

Best Practices For
High Volume IoT workloads
with Oracle Database 19c

Version 1.01
Copyright © 2023, Oracle and/or its affiliates

1 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

PURPOSE STATEMENT
This document provides an overview of features and enhancements included in the release Oracle Database 19c that can
help improve the performance of high-volume ingest workloads like IoT. It is intended solely to help you assess the business
benefits of using Oracle Database 19c and plan your IT projects.

INTENDED AUDIENCE
Readers are assumed to have basic knowledge of Oracle Database technologies.

DISCLAIMER
This document, in any form, software, or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software
license and service agreement, which has been executed and with which you agree to comply. This document and
information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without
prior written consent of Oracle. This document is not part of your license agreement, nor can it be incorporated into any
contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation
and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The development, release, and timing of any features or
functionality described in this document remains at the sole discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features described in this document
without risking significant destabilization of the code.

TABLE OF CONTENTS
Purpose Statement 1
Intended Audience 1
Disclaimer 1
Introduction 3
What is the Internet of Things? 4
Scalability 4

Real Application Clusters 4
Oracle Sharding 4
Database Configuration 5

Tablespaces 5
Redo Logs 6
Memory Settings 6

Data loading Mechanisms 6
Conventional inserts 7
Reduced ACID compliance 7
Commit Frequency 8
Array Inserts 8
Direct Path Loads & External Tables 8
Memoptimized Row Store For Loading Streaming Data 10

Flexibility 11
JSON Support 11
Partitioning 12

Partitioning for manageability 12
Partitioning for performance 12

2 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

Partitioning for Affinity 13
Real-Time Analysis 13

Parallel Execution 14
Indexing 14

Overhead of Keeping Indexes Transactionally Consistent 14
Partially Useable Indexes 14

Time-Series Analysis 15
Materialized Views 15
Oracle Database In-Memory 15

Conclusion 16
appendix A - Test Results 16

Conventional Insert Results 16
Memoptimized Rowstore For Streaming Data Results 17

Appendix B Example of an Array Insert in Python 18
Appendix C – Example of Determining Which Hash Partition Data Belongs 20

Sample Code 20

3 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

INTRODUCTION

Over the last ten years, there has been a rapid surge in the adoption of smart devices. Everything from phones and

tablets to smart meters and fitness devices connect to the Internet and share data, enabling remote access, automatic

software updates, error reporting, and sensor readings transmissions.

With these intelligent devices comes a considerable increase in the frequency and volume of data being ingested and

processed by databases. This scenario is commonly referred to as the Internet of Things or IoT. Being able to ingest

and analyze rapidly increasing data volumes in a performant and timely manner is critical for businesses to maintain

their competitive advantage. Determining the best platform to manage this data is a common problem many

organizations across different industries face.

Some assume that a NoSQL database is required for an IoT workload because the ingest rate required exceeds a

traditional relational database's capabilities. This is simply not true. A relational database can easily exceed the

performance of a NoSQL database when properly tuned.

Oracle Database is more than capable of ingesting hundreds of millions of rows per second. It is also the industry-

leading database in terms of analytics, high availability, security, and scalability, making it the best choice for mission-

critical IoT workloads.

The performance of data ingest operations are affected by many variables, including the method used to insert the data,

the schema, parallel execution, and the commit rate. The same is true for analytical queries. This paper outlines the

best practices to ensure optimal performance when ingesting and analyzing large volumes of data in real-time with

Oracle Databases.

4 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

WHAT IS THE INTERNET OF THINGS?
The Internet of Things (IoT) is a world where all physical assets and devices are connected and share information, making
life easier and more convenient. Example applications include Smart Meters that record the hourly use of electricity or gas
and sensors found on cargo containers that report their location, temperature, and if the door has been opened. Or wearable
technology that analyzes a person's diet, exercise, and sleep.

Many industries have used Oracle Databases for decades to process these types of workloads, long before it was called IoT.
For instance, telecoms process tens of millions of Call Detail Records (CDRs) [that are] generated every second on telephone
switches across the world. Or connected manufacturing equipment, where every machine in a production line continually
sends information about which component is currently being worked on and by whom.

Regardless of how the data is generated, the essential requirements for IoT workloads remain the same, and they are:

» Scalability – Rapid increase in the number of devices and volume of data they generate

» Flexibility – New and or different data may make it necessary to iterate the data model

» Real-time Analytics – Without having the luxury of lengthy ETL processes to cleanse data for downstream reporting

 This paper examines each of these requirements and explains how Oracle has developed very sophisticated tuning and
management techniques by working with leading telecoms, financial institutions, and manufacturers over decades to not
only facilitate them but excel at them. Throughout the paper, an analogy of someone going grocery store shopping is used
to help explain the reasoning behind each of the tuning techniques recommended.

SCALABILITY
Scalability is a system's ability to provide throughput in proportion to and limited only by available hardware resources.
Oracle Database offers the ability to scale up (increasing hardware capacity within a single server) or scale out (increasing
the number of servers in a cluster). For IoT projects, the consensus is that a scale-out solution is preferred, as it allows for
scalability at a lower cost. Oracle Database offers two scale-out architecture options: Real Application Clusters (RAC) and
Oracle Sharding.

Real Application Clusters
RAC enables any packaged or custom application to run unchanged across a server pool connected to shared storage. If a
server in the pool fails, the database continues to run on the remaining servers. When you need more processing power, add
another server to the pool without incurring any downtime. This paper assumes the Oracle Database is deployed in a RAC
environment with two or more RAC nodes.

Figure 1: Simple RAC Architecture with two RAC nodes

Oracle Sharding
Oracle Sharding is an alternative scalability feature for custom-designed applications that enables the distribution and
replication of data across a pool of Oracle databases that share no hardware or software. The pool of databases is presented
to the application as a single logical database. Applications elastically scale (data, transactions, and users) to any level on any
platform simply by adding additional databases (shards) to the pool.

Sharding divides a database into a farm of independent databases, thereby avoiding scalability or availability edge cases
associated with a single database. Data is distributed across shards using horizontal partitioning. Horizontal partitioning

5 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

splits a database table across shards so that each shard contains the table with the same columns but a different subset of
rows. This partitioning is based on a sharding key.

Figure 2: Oracle Sharding Architecture

Sharding trades-off transparency in return for massive linear scalability, greater availability, and geographical distribution.
With Sharding, the application needs to be shard-aware. That is to say, queries must provide the shard-key to be directed to
the appropriate shard or database. It is also possible to run cross-shard queries.

Database Configuration
Let's move our focus to configuring an Oracle Database to ensure we can scale as we increase the number of nodes in our
RAC environment.

