata V2

Data Warehouse

2012

Storage Savings **Capture Lost** Revenue

1620 TB

1800 TB to 180 TB

\$ Millions

Exadata X2-2

Qtr Rack (2010)

Business Objectives

- Ensure billing accuracy
- Enhance customer service
- Predict data traffic trends

Solution

- 2009: Create new DW on Exadata
- 2010: Move to full-rack Exadata V2
- 2011: Add full-rack Exadata X2-2
- 2012: Clustered 3 full racks

Exadata V1 **Data Warehouse** (2009)

2010

 Billing Analysis **System**

- Billing Analysis **System**
- Usage & Roaming **Inquiries**

Exadata V2+ two X2-2 **Data Warehouse**

- Raw Data 1800 TB
- Compressed to 180 TB
- · DB size: 350 TB with indices
- 24-node RAC, 42 Exadata Cells

Spam Filtering

Organic Food Retailer: OLTP Consolidation

Benefits

Faster Applications **Uniform** HA/DR

Simplified Support

Data Center Cost Savings

"One number for me to call; no more forwarding phone calls and email between vendors when we are digging into an issue."

- DBA Team Leader

2011

Objectives

- Consolidate all OLTP databases to simplify and standardize management and reduce costs
- One vendor to call for support

Solution

 2011: Consolidate14 servers onto two Qtr-rack Exadata X2-2

Pre-Exadata

- 3 O/S Versions
- 18 Oracle Databases
- 5 Oracle DB Versions
- 12 Application Teams

Exadata X2-2

- Ordering
- Timekeeping
- Decision Support
- Many other applications

Exadata X2-2 Dev/Test

P&G: DW and Mixed Workload

Benefits

"Performance with Exadata is much better, and getting an out-of-the-box solution dramatically reduced the time and money to build and maintain our DW platform."

- Brian Beckman, DW Platform Manager, Procter & Gamble

Faster Applications **Storage** Savings **Simplified Support**

2 - 30X

3x - 10xCompression

Objectives

- Improve stability and supportability
- Lower costs
- Boost performance

Solution

- 2010: Implement 1ST DW on V2
- 2011: Move 2nd DW to X2-2. Move OLTP/Analytics to X2-2
- 2012: Move 3rd DW to X2-8

Exadata V2 **Data Warehouse Prod Non-Prod**

Trade/Mkt/POS Data

Exadata X2-2 Data Warehouse Prod DR Dev

Shipments Data

Exadata X2-8 **Data Warehouse** Prod Non-Prod

Fin'l/Planning Data

Exadata X2-2 **OLTP/Analytics** Prod Non-Prod

 Trade Fund Management

Alpha Natural Resources: OLTP

Alpha Natural Resources

Benefits

"Oracle Exadata has enabled us to deliver exceptional service to our business users while reducing the cost involved. Exadata has been a big win for our business and for IT."

- Saul Hernandez, CIO

Faster Applications

Reduced **TCO**

Maximum Availability 99.95%

Data Center Cost Savings

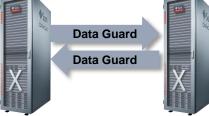
5X+ Speedup

50%

Objectives

- Reduce cost and complexity
- Deploy Oracle E-Business Suite quickly
- Dramatically improve performance and availability

Solution


- X2-2 for production E-Bus Suite
- X2-2 for Standby DR and test/QA
- Database Appliance for testing

Pre-Exadata (Hosted)

- IBM x86 Servers
- 3 O/S Versions

Exadata X2-2 **DB** Consolidation

- Production
- E-Business Suite

Dev/Test

Oracle Database

Appliance

- Disaster Protection
 - Test and QA

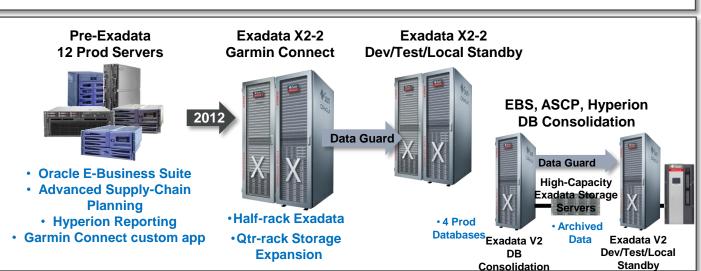
Garmin: OLTP Consolidation

Benefits Faster 99.95% Data Center Month End Reports Uptime 4x Growth Cost Savings

"Consolidation on Exadata reduced costs and eliminated critical performance bottlenecks in our Manufacturing and Planning systems"

