

Upgrading from Oracle 9i to
Oracle Database 11g:
A Real World Customer Experience

An Oracle White Paper

October 2008

Upgrading from Oracle Database 9i to Oracle Database 11g Page 2

Upgrading to Oracle Database 11g

EXECUTIVE OVERVIEW ... 3

THE 3 PHASES OF PROJECT “MOVE ON TO 11G”...................................... 4

Setup of the reference system... 6

Upgrading to Oracle Database 11g... 7
Test run 1 – Workload on 11.1.0.6 - no parameter changes and no new features................11

Performance Optimization.. 12
Initialization parameter recommendations ..12

Test run 2 – Oracle Database 11g default parameters in the init.ora.......................................13
Test run 3 – Influence of creating system statistics...13
Transporting known execution plans ...14
Upgrading from Oracle 9i to Oracle Database 11g...14
Upgrading from Oracle Database 10g to Oracle Database 11g..15
Preserving a SQL Plan Management..17
Conclusion...17

Optimization and Load Simulation with Real Application Testing.................... 18
SQL Performance Analyzer – Easy detection of changed execution plans19

Test goal ...19
Test setup...19
Capturing SQL statements ...19
Preservation of the SQL Tuning Set ..21
Creating and parameterizing an SPA analysis task...22
Execution of the SPA trail with the Oracle 9i performance data ...22
Execution of the SPA trail with the Oracle Database 11g performance data........................23
Reporting / Comparison ..23
Results of the SQL Performance Analyzer ...23
Test run 4 – Optimization of the init.ora with SPA..25
Conclusion SQL Performance Analyzer..26

Database Replay ...27
Test goal ...27
Test setup...27
Preprocessing ..29
Workload Replay ..29
Reporting ...31
Conclusion...31

PL/SQL Native Compilation ..33
Test run 5 – PL/SQL Native Compilation...33
Conclusion...33

SQL Tuning Advisor and Automatic SQL Tuning..34
Test run 6 – SQL Tuning Advisor and Automatic SQL Tuning ...37
Conclusion...37

FINAL CONCLUSION..39

REFERENCES...40

Upgrading from Oracle Database 9i to Oracle Database 11g Page 3

EXECUTIVE OVERVIEW

An Oracle database upgrade is often considered as a risky task by database IT

people. Upgrade tests have to be run, all applications have to be verified and

validated in the new database environment and performance at the same level or

better has to be ensured and achieved.

Upgrading directly from Oracle 9i to Oracle Database 11g will not only guarantee

Premium Support until August 2012 – it will offer you many useful features to

make this upgrade the most predictable and risk free database upgrade ever,

ensuring excellent performance in the new Oracle Database 11g environment.

This technical Oracle White Paper will cover a whole Proof-of-Concept (PoC)

done with one of the largest retail companies of the world. The goals of this

“Move on to Oracle Database 11g” PoC were to test the easiest way to upgrade

400 databases directly from Oracle 9.2.0.8 to Oracle Database 11.1.0.6, and to

evaluate Oracle Database 11g’s performance features such as Oracle Tuning Pack,

SQL Plan Management, Real Application Testing with Database Replay, SQL

Performance Analyzer, and PL/SQL Native Compilation. Thereby it should be

assured that nightly OLTP batch runs complete in the same amount of time, or

faster, than in the current production environment.

The overall results were truly amazing. Besides achieving faster performance with

Oracle Database 11g compared to Oracle 9i, there were no application changes

necessary – and the whole upgrade project required far fewer working hours and

resources compared to previous database upgrades. After evaluating all PoC results

the customer started upgrading all 400 Oracle 9i databases directly to Oracle

Database 11.1.0.7 and will complete the whole “Move on to 11g” project by spring

2009. This will also include the actual rollout and upgrade of more than 150 Oracle

Application Server instances to Application Server 10.1.2.0.3. Oracle Grid

Control’s Provisioning Pack will be used for the rollout of the database and the

application server software.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 4

THE 3 PHASES OF PROJECT “MOVE ON TO 11G”

Project “Move on to Oracle Database 11g” was conducted from May to

September 2008 at one of the world’s largest operating retail customers, running

approximately 400 Oracle databases on Oracle 9.2.0.8. Project targets had been

defined as:

1. Find the best solution for upgrading 400 Oracle 9i databases on 140

servers directly to Oracle Database 11g in a minimum amount of time and

with very low manual intervention needed. Average database size is

120GB.