Tablespaces
An essential aspect for loading - and querying - large amounts of data is the space management used for the underlying
tables. The goal is to load data as fast and efficiently as possible while guaranteeing the physical data storage will benefit
future data access. You can think of this like you would plan for a large weekly shop at a grocery store. If you know you need
to buy many groceries, you select a cart instead of a handbasket when you enter the store. A cart ensures plenty of room for
everything you need to purchase and allows you to easily access all your items when you get to the register.

With Oracle Database, space management is controlled on the table level or inherited from the tablespace where the table
(or partition) resides. Oracle recommends the usage of BIGFILE tablespaces to limit the number of data files to be
managed. BIGFILE tablespaces are locally managed tablespaces that leverage Automatic Segment Space Management
(ASSM) by default.

On the creation of a BIGFILE tablespace, the initial data file is formatted. Each time the data file is extended, the extended
portion must also be formatted. The extension and formatting of data files is expensive and should be minimized (wait
event: Data file init write). Furthermore, formatting is done serially (unless you are on an Oracle Exadata Database Machine
where each Exadata Storage Server performs the formatting of its space independently).

Locally managed tablespaces can have two types of extent management: AUTOALLOCATE (default) and UNIFORM. With
AUTOALLOCATE, the database chooses variable extent sizes based on the property and size of an object, while the UNIFORM
enforces extents with a pre-defined fixed size. For high-rate ingest workloads, such as IoT, Oracle recommends using
AUTOALLOCATE. However, the default allocation policy of AUTOALLOCATE is to start with a tiny extent size, which may be too
conservative for a heavy ingest workload like IoT. Therefore, we recommend you specify a larger initial extent size at table
creation time (minimum of 8 MB) to force AUTOALLOCATE to begin with this value and go up from there. This will avoid
having processes wait for new extents to be allocated (wait event: enq: HW – contention).

For optimal performance, Oracle recommends minimizing space allocation operations during loads by specifying auto-
extension size on a big file tablespace. The AUTOEXTEND parameter controls how much additional space is added to a
BIGFILE tablespace when it runs out of space. The following example creates the tablespace TS_DATA applying the above-
discussed best practices:

CREATE BIGFILE TABLESPACE ts_data
DATAFILE '/my_dbspace/ts_data_bigfile.dbf' SIZE 1500G
AUTOEXTEND ON NEXT 15G maxsize UNLIMITED
LOGGING -- this is the default
EXTENT MANAGEMENT LOCAL AUTOALLOCATE -- this is the default
SEGMENT SPACE management auto; -- this is the default

Figure 3: Example of a create BIGFILE tablespace command

6 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

Also, grant the user executing the data load an unlimited quota on the tablespace to avoid any accounting overhead
whenever additional space is requested.

ALTER USER sh QUOTA UNLIMITED ON ts_data;

Figure 4: Grant the user who owns the object being loaded into an unlimited quote on the ts_data tablespace

As tablespaces become full, they should be marked read-only. This will ensure that a tablespace will only be backed up once
rather than every night, extending the backup process.

Redo Logs
All changes made in an Oracle Database are recorded in the redo logs to ensure the data is durable and consistent. You
should create at least three redo log groups to ensure the logging process does not impact the ingest performance. Multiple
groups prevent the log writer process (LGWR) from waiting for a group to be available following a log switch. A group may be
unavailable because a checkpoint has not been completed or the group has not yet been archived (wait event: Log file switch
completion).

The redo log files should also be sized large enough to ensure log file switching occurs approximately once an hour during
regular activity and no more frequently than every 20 minutes during peak activity. All log files should be the same size. Use
the following formula to determine the appropriate size for your logs:

Redo log size = MIN(4G,Peak redo rate per minute x 20)

Figure 5: Formula for sizing Redo logs appropriately

Finally, place the redo logs on high-performance disks. The changes written to the redo logs need to be done in a
performant manner (wait event: Log File Parallel Write).

Memory Settings
Several aspects of a data load operation require memory from the System Global Area (SGA) or the Program Global Area
(PGA) in the database instance.

SGA

The SGA is a group of shared memory structures that contain data and control information for the database instance.
Examples of data stored in the SGA include cached data blocks (known as the buffer cache) and a shared SQL area (known
as the shared pool). All server and background processes share the SGA. The SGA_TARGET and SGA_MAX_SIZE parameters
control the total size of the SGA.

To ensure optimal performance for Conventional inserts, allocate at least 50% of the available memory for the database to
the SGA. The majority of SGA memory should go to the buffer cache and the shared pool.

PGA

The PGA is a non-shared, private memory region that contains data and control information exclusively for a session
process to complete SQL executions, aggregations, and sort operations, amongst other things. Oracle Database creates the
PGA inside the session process when the process is started. The collection of individual PGAs is the total instance PGA. The
PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT parameters control the total amount of memory available for all
private processes. Allocate a minimum of 20% of the available memory for Oracle to the PGA.

More memory may be required if parallel Direct Path Loads and external Tables are used, as each parallel process buffers
rows before inserting them into the target table. You should assume that each parallel process requires 0.5MB if loading into
a non-compressed table and 1 MB if loading into a compressed table.

You should also account for the number of segments loaded concurrently. Each process allocates a separate buffer in the
PGA for each segment they insert into.

Data loading Mechanisms
Up until now, we have focused on creating a scalable database environment. Let's now switch our attention to data
ingestion. With Oracle Database, data can be inserted into a table or partition in two ways: conventional inserts or direct-
path inserts. You can think of data ingestion as being analogous to putting items in your cart and paying for them at the
grocery store. You would never select one item at a time and pay for it before choosing the next item on your list (single row

7 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

insert followed by a commit). You would walk through the store, collect all the items on your list, and go to the checkout
once (array insert followed by a commit). The same is true when you want to insert data efficiently into the database.

Conventional inserts
Conventional inserts use the SQL INSERT statement to add new rows to a table or partition. Oracle Database automatically
maintains all referential integrity constraints and any other indexes on the table. The database also tries to reuse any
existing free space within the database blocks that already make up the table. In case of failure, all aspects of a conventional
INSERT statement are recorded in the redo logs. Typically, an INSERT command adds one row at a time and is followed by a
COMMIT, although it is possible to add multiple rows with the INSERT command using the INSERT ALL.

A single session can ingest approximately 500 rows per second via a conventional single-row insert, followed by a commit.
Hundreds of concurrent sessions would need to issue the same insert statement to ingest large volumes of data via single-
row inserts. So many concurrent sessions executing the same statement may lead to contention in the shared pool (wait
event: cursor: pin S) and at the cluster lock level (wait event: enqueue hash chains latch).