- Ed Link, Vice-President IT, Garmin

Up to 11X



Objectives

- Support 400% growth in customer facing applications
- Eliminate bottlenecks in Manufacturing and Planning
- Consolidate to reduce costs

Solution

- 2012: Consolidate 12 servers onto two Half-rack Exadata V2
- 2012: Add two Half-rack X2-2 systems, two Qtr-rack storage expansion

ORACLE

Lion: SAP on Exadata and Consolidation

Faster Storage **Operation Benefits Application** Savings **Cost Savings** SAP FI: 2x Max. up to 100x "Exadata has always high performance. Data Compression is Teradata: Over 5x also wonderful result. It is best consolidation database platform. Also, thanks to careful planning and verification, it was smooth without any major problems as a project." - Masatoshi Utsunomiya, Director, Integration system department, Lion Avg. up to 20x

Business Objectives

- Reduce TCO
- Improve Operation and Maintenance Cost
 - ✓ Standardize the environment

Solution

2010: Project start Exadata V2 Quarter Rack

2012: Software Upgrade X2-2 SAP DB Consolidation

Mainframe Migration

 Sales/Logistics, Master Data Cost Mgmt, Sales Analytics

Mainframe

Migrated Aug 2012

Migrated May 2012

SAP Database Migration

- SAP FI (from Linux)
- Consolidate 3 systems
- Compress 1400 GB to 700 GB IA Server

Teradata DWH Migration

Compress 320GB to 60GB

Migrated Mar 2013

- √Oracle Exadata Quarter Rack
- ✓ DWH used HCC. SAP used Advanced Compression
- ✓ Delete useless index of Teradata

Univ. of Minnesota: DBaaS

Benefits

"We consolidated dozens of database servers onto Exadata and freed up many of our admins for more strategic tasks. Standardizing our database services and configurations has yielded benefits across many dimensions."

- Andy Wattenhofer, Database Administration Manager, University of Minnesota

Server Consolidation

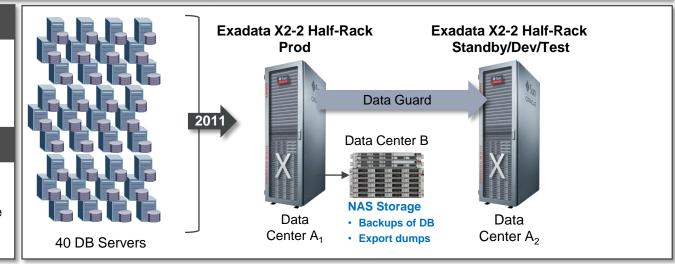
Reduced Administration

Standardized Configurations

Security, Backup, HA/DR

235 databases → 29

 $5 \text{ DBAs} \rightarrow 3$



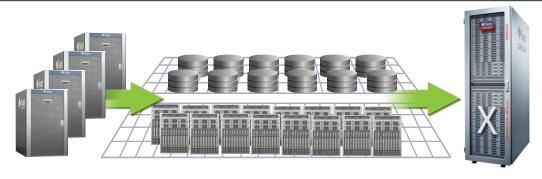
Business Objectives

- Eliminate server proliferation
- Provide consistent service levels
- Free up redundant administrators
- Standardize roles and permissions

Solution

- Consolidate 40 DB servers onto 2 Exadata X2-2 Half-Racks
- Create a standard Schema-as-a-Service with 150+ schemas in 8 databases. serving all departments

CBA: DBaaS


Benefits	OPEX	ROI	Rapid Provisioning	Simplified Management
"As the business seeks more services on demand, we needed to provide that resilient platform and Exadata provides us a consolidated platform for database services that can meet all those needs" - Nicolas Tan, Head, Infrastructure and Platform Services	50~60% reduction	150% in 5 years	Months to Minutes	Two Oracle Homes

Business Objectives

- Cost Savings
- Rapid Provisioning
- Extreme Standardization

Solution

- Exadata for
 - Rapid, reliable deployments
 - Standardized environments

Enterprise servers configured by CBA Commodity clusters configured by CBA

Commodity clusters configured by Oracle

Major Semiconductor Company: Manufacturing Data Warehouse

Benefits

"Exadata transformed production data analysis. Exadata improved performance better than 5x and reduced costs by more that 50%."