2. Ensure that highly critical nightly batch jobs finish in the same amount of

time that they do in Oracle 9i. These nightly jobs are accumulated OLTP

runs and process the complete merchandise planning for several thousand

retail stores. The reference run completes in 1:45h. These jobs are

extremely CPU intensive – they use a new 16 CPU server to full capacity

during the whole run. In addition, approximately 25GB of redo log

information is generated for each database every night.

3. Determine whether any application changes will be required for the move

to Oracle Database 11g. In the past this has caused a lot of effort, such as

during the migration from Oracle 8i to Oracle 9i Unicode.

4. Evaluate the new Oracle Database 11g performance features including

SQL Tuning and Access Advisor, SQL Plan Management, SQL

Performance Analyzer, Database Replay, and PL/SQL Native

Compilation, and their ability both to improve performance and to reduce

the manual effort required by the upgrade to Oracle Database 11g.

The project had been divided into 3 phases:

1. Setup of the reference system and creation of a repeatable production

workload

2. Upgrade to Oracle Database 11g and comparison of performance figures

without any optimizations

3. Performance optimization leveraging the Oracle Database 11g features

a. Initialization parameter tuning

b. Detection of changing execution plans with SQL Performance

Analyzer

c. Load simulation with Real Application Testing: capture a

complete workload and replay it against an upgraded database

d. Preserving Oracle 9i-like execution plans with SQL Plan

Management

Upgrading from Oracle Database 9i to Oracle Database 11g Page 5

e. Improving overall PL/SQL performance with PL/SQL Native

Compilation

f. SQL query and workload optimization with SQL Tuning and

Access Advisors

g. Switch off any tuning enhancements in Oracle Database 11g and

compare the results to Oracle 9i

Upgrading from Oracle Database 9i to Oracle Database 11g Page 6

Setup of the reference system

One IBM P670 system with 16 CPUs and 32 GB of RAM has been provided for

test purposes. This system is identical to the production systems. The operating

system is AIX 5.3 TL8, and the storage subsystem is an EMC DMX2000.

In production each server runs 3 databases in parallel, each of them hosting 10

retail stores. The current production database release is Oracle Database 9.2.0.8.

One ORACLE_HOME containing 9.2.0.8 and another home containing Oracle

Database 11.1.0.6 were installed on the reference system. To leverage the new

Real Application Testing pack according to Metalink-Note: 560977.1, the following

patches were applied:

• Oracle Database 11.1.0.6:

Patch 6865809: SQL Performance Analyzer – 11g can extract 9i trace

information

• Oracle Database 9.2.0.8:

Patch 6973309: Capture will be available in 9.2.0.8

Three different 9.2.0.8 production databases were copied and restored to the

reference system using RMAN. A repeatable nightly batch run was also provided.

This batch run is an accumulated OLTP run of several hours and is representative

of a real world scenario.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 7

Upgrading to Oracle Database 11g

Upgrading directly to Oracle Database 11g is supported for Oracle 9.2.0.4 and all

later releases. It can be done either with the Database Upgrade Assistant (DBUA),

a graphical user interface tool, or manually using the upgrade scripts. Upgrade with

the DBUA is the Oracle-recommended method because it performs all necessary

checks and changes.

In this case the customer had choosen the manual upgrade method instead of the

DBUA. The DBUA would have been able to complete the whole upgrade process

unattended in silent mode except for running operating system checks as well as

controling the backup with RMAN and applying required database patches.

Therefore a complex shell script from previous upgrade projects had been

customized to accomodate the Oracle Database 11g requirements.