To reduce the contention in the shared pool, for individual statements executed thousands of times per second, we
recommend marking the insert statement as "hot" via the MARKHOT procedure in the DBMS_SHARED_POOL package (see Figure
6). Marking a SQL statement or PL/SQL package hot enables each session to have its own copy of the statement in the
shared pool and relieves the contention at the expense of more shared pool memory usage for this statement.

BEGIN
 dbms_shared_pool.markhot (hash=>'01630e17906c4f222031266c21b49303',
 namespace=>0,
 global => TRUE);
END;

/

Figure 6: Using the DBMS_SHARED_POOL package to mark the insert statement hot

To reduce locking overhead, consider disabling table-level locking. Disabling the table-level lock speeds up each insert
statement, as we no longer have to secure a shared table-level lock before beginning the transaction. However, it will
prevent DDL commands (DROP, TRUNCATE, ADD COLUMN, etc.) from occurring on the object.

ALTER TABLE Meter_Readings DISABLE TABLE LOCK;

Figure 7: Disable table-level locking

A more convenient way to reduce locking overhead is to increase the number of transaction slots (ITL slots) in a database
block. By default, each database block has 2 ITL slots. However, increasing the INITRANS attribute on a database table can
increase the number of ITL slots created. The INITRANS attribute should be set to the number of concurrent inserts
expected per database block.

Reduced ACID compliance
By default, all transactions within an Oracle Database are fully ACID compliant to guarantee data validity despite errors,
power failures, and other mishaps. However, with an IoT workload, offering full durability for all transactions may be
optional as the individual records are less critical. Often, the business benefit comes from identifying a pattern or an
anomaly rather than reviewing the individual entries. In these cases, Asynchronous Commit can accelerate data ingest
performance.

With Asynchronous Commit, Oracle returns control immediately on a commit command and does not wait for the changes
to be persisted to disk. Instead, the redo information is buffered, and the log writer writes redo information in batches,
reducing the number of I/Os operations.

The behavior of Asynchronous Commit is controlled by two initialization parameters that can be set at both the session and
system level. The parameter COMMIT_WAIT controls when the redo for a commit is flushed to the redo logs. By setting
COMMIT_WAIT to NOWAIT, Oracle will immediately return control to the transaction without waiting for the redo information to
be written to disk. While the parameter COMMIT_LOGGING is used to control how the Log Writer batches the redo information.
Setting COMMIT_LOGGING to BATCH tells the log writer to batch up the redo information. Note that these two initialization
parameters replace the deprecated parameter COMMIT_WRITE.

8 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

ALTER SESSION SET commit_wait =’NOWAIT’;
ALTER SESSION SET commit_logging =’BATCH’;

Figure 8: Enabling Asynchronous Commits

Commit Frequency
To persist any change in the database, you must commit the transaction. Issuing a COMMIT statement after each INSERT
generates a large amount of redo, which causes high disk and CPU utilization on the RAC nodes, especially if you have a lot
of concurrent sessions (wait event: log file sync and DB CPU). Therefore, it is recommended to COMMIT only after inserting
multiple rows, for example, 100 rows. This will reduce the volume of redo generated and CPU consumed, taking a single
session's ingest rate from 550 to 7 thousand rows per second.

However, a far more efficient alternative to single-row conventional inserts is to take advantage of array inserts and commit
after each array insert.

Array Inserts
Oracle's array interface enables many records or rows to be inserted with a single statement. You can take advantage of
array inserts using any Oracle Database application-programming interface (API) regardless of which programming
language you use (Python, Java, JavaScript, .NET, PL/SQL, C/C++, etc.). The array interface significantly reduces the redo
generated per row (6X less than single row inserts) and the CPU on the database server (15X less CPU than single row
inserts), resulting in 18 thousand inserts per second for a single session on the test environment. Using significantly less CPU
per session allows for more concurrent sessions.

Array Inserts also reduce the number of network round trips and context switches when you insert a large volume of data.
This reduction can lead to considerable performance gains.

An example of an array insert in Python is available in Appendix B.

Direct Path Loads & External Tables
An alternative and more efficient approach to conventional inserts is using Oracle's direct path loads. A direct path load is
preferable over a conventional insert if the data to be ingested arrives in large, flat files. A direct path load parses the input
data, converts the data for each input field to its corresponding Oracle data type, and then builds a column array structure
for the data. These column array structures are used to format Oracle data blocks and create index keys. The newly
formatted database blocks are then written directly to the database, bypassing the standard SQL processing engine and the
database buffer cache.

A direct path load is typically achieved using a CREATE TABLE AS SELECT or an INSERT AS SELECT statement from
an external table. For the INSERT AS SELECT statement to bypass the database buffer cache, you must use the APPEND
hint, as demonstrated in Figure 9 below. Direct path loads are suitable when data is loaded in "batch mode" every few
minutes or more.

External Tables

Direct path loads typically use external tables, which enable external data (files) to be visible within the database as a virtual
table that can be queried directly and in parallel without requiring the external data to be first loaded.

The main difference between external and regular tables is that an external table is a read-only table whose metadata is
stored in the database but whose data is stored in files outside the database.

9 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

Figure 9: Architecture and components of external tables

An external table is created using the standard CREATE TABLE syntax, except it requires an additional ORGANIZATION
EXTERNAL clause. This additional clause specifies information on the type of access driver needed (ORACLE_LOADER,
ORACLE_DATAPUMP, ORACLE_HDFS, or ORACLE_HIVE), access parameters, the name of the directory containing the
files, and the definition of the columns within the table.

To ensure a performant and scalable data load using external tables, the access to the external files must be fast, and
parallel execution should be used.

Location of the external staging files

The staging files should be located on an external shared storage accessible from all RAC nodes in the cluster. The IO
throughput of the shared storage directly impacts the load speed, as data can only be loaded as fast as it can be read.

To guarantee optimal performance, the staging files should be placed on different physical disks than those used by the
database to avoid competing for IO bandwidth. This recommendation does not apply to Oracle Exadata configurations.
Oracle Exadata has sufficient IO capacity to have the external data files staged on a Database File System (DBFS) striped
across the same Exadata Storage Servers as the database files.

If the shared storage IO throughput is significantly lower than the database's ingest rate, consider compressing the external
data files and pre-processing the data before loading. Note that this is a tradeoff of CPU resources used to decompress the
data versus IO bandwidth; it also imposes some restrictions on parallelism, as discussed in the parallelizing a direct path load
section later in the document.

External data format

The data format in the external staging files can also significantly impact load performance. Parsing the column formats and
applying character set conversions can be CPU intensive. We recommend using only single-character delimiters for record
terminators and field delimiters, as they can be processed more efficiently than multi-character delimiters. It is also
recommended that the character set used in the external data file match the database's character set to avoid character set
conversion (single-byte or fixed-width character sets are the most efficient).