Applications

- 10-15 x Faster Data Load
- 5-50x Faster Queries

Data Center Cost Savings

5x Less Hardware 80% Less Power

Storage Savings

~ 9 x Data Compression

Exadata X3-8

Active Data Guard

ZFS 7420

Backup

Appliance

Reduced Admin **↑** Serviceability

40% Savings Single Patch **Platinum Services**

Business Objectives

- Improve yield management by correlating data across fabs
- Reliability, availability, scalability
- Reduce support costs and improve serviceability
- Lower data center costs

Solution

 2013: 2 x X3-8 Full Rack: X3-2 Half Rack; 2 x ZFS Storage

Pre-Exadata Data Warehouse (2012)

63 HP **DL 580**

- 7 identical DWs (1 per fab)
- 63 servers, 14 storage racks

Exadata X3-8 **Data Warehouse**

Backup Appliance

ZFS 7420

WAN @1,300 miles

Production analysis

- 7 production DBs
- DR and additional reporting
- Stdbv 1st patches & rolling upgrades

Exadata X3-2 Half Rack Dev/Test

ORACLE

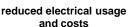
Deutsche Bank: Financial DW

Benefits

"With the implementation of Oracle Exadata Database Machine, data processing performance improved significantly, and the bank acquired the ability to analyze increasing data volume in much shorter cycles. In addition, compressing the data volume by 75% reduced electrical usage and costs."

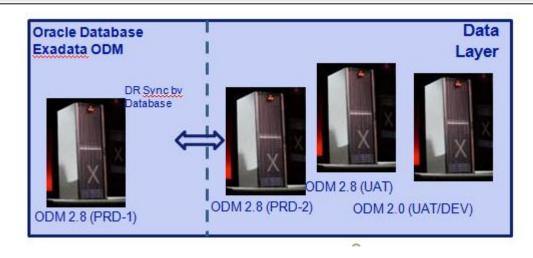
- Marcus Prätzas, Head FDW, Deutsche Bank

Extreme Usage


1000s of users

Storage Savings

Started to add Big Data


Preprocess for DW

Business Objectives

- Disclosure
- · RWA (Basel I / II)
- EC / EL / GVA
- · Daily Derivatives
- Many more

Solution

 Establish real-time credit risk, regulatory law, and internal management reporting to optimize credit risk analysis, as the ability to perform daily analyses of risk ratios is increasingly important

Loblaw: JDA on Exadata

Faster Operation **Simplified Data Center Benefits Applications Cost Savings Support Cost Savings Reduced Admin** 1 Week "Exadata is fast. We achieved 6x performance improvements over 2.5X -6X 80% Less Power our existing platform in our forecasting and replenishment batch by 40% **Deployment** 30 m² Less Space run, enabling our store level forecasting to complete consistently within SLA and scaling up seamlessly to full volume without performance degredation". - David Markwell, VP of IT, Technology Services Management

Objectives

- Eliminate Bottlenecks in Supply Chain Planning
- Reduce the long running batch window
- Reduce support time and cost

Solution: 2013

- 2013: Migrated from IBM-P7 to X2-8 for production.
- X2-2+ for DR (using Active Data Guard.) and Dev/Test

Pre-Exadata

• IBM P7 Hitachi USP V w/SSDs

Exadata X2-8

2012

Production

Active Data Guard

 ½ rack: X2-2 ¼ rack upgraded with X3-2 1/4 rack

Disaster Recovery

Exadata X2-2+X3-2 Exadata X2-2+ X3-2 Dev/Test

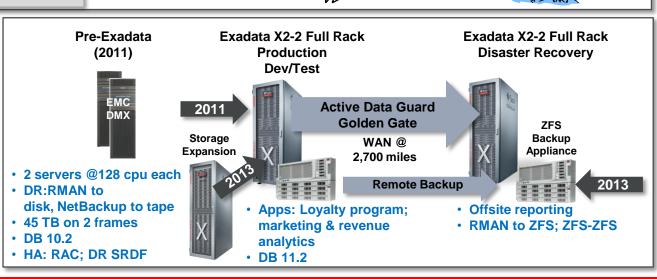
 ½ rack: X2-2 ¼ rack upgraded with X3-2 1/4 rack

- JDA (Supply Chain Planning)
- Performance boost with no application change using Exadata Smart Flash Cache and Smart Scan

Turning 2nd Day Delivery into Next Day Delivery

ORACLE

Starwood: DW and Mixed Workload


Simplified **Faster Faster Benefits** Support Reports ETL 14X 16 hours to 3 Single Vendor "14x performance improvements enable our field > 25% cost reduction managers to take proactive actions not possible before. Reporting with 'real time' data is rapidly becoming the expectation at Starwood." Gordon Light, Sr. Dir., Datawarehouse, Starwood

Business Objectives

- Improve application response time
- More current reports
- More responsive marketing

Solution

- 2011: X2-2 full rack for prod and DR
- 2013: full Storage Expansion Rack; 2 x ZFS Backup Appliance