If data transformations and conversions do need to occur, it's best if Oracle does them as part of the loading process rather
than pre-processing the files. This can be done using SQL within the database or leveraging external tables' pre-processing
capabilities as part of the initial data access through external tables.

Locking during Load

During a direct path load operation or any parallel DML, Oracle locks the entire target table exclusively. Locking prevents
other DML or DDL operations against the table or its partitions; however, the table's data is fully accessible for queries from
other sessions. You can prevent acquiring a table-level lock by using the partition extended syntax, which locks only the
specified partition.

INSERT /*+ APPEND */ INTO Meter_Readings
PARTITION FOR (to_date('25-DEC-2016','dd-mon-yyyy'))
SELECT * FROM ext_tab_mr_dec_25;

Figure 10: Example of limiting locking during a direct path load operation using partition extended syntax

10 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

Parallelizing a Direct Path Load

Parallel execution is a commonly used method of speeding up operations by splitting them into smaller sub-tasks. Just as
you would split up an extensive shopping list into two if your spouse went to the grocery store with you, you can take
advantage of parallel execution within the database to speed up both data ingestion and queries. Parallel execution in Oracle
Database is based on the principles of a coordinator (often called the Query Coordinator – QC for short) and parallel
execution (PX) server processes. The QC is the session that initiates the parallel SQL statement, and the PX servers are the
individual processes that perform work in parallel on behalf of the initiating session. The QC distributes the work to the PX
servers and aggregates their results before returning them to the end-user.

The external files must be processed in parallel to achieve scalable direct data loads. From a processing perspective, this
means that the input data has to be divisible into units of work - known as granules that are then processed concurrently by
the PX server processes.

Oracle can build the parallel granules without restrictions if it can position itself in an external data file and find the
beginning of the next record. For example, when the data file contains single-byte records terminated by a well-known
character (a new line or a semicolon). Each external data file is divided into granules of approximately 10 MB in size and
distributed among the parallel server processes in a round-robin fashion. For optimal parallel load performance, all files
should be similar in size, be multiples of 10MB, and have a minimum size of a few GB.

In this case, there are no constraints on the number of concurrent parallel server processes involved or the Degree of
Parallelism (DOP) other than the requested DOP for the statement.

However, when the files' format prevents Oracle from finding record boundaries to build granules (compressed data, etc.) or
when the type of media does not support position-able or seekable scans, the parallelization of the loading is defined by the
number of data files. Oracle treats each data file as a single entity – and, therefore, a single granule. The parallelization of
such data loads has to be done by providing multiple staging files, and the total number of staging files will determine the
maximum DOP possible.

Data Compression and Direct Path Load

Loading large volumes of data always begs the question of whether or not to compress the data during the data load. There
is a tradeoff between maximizing the data ingest performance and improved query performance (since less data has to be
read from disk) plus space savings. Regarding our grocery store analogy, you should consider compress akin to organizing
items in your cart. You can fit many more groceries in your cart if you spend a little time organizing them rather than just
throwing them in.

To load data in a compressed format, you must declare the target table (or partitions) as COMPRESSED. Oracle offers the
following compression algorithms:

COMPRESS/COMPRESS FOR DIRECT_LOAD OPERATIONS – block-level compression for direct path operations only

COMPRESS FOR ALL OPERATIONS – block-level compression for direct path operations and conventional DML, part of the
Advanced Compression Option

COMPRESS FOR [QUERY|ARCHIVE] [HIGH|LOW] – columnar compression, for direct path operations only, a feature of
Exadata storage

Irrespective of the compression technique, additional CPU resources will be consumed during the data load operation.
However, the benefits of compressing the data far outweigh this cost for an IoT workload as the data is typically ingested
once, never changed, and queried many times.

Memoptimized Row Store For Loading Streaming Data

For many IoT workloads, data is continuously streamed into the database directly from a smart device or application. Oracle
Database 19c offers an efficient way to ingest streaming data via the Memoptimized Row Store. With Memoptimized
Rowstore Fast Ingest, the standard Oracle transaction mechanisms are bypassed, and data is ingested into a temporary
buffer in the Large Pool. The buffer's content is then periodically written to disk via a deferred, asynchronous process. Since
the application doesn't have to wait for the data to be written to disk, the inserts statement returns extremely quickly. A
single session can ingest approximately 1.4X more rows per second than with a conventional insert. However, when an array
insert is used after batching 100 records on the mid-tier, a recommended approach, a single session can insert over 1.7X
more rows per second. More details on the performance you can expect from the Memoptimized Row Store can be found in
Appendix A.

11 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

Figure 11: Example of how Oracle Memoptimized Rowstore Fast Ingest can be used to load IoT data

Note that you cannot query data until it's persisted to disk, and it is possible to lose data should the database go down before
the ingested data has been persisted to disk. This behavior differs from how transactions are traditionally processed in the
Oracle Database, where data is logged and never lost once written/committed to the database. However, many IoT workloads
can easily tolerate lost data as they are only interested in the difference between the values over time. For example, how
much power was used by this household this month? In this case, you only need two readings, one from the beginning of the
month and one from the end, to calculate the difference.

However, if an application needs all data points to be persisted, it must check that all data is persisted before disregarding it to
ensure full ACID compliance. An application can confirm that data was persisted using the DBMS_MEMOPTIMIZE package. It's
also possible to force the buffer's content to be flushed using the DBMS_MEMOPTIMIZE package.

To use Memoptimized Rowstore Fast Ingest, you must first enable one or more tables for fast ingest by adding the clause
MEMOPTIMIZE FOR WRITE to a CREATE TABLE or ALTER TABLE statement. Then, use the MEMOPTIMIZE_WRITE hint in all
subsequent insert statements.

ALTER TABLE Meter_Readings MEMOPTIMIZE FOR WRITE;

INSERT /*+ MEMOPTIMIZE_WRITE */ INTO Meter_Readings
SELECT * FROM ext_tab_mr_dec_25;

Figure 12: Example of using Memoptimized Rowstore Fast Ingest

You can monitor the usage of the fast ingest buffers by querying the view V$MEMOPTIMIZE_WRITE_AREA.

FLEXIBILITY
IoT is in its infancy; new use cases come with each new device. Being able to quickly adapt to changes in data formats and
efficiently analyze and manage large volumes of data is critical. This section of the paper will discuss the different aspects of
Oracle Database that enable handling large volumes of data while still providing a very flexible schema.

JSON Support
IoT data is often sent as JSON 1 to ensure maximum schema flexibility. JSON documents allow IoT systems to be effectively
schemaless, as each document can contain different attributes and values. Oracle Database 19c offers native support for
JSON, just as with XML in the past. Oracle is aware of the JSON data structures and persists JSON data in its native format
within the Database. However, unlike XML, there is no new data type for JSON documents in Oracle Database 19c. Instead,
JSON is stored as text in any table column using a VARCHAR2, CLOB, or BLOB data type. Using existing data types ensures
JSON data is automatically supported with all existing database functionality, including Oracle Text and Database In-
Memory. This allows the data to be ingested and processed in real time.

12 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

It's also extremely easy for existing database users or applications to access information within a JSON document using the
standard dot notation in SQL. The command below extracts the city for each meter reading from within the JSON column
stored in the Meter_Reading table.

SELECT m.json_column.address.city FROM Meter_Readings m;

Figure 13: Example of selecting the city from the address stored in a JSON document in the Meter_Readings table

Partitioning
Managing terabytes or even petabytes of data demands efficiency and scalability. Oracle Partitioning gives you both of
these abilities while being completely transparent to the application queries. Just as a grocery store is divided into different
departments (fruit and vegetables, meat, soft drinks, etc.), partitioning allows a table, index, or index-organized table to be
subdivided into smaller pieces. Each piece is called a partition and has its own name and storage characteristics. A
partitioned table has multiple pieces that can be managed collectively or individually from a database administrator's
perspective. However, from the application's perspective, a partitioned table is identical to a non-partitioned table.

Partitioning can significantly benefit an ingest-heavy workload by improving manageability, availability, and performance.

Partitioning for manageability
Consider the case where two year's worth of smart meter readings or 100 terabytes (TB) are stored in a table. A new set of
meter readings must be loaded into the table each hour, and the oldest hour's data must be removed. Suppose the meter
readings table is ranged partitioned by the hour. In that case, the new data can be loaded directly into the latest partition,
while the oldest hour of data can be removed in less than a second using the following command:

ALTER TABLE meter_readings DROP PARTITION MAR_25_2019_08;

Figure 14: Example of how partitioning helps easily manage large volumes of data by dropping older data.

Partitioning can also help you compress older data. For example, you can load the data into an uncompressed partition
while the rest of the table is stored in a compressed format; after some time, the current partition can also be compressed
using an ALTER TABLE MOVE PARTITION command.

Partitioning for performance
Partitioning also helps improve query performance by ensuring only the necessary data will be scanned to answer a query,
just as the aisles in a grocery store allow you to access only the goods you are interested in. Let's assume that business users
predominately access the meter reading data daily, e.g., the total amount of electricity used daily. Then, RANGE partitioning
this table by the hour will ensure that the data is accessed most efficiently. Only 24 out of the 17,520 total partitions (2 years)
need to be scanned to answer the business users' query. The ability to avoid scanning irrelevant partitions is known as
partition pruning.

Further partition pruning is possible if the METER_READINGS table is sub-partitioned. Sub-partitioning allows the data within
each partition to be subdivided into smaller pieces. Let's assume the METER_READINGS table was sub-partitioned by HASH
on meter_id, and 32 sub-partitions were specified. A query to see how much electricity a given household used on a given
day would access only 1/32 of the data from the 24 range partitions that made up that day. Oracle uses a linear hashing
algorithm to create sub-partitions. To ensure that the data gets evenly distributed among the hash partitions, it is highly
recommended that the number of hash partitions is a power of 2 (for example, 2, 4, 8, etc.). In a RAC environment, it should
also be a multiple of the number of RAC nodes.

13 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

Figure 15: Query to find how much electricity a household used in one day accesses only one sub-partition of each hourly partition

Partitioning for Affinity
As discussed, partitioning helps alleviate table-level lock contention by enabling multiple direct path load operations to
occur simultaneously in the same table. It also helps minimize cluster-wide communication by allowing different partitions
of a table to be affinitized to specific nodes in the cluster. Affinitizing partitions to specific nodes is critical to achieving linear
scalability during data ingest operations in a RAC environment. You can think of affinitizing data the same way you organize
your shopping list before going to the store. Listing all the items you need from each department together means you can
visit each aisle in the store just once rather than having to hop back and forth between the departments, looking for
everything on your list.

To affinitize partitions to specific RAC nodes, you will need to do two things:

» Create a unique database service for each (sub)partition that connects to just one node
» Sort the incoming data by the (sub)partitioning key so that each array insert contains data for only one (sub)partition

Creating Unique Database Services

In our example, the METER_READINGS table has 32 hash sub-partitions. Therefore, we must create 32 unique database
services, one for each sub-partition. These services will enable the application to connect to a specific node whenever it
needs to insert data into a particular sub-partition. The services should be evenly distributed across RAC nodes. Assuming
we had 8 RAC nodes, we would create four services per node.

srvctl add service -d IoT -s RAC_Node1_Partition1 –r RAC1 –a RAC4

srvctl add service -d IoT -s RAC_Node1_Partition2 –r RAC1 –a RAC5

:

srvctl add service -d IoT -s RAC_Node8_Partition32 –r RAC8 –a RAC1

Figure 16: Statement required to create a unique database service for each of the 32 sub-partitions on an 8-node cluster

If a node were to fail, each of the services initially attached to that node would failover to a different remaining node, thus
ensuring no remaining node would be overwhelmed with additional work.

Sorting the Incoming Data

To ensure each RAC node only inserts into a sub-set of partitions, we must create array inserts or external tables containing
data for only one given (sub)partition. To achieve this, the incoming data must be sorted based on the selected partitioning
strategy. In our example, the METER_READINGS table is RANGE partitioned by the hour and sub-partitioned by HASH on
meter_id. Therefore, the data must first be sorted on the time_id column, and then within each hour, the data must be
sorted by hash sub-partition. But how do you determine which meter_ids belong in which hash sub-partition? First, you
must convert the meter_id to an Oracle number and then use the HASH() function in the open-source file lookup.c1. An
example of the code necessary to determine which hash partition a meter_id belongs to is shown in Appendix C.

REAL-TIME ANALYSIS
The timely analysis of the data captured in an IoT scenario can seriously affect actual business outcomes. It has the potential
to:

» Optimize business processing and reduce operational costs
» Predict equipment failures
» Determine new product offerings or services
» Offer differentiated customer experiences
This section of the paper provides an overview of the different technologies offered by Oracle Database to improve real-
time Analytics.

1 LOOKUP.C IS AN OPEN SOURCE FILE BY BOB JENKINS AVAILABLE AT HTTP://WWW.BURTLEBURTLE.NET/BOB/C/LOOKUP.C, WHICH CONTAINS HASH FUNCTIONS

http://www.burtleburtle.net/bob/c/lookup.c

14 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

Parallel Execution
Analytics on an IoT workload often require queries to be executed across trillions of data records in real time. The key to
achieving real-time analytics is effectively utilizing all available hardware resources.