WestJet: Siebel on Exadata

Benefits

"WestJet consolidated 16 databases while delivering exceptional and consistent performance to our online ticketing, customer rewards and loyalty programs. Performance is at least 19 times faster. '

-Kris Trzesicki, DBA, WestJet

Faster Response

Data Center Cost Savings

Reduced Admin ↑ Serviceability

Zero Unplanned Downtime

18 servers → 2 Exadata 19x - 260x

70% Savings Single Patch **Platinum Services**

Business Objectives

- Consolidate DBs
- Consistency of performance
- Availability, especially during rolling upgrades
- Time to market
- Lower data center costs

Solution

2013: 3 x X2-2s ¼ Rack

Pre-Exadata (2012)

- HP Unix (2) + 23+ x64 servers
- DB 11q R1

Exadata X2-2 **DB Consolidation**

- Siebel, OBIEE, Booking & Notification, + other
- DB 11qR2

2012 /13

- Consolidated 16 DBs
- 1/2 rack: ¼ staging and ¼ prod'n

Exadata X2-2 **Active Data Guard**

Oracle Platinum Services

Ziraatbank: Core Banking System

Smaller Batch Consolidation of **System** Zero Data Loss **Benefits** Utilization Window **HA Protection Databases** 40% fewer 70% to 30% 60% less time "Oracle Exadata enabled us to support more users Admin tasks with much better response time while at the same time improving uptime for our core banking OLTP svstem." - Serdar Mutlu, Manager, Database Systems **Objectives** Legacy x86-64 Systems Exadata X3-2 Quarter Meet OLTP SLAs (99.95%) Rack Exadata X3-2 Half Rack availability, disk response time under 3ms, 25,000 users, 3,000 TPS) Synchronous **Finart ADG** Finart Core Banking DB Archive DBs. 8x **Active Data** 1.500 Branches Zero Data Loss HA configuration compression with Guard 5.000 ATMs HCC **Internet Banking** Reduce overnight batch window from **DWH Summary Ankara** 8 hours to 3 hours Document **Asynchronous** Istanbul Management Stability and availability with mixed **Active Data** Exadata X3-2 Half Rack Asynchrono Guard workloads Exadata X3-2 Eighth us Data Rack Finart ADG Guard Solution **T-1 Reporting** Test **Disaster Recovery**

DBs

ORACLE

Development

2013 Q2: 2 x Half Racks, and 1 x

Quarter Rack X3-2 for production 2013 Q3: 1 x Eighth Rack for test and

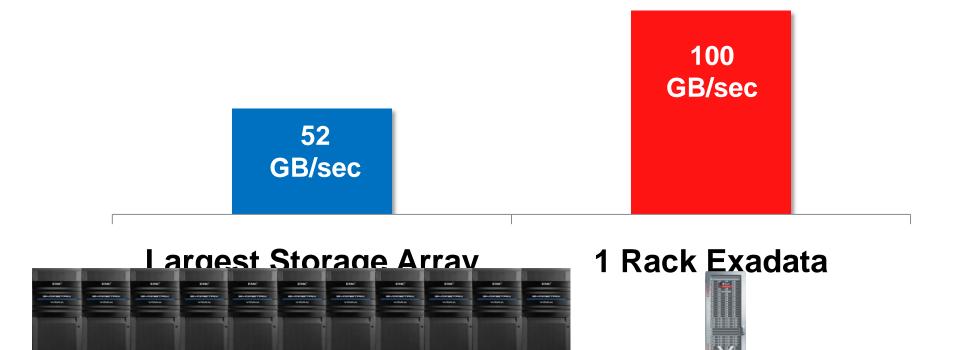
development

Softbank Replaces 36 Teradata Racks

3 Exadata racks

150% more data capacity

36 total racks


Twice the operational cost of Exadata

- Billions of CDRs processed in 7 hours (from 25 with Teradata)
- Power, cooling, space savings
- Maintenance charges slashed
- Up to 8x faster

Exadata X4 vs. Traditional Storage Arrays

Exadata Flash Performance Scales Linearly

800 GB/sec

52 GB/sec

Largest Storage Array

Exadata Database Machine

The ultimate platform for all database workloads

OLTP, Warehousing, Database as a Service

Most advanced hardware

 Fully scale-out servers and intelligent storage with unified InfiniBand connectivity and PCI flash

Most advanced software

- Database optimized compute, storage, and networking algorithms dramatically improve performance and cost
- Standardized, optimized, hardened end-to-end

Hardware and Software

ORACLE®

Engineered to Work Together

ORACLE®