As mentioned earlier, parallel execution is a commonly used method of speeding up operations within the database. It
enables you to split a task into multiple sub-tasks executed concurrently. The Oracle database supports parallel execution
right out of the box. You can also use Automatic Degree of Parallelism (Auto DOP) to control how and when parallelism is
used for each SQL statement. Parallel execution is a crucial feature for large-scale IoT deployments and is always
recommended.

Indexing
The most traditional approach to improving database queries' performance is to create indexes on the tables involved in the
query, as they typically provide a faster access path to the data. You can think of indexes like signs that hang over every
grocery store aisle, telling you exactly where you can find the coffee or cereal. Oracle Database offers various index types,
including B-Tree, Reverse Key, Function-Based, Bitmap, Linguistic, and Text Indexes.

Partitioned tables can have either local or global indexes. A local index 'inherits' the partitioning strategy from the table.
Consequently, each local index partition is built for the corresponding partition of the underlying table. This coupling
enables optimized partition maintenance; for example, Oracle can drop the corresponding index partition when a table
partition is dropped. A global partitioned index is partitioned using a different partitioning key or partitioning strategy than
the table. Decoupling an index from its table partitioning means that any partition maintenance operation on the table
automatically causes index maintenance operations.

For IoT workloads that are predominately analytic in nature, Oracle recommends taking advantage of local indexes.

Overhead of Keeping Indexes Transactionally Consistent
When an index is present on a table, every row inserted into the table must have a corresponding entry inserted into the
index. This increases the CPU used per row for conventional inserts, the amount of redo generated per row, and the number
of blocks modified per row. Indexes can introduce contention if multiple processes are inserting into the same place on the
index. The presence of just one locally partitioned index increases the CPU usage to insert one row by 5x compared to when
there is no index. The volume of redo generated increases by 6x, as all changes to the index and the table need to be logged,
and the number of block changes is 20 times higher. This results in a 5X drop in the number of rows you can be inserted per
second. If you were to add two additional locally partitioned indexes, the ingest rate drops to 13x fewer rows per second than
when there are no indexes present.

Direct path load operations using external tables also need to maintain indexes but do so more efficiently, as the index
maintenance is not done on a row-by-row basis. Internally, the index maintenance is delayed until all data is loaded before
committing the transaction and making the loaded rows visible. However, there is still a significant impact on performance
when indexes are present.

Partially Useable Indexes
It is possible to minimize the impact of indexes on data ingestion by taking advantage of partially usable indexes. Partially
useable indexes enable the creation of local and global indexes on just a subset of the partitions in a table. By allowing the
index to be built only on the stable partitions in the table (older partitions with little or no data ingest), the index's presence
will have minimal impact on ingest performance.

Analytic queries that only access data within indexed partitions will use the indexes as a faster access method. Queries that
access data only in the non-indexed partitions will have to scan the entire partition. Still, since it is being heavily modified, it
will likely be in memory in the database buffer cache. Queries that access multiple partitions, some with indexes and some
without, can take advantage of the query transformation called Table Expansion2. Table Expansion allows the optimizer to
generate a plan that uses the index on the read-mostly partitions and a full scan on the actively changing partitions.

2 HTTPS://BLOGS.ORACLE.COM/OPTIMIZER/ENTRY/OPTIMIZER_TRANSFORMATIONS_TABLE_EXPANSION

https://blogs.oracle.com/OPTIMIZER/ENTRY/OPTIMIZER_TRANSFORMATIONS_TABLE_EXPANSION

15 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

Time-Series Analysis
Often, with an IoT workload, the business benefit comes from identifying a pattern or an anomaly rather than reviewing the
individual entries. Oracle offers a rich set of SQL-based analytical features to support real-time analysis of IoT data.
Windowing functions, for example, can be used to compute moving and cumulative versions of SUM, AVERAGE, COUNT,
MAX, MIN, and many more functions. They provide access to more than one row of a table without the need to use a self-
join. This makes it trivial to compare multiple values from the same device. In the example below, Oracle’s built-in LAG
function compares the current meter reading to the previous and calculates the difference. Note, each meter reading is
stored as an element (value) within a JSON document (stored in a column called json_column), hench the extended dot
notation in the column names.

SELECT m.json_column.meter_id, time_id, m.json_column.value,
 LAG(m.json_column.value,1,0) OVER(ORDER BY m.json_column.meter_id, time_id) AS prev_reading,
 m.json_column.value-LAG(m.json_column.value,1,0) OVER(ORDER BY m.json_column.meter_id, time_id)
AS diff
FROM meter_readings m;

Figure 17: Analytical SQL statement comparing current meter reading to previous and calculating the difference

You may also want to take advantage of the built-in time series Machine Learning capabilities3 of the Oracle Database. Time
series models estimate the target value for each step of a time window, including up to 30 steps beyond the historical data.
This type of predictive analysis allows businesses to prepare for potential spikes in demand, predict failures, determine when
would be a good time to do preventive maintenance etc.

Materialized Views
Pre-summarized and pre-aggregated data offer the potential to improve query performance significantly and overall system
scalability by reducing the amount of system resources required by each query. Ideally, summaries and aggregates should
be transparent to the application layer to allow them to be optimized and evolved without making any changes to the
application itself.

Materialized Views 4(MVs) within the database offer the ability to summarize or aggregate data and be completely
transparent to the application. A feature called "query rewrite" automatically rewrites SQL queries to access MVs where
appropriate, so that materialized views remain transparent to the application.

Oracle Database In-Memory
If a more ad-hoc approach to analyzing IoT data is required, consider taking advantage of Oracle Database In-Memory5
(Database In-Memory). With Database In-Memory, IoT data can be populated into memory in a new in-memory optimized
columnar format to improve ad-hoc analytic queries' performance.

Figure 18: Oracle's unique dual-format in-memory architecture

The database maintains complete transactional consistency between the traditional row format and the new columnar
format, just as it maintains consistency between tables and indexes. The Oracle Optimizer knows what data exists in the
columnar format. It automatically routes analytic queries to the column format and OLTP operations to the row format,
ensuring outstanding performance and complete data consistency for all workloads without any application changes. There

3 MORE INFORMATION ON TIME SERIES MACHINE LEARNING CAN BE FOUND IN THE ORACLE REFERENCE GUIDE
4 MORE INFORMATION ON MATERIALIZED VIEW CAN BE FOUND IN THE ORACLE DATA WAREHOUSING GUIDE
5 MORE INFORMATION ON IN-MEMORY CAN BE FOUND IN THE WHITEPAPER DATABASE IN-MEMORY WITH ORACLE DATABASE 12C RELEASE 2

https://docs.oracle.com/en/database/oracle/oracle-database/19/dmcon/time-series.html#GUID-0D6954B9-9D66-42E2-A62F-F3FFE84B827E
https://docs.oracle.com/database/122/DWHSG/basic-materialized-views.htm#DWHSG-GUID-A7AE8E5D-68A5-4519-81EB-252EAAF0ADFF
http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.html

16 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

remains a single copy of the data on storage (in row format), so there are no additional storage costs or impact on data
loading, as no additional redo or undo is generated.

Unlike other In-Memory columnar solutions, not all of the data in the database needs to be populated into memory in the
columnar format. Only the performance-critical tables or partitions should be populated into memory with Database In-
Memory. This allows businesses to deliver real-time analytics on the data of interest while storing historical data efficiently
on disk at a fraction of the cost. For queries that access data in the row and the columnar format, the database will use its
extensive optimizations across memory, flash, and disk to access and aggregate the data.

Overhead of Keeping IM Column Store Transactionally Consistent

The overhead of keeping the IM column store transactionally consistent varies depending on several factors, including the
data ingest method and the in-memory compression level chosen for a table. For example, tables with higher compression
levels will incur more overhead than those with lower.

CONCLUSION
With the surge in smart devices' popularity comes a considerable increase in the frequency and volume of data being
ingested into databases. Ingesting and analyzing rapidly increasing data volumes in a performant and timely manner is
critical for businesses to keep their competitive advantages.

Oracle Database is more than capable of ingesting 100s of millions of rows per second and scaling to petabytes of data. It is
the best choice for a mission-critical IoT workload, given its support for flexible schemas, ultra-fast In-Memory analytics and
industry-leading availability.

APPENDIX A - TEST RESULTS
To demonstrate the benefits of the recommendations outlined in this paper, we conducted tests on an Exadata X6-2 Full
Rack (8 compute nodes and 14 storage cells). The database software was Oracle Database 12c Release 2, configured using a
basic init.ora parameter file with no underscore parameters. The tablespaces used automatic segment space management
and local extent management.

The table used in the tests consisted of eight columns, seven numeric columns, and one date column. It was ranged
partitioned on one of the numeric columns (32 partitions), and inserts were affinitized by instance. That is to say, inserts on
each RAC node only went to a subset of partitions, and no other RAC node inserted into those partitions.

Data was inserted via a C program using the OCI (Oracle Call Interface) driver, either one row at a time or via array inserts
with an array size of 100 and 5000 rows. The commit frequency was also varied, as listed in the tables below.

As well as varying the insert methods, the tests were run with and without indexes on the table. Initially, one and then three
locally partitioned indexes were created. Since the indexes were local and the inserts were affinitized, these indexes had
minimal contention. We created one non-partitioned index on the table's date column to demonstrate an extremely high-
contention case. Each insert statement specifies the current time and date in the row, so all sessions tried to modify the
same part of the index. In contrast, we created another non-partitioned index that used the partitioning key as the leading
column to see the impact of a global index when the sessions would be inserting into a different place in the same index.

Conventional Insert Results

ID Description of Conventional Insert Test
Rows Inserted
Per Second on
one Full Rack

Rows Inserted
Per Second on
Each Node

1 Array Insert (100 rows), no Index, commit every 100 rows 100M rows/s 12.5M rows/s

2 Array Insert (5000 rows), no Index, commit every 5000 rows 200M rows/s 25M rows/s

3 Single-row insert, no index, commit every 100 rows 9M rows/s 1.125M rows/s

17 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

4 Single-row insert, no index, Commit every row 2.6M rows/s 325,000 rows/s

5 Array Insert (100), 1 local partitioned index commit every 100 20M rows/s 2.5M rows/s

6 Array Insert (100), 3 local partitioned Indexes, commit every
100

7.5M
rows/s

937,000 rows/s

7 Array Insert (100), one non-partitioned global Index on date
column which was a high-contention point, commit every 100
rows

2.5M

rows/s

312,500 rows/s

8 Array Insert (100 rows), one non-partitioned global Index with
partitioning key as the leading edge, commit every 100 rows

8.7M
rows/s

1.09M rows/s

Figure 19: Conventional Insert test results for a full Exadata X2-6 rack and each node

Figure 20: Graph of Insert test results for a full Exadata X2-6 rack

As you can see, by applying some simple application tuning, Oracle can achieve up to 100 million inserts per second using a
single rack. Add additional Exadata racks to scale-out this solution.

Memoptimized Rowstore For Streaming Data Results
The same schema was used for the streaming data tests but only a single node of the Exadata X6-2 was used. Data was
inserted via a C program using the OCI (Oracle Call Interface) driver just as before. The inserts done either one row at a time
or via array inserts with an array size of 100 rows. As well as varying the insert methods, the tests were run with and without
a local index on the table.

ID Description of Streaming Data Insert Test
Rows Inserted Per
Second per Node

18 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

1 Array Insert (100 rows), no Index 23.2M rows/s

2 Array Insert (100 rows), with 1 local partitioned Index 9.5M rows/s

3 Single-row insert, commit every 100, no index 1.8M rows/s

4 Single-row insert, commit every 100, with 1 local partitioned Index 1.7M rows/s

5 Single-row insert, commit every row, no index 446,000 rows/s

6 Single-row insert, commit every row, with 1 local partitioned Index 445,000 rows/s

Figure 21: Memoptimized Ingest test results for a single node of an Exadata X2-6 rack

APPENDIX B EXAMPLE OF AN ARRAY INSERT IN PYTHON

#!/usr/bin/python

#--

note: download and install cx_Oracle from https://pypi.python.org/pypi/cx_Oracle/5.2.1

make sure you download the right version

example adapted from http://www.juliandyke.com/Research/Development/UsingPythonWithOracle.php

#--

import cx_Oracle

import sys

def print_exception(msg, exception):

 error, = exception.args

 print '%s (%s: %s)' % (msg, error.code, error.message);

def main():

 username = 'scott'

 password = 'tiger'

 dbname = 'inst1'

 sqlstmt = 'insert into Meter_Reading(meterNo, readingDate, loc) values (:mno, :rdate, :loc)';

 try:

 conn = cx_Oracle.connect(username,password,dbname)

 except cx_Oracle.DatabaseError, exception:

 msg = 'Failed to connect to %s/%s@%s' % (username,password,dbname)

 print_exception(msg, exception)

 exit(1)

 # array insert

 cursor = conn.cursor()

 try:

 cursor.prepare(sqlstmt)

 except cx_Oracle.DatabaseError, exception:

https://pypi.python.org/pypi/cx_Oracle/5.2.1
http://www.juliandyke.com/Research/Development/UsingPythonWithOracle.php

19 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

 print_exception('Failed to prepare cursor', exception)

 else:

 data_array = []

 # populate array

 for i in range(1,100):

 data_array.append((i*10, 'FEBRUARY ' + str(i*10),

 'LOCATION ' + str(i*10)))

 try:

 cursor.executemany(sqlstmt, data_array)

 conn.commit()

 except cx_Oracle.DatabaseError, exception:

 print_exception('Failed to insert rows', exception)

 else:

 # no return value for executemany(), assume length of data array

 print 'Inserted %d rows' % len(data_array)

 # close connection

 finally:

 cursor.close()

 conn.close()

#--

standard template

#--

if __name__ == '__main__':

 main()

20 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

APPENDIX C – EXAMPLE OF DETERMINING WHICH HASH PARTITION DATA
BELONGS
Below is an example of the code that can be used to determine which hash sub-partition a meter_id belongs to. This sample code takes
advantage of the HASH() function provided in the open source file http://www.burtleburtle.net/bob/c/lookup.c. However, we have
changed the ub4 to an unsigned int rather than an unsigned long.

For a given meter_id the function will convert the id to an Oracle Number, apply the hash() function from lookup2.c, and keep applying
the mask until the value is less than then the number hash partitions. The function then returns the partition number that this meter_id
belongs to.

The function takes 4 inputs:

1. id (i.e. meter_id)

2. The number of (sub)partitions (i.e. 32)

3. mask

4. .errhp - OCI error handler (needed to use the OCINumberFromInt() call)

You can use the following command to compile this code:

make -f $ORACLE_HOME/rdbms/demo/demo_rdbms.mk build EXE=id2bucket OBJS="id2bucket.o lookup2.o"

Sample Code

/* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved. */

/*
 NAME
 id2bucket
 DESCRIPTION
 Contains a function to return the hash bucket for a given meter_id
 PUBLIC FUNCTION(S)
 id2bucket
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <oci.h>

/* number of partitions */
#define HASH_PARTITIONS 32

/* check for OCI error codes */
void checkerr(errhp, status)
OCIError * errhp;
sword status; {
 text errbuf[512];
 sb4 errcode = 0;

 switch (status) {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *) errhp, (ub4) 1, (text *) NULL, & errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;

http://www.burtleburtle.net/bob/c/lookup.c

21 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

/*
 * NAME: getmask
 * DESCRIPTION: return the mask based on the number of partitions
 * PARAMETERS:
 * int hash_partitions: number of hash partitions
 *
 * RETURNS:
 * mask – hash mask to use for the id2bucket() function
 */
ub4 get_mask(int hash_partitions) {
 /* find first mask greater than # of hash partitions */
 /* we will only process at most 32k partitions */
 int i;
 for (i = 1; i - 1 < hash_partitions; i = i << 1) {
 /* null */
 }
 /* mask is 0x..fff */
 return i - 1;
}

/*--
 * NAME: id2bucket
 * DESCRIPTION: for a given id, return the corresponding hash bucket
 * PARAMETERS:
 * int *id : meter id
 * ub4 hash_partitions: number of hash partitions
 * ub4 hash_mask : hash mask should be > # of hash partitions
 * OCIError *errhp : OCIError handler
 * RETURNS:
 * bucket - this is the group/hash partition in which this
 * record should go into (from 0 to HASH_PARTITIONS-1)
 *
 * This uses the hash() function from
 * http://burtleburtle.net/bob/c/lookup.c
 * NOTE: in lookup.c, ub4 should be changed to an unsigned int
 * (not unsigned long int to match oracle specs)
 *--
 */
sword id2bucket(int id, int hash_partitions, ub4 hash_mask, OCIError * errhp) {
 sword errcode = 0; /* error code for OCI functions */
 ub1 id_onum[sizeof(OCINumber)]; /* allocate for OCINumber */
 ub4 hashval = 0; /* hash value */
 ub4 mask = 0; /* hash mask */
 sword bucket = -1; /* bucket id */
 ub1 *bufP = id_onum; /* data buffer */
 ub4 bufLen; /* buffer length */

 /* initialize buffer */
 memset((void *) id_onum, 0, sizeof(OCINumber));

 /* convert id to oracle number */
 errcode = OCINumberFromInt(errhp,
 (const void *) &id,
 (uword) sizeof(int),
 (uword) OCI_NUMBER_UNSIGNED,
 (OCINumber *) &id_onum);

 /* check for errors in converting to oracle number,
 for any errors, return the error code */
 checkerr(errhp, errcode);
 if (errcode != OCI_SUCCESS) {

22 WHITE PAPER | Best Practices for Implementing High Volume IoT Workloads with Oracle Database | Version 1.01
 Copyright © 2023, Oracle and/or its affiliates.

 printf("error\n");
 return errcode;
 }
 bufLen = bufP[0]; /* buffer length is first byte */
 hashval = hash(bufP + 1, bufLen, 0); /* get hash value */
 mask = hash_mask; /* starting hash mask */

 /* find hash bucket, applying hash mask as required */
 bucket = hashval & mask;
 if (bucket >= hash_partitions)
 bucket = bucket & (mask >> 1);
 return bucket;
}

#ifdef UNIT_TEST
main() {
 OCIEnv *envhp = NULL;
 OCIError *errhp = NULL;
 sword errcode = 0;
 int i;
 /* get mask based on the number of partitions */
 ub4 mask = get_mask(HASH_PARTITIONS);
 /* allocate OCI handles
 note: caller of functions should set this up so we do not have
 to create it on each call to id2bucket()
 */
 errcode = OCIEnvCreate((OCIEnv * *) & envhp, (ub4) OCI_DEFAULT,
 (dvoid *) 0, (dvoid * (*)(dvoid * , size_t)) 0,
 (dvoid * (*)(dvoid * , dvoid * , size_t)) 0,
 (void(*)(dvoid * , dvoid *)) 0, (size_t) 0, (dvoid * *) 0);

 if (errcode != 0) {
 (void) printf("OCIEnvCreate failed with errcode = %d.\n", errcode);
 exit(1);
 }
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid * *) & errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid * *) 0);

 /* test for 10000 numbers */
 for (i = 0; i < 10000; i++) {
 printf("key %3d: %5d\n", i, id2bucket(i, HASH_PARTITIONS, mask, errhp));
 }

 /* check mask */
 for (i = 1; i < 65536;) {
 printf("partitions: %d, mask: 0x%x\n", i, get_mask(i));
 i = i << 1;
 }
}#

endif .

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com.
Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2023, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without
notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties
and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed
either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group. 0120

Best Practices for Implementing High Volume IoT Workloads with Oracle Database
November, 2023

https://www.oracle.com/
https://www.oracle.com/corporate/contact/