The manual upgrade on the command line with scripts can be divided into the

following steps:

• Sanity maintenance of the Oracle 9i installation

o Drop a possibly existing table SYS.PLAN_TABLE

o Apply patch 6973309 to get Database Capture functionality in

Oracle 9i. Please see Metalink-Note: 560977.1 for further details.

o Drop all entries in OBJ$ of type=10 – these are leftovers from
database links that have been created and dropped in the past:

delete from obj$ where (name,owner#) in (
 select o.name,u.user# from user$ u, obj$ o
 where u.user# (+)=o.owner# and o.type#=10
 and not exists
 (select p_obj#
 from dependency$
 where p_obj# = o.obj#)
);

o Prior to upgrading, apply the new time zone V4 files via a patch

– otherwise an upgrade to Oracle Database 11g cannot be

started. In 2007 the begin date and end date for the Daylight

Savings Time (DST) has been changed for 7 time zones. These

time zone definitions are important for the correct processing of

the TIMEZONE datatype within the Oracle server. Metalink-Note:

413671.1 points to the correct patch number for each release and

answers all questions concerning DST patches.

o Run the utlu111i.sql script which is delivered within the Oracle

Database 11g installation in the $ORACLE_HOME/rdbms/admin

directory. This script must be run in the environment of the

source database from SQL*Plus, while connected as user SYS AS

SYSDBA. This script will examine the database to be upgraded, and

Upgrading from Oracle Database 9i to Oracle Database 11g Page 8

will display recommendations about parameters requiring change or

removal.

o If an SPFILE is used than an editable init.ora should be created:

CREATE PFILE=’...’ FROM SPFILE=’...’;

All recommended changes should be applied to this init.ora file to

meet the Oracle Database 11g requirements. Existing underscore

parameters and database events should be removed from the

initialization file as well.

When upgrading an Oracle 9i database directly to Oracle Database

11g the initialization parameter COMPATIBLE has to be set to at least

10.0.0 . To enable all Oracle Database 11g new features and use

the new optimizer COMPATIBLE should be set to 11.1.0.

o For safety reasons it is strongly recommended to check

REGISTRY$DATABASE for TZ_VERSION=4. If the time zone

patches were not applied to the Oracle 9.2 database and the

attempt was made to upgrade directly to Oracle Database 11g,

then the database has to be opened in STARTUP UPGRADE mode

in the new environment with an increased COMPATIBLE setting

(COMPATIBLE has to be set to at least 10.0.0 or higher). At this

point an upgrade will fail because of the missing time zone

patches. But a downgrade is supported only to Oracle Database

10g – so it will not be possible to clean-up the Oracle 9.2

database and start the upgrade process again. In this case the

whole database will have to be restored from a backup.

o Analyze the complete data dictionary and all default user schemas

immediately prior to the upgrade. This will speed up the upgrade

significantly, and should be done for users SYS, SYSTEM, MDSYS,

DBSNMP, OUTLN, SI_INFORMTN_SCHEMA, ORDPLUGINS, ORDSYS,

LBACSYS, WKSYS, XDB, CTXSYS and WMSYS as long as they exist in

the database.:

EXEC DBMS_STATS.GATHER_SCHEMA_STATS('SYS',
options => 'GATHER',
estimate_percent=>DBMS_STATS.AUTO_SAMPLE_SIZE,
method_opt => 'FOR ALL COLUMNS SIZE AUTO',
cascade => TRUE);

o To minimize the downtime during the upgrade process one can

switch the database to NOARCHIVELOG mode. Once the upgrade

has been completed successfully the ARCHIVELOG mode has to

be switched on again.

o During the upgrade from Oracle 9i to Oracle Database 10g/11g

all synonyms will be recompiled during the upgrade process. For

each synonym this will take approximately 0.1 seconds. If a large

number of synonyms have been created in the database then the

Upgrading from Oracle Database 9i to Oracle Database 11g Page 9

time needed to recompile all synonyms must be added to the

upgrade time.

• A complete online backup of the source database must be taken prior to

starting the upgrade. Oracle Recovery Manager (RMAN) is the

recommended tool to backup the database. Please make sure that your

backup can be restored and recovered to the desired point in time before

you proceed. Testing and verifying the restore and recovery operation as a

fallback scenario is vital to the upgrade process.

• The Oracle Database 11g software should be installed while the above

mentioned sanity operations are being executed. Metalink’s Recommended

Patches section should be queried and Metalink-Note: 738538.1 should be

consolidated for possible alerts and important things to know. If there is a

patch set available for the target (upgraded) release, then this should be

applied prior to upgrading for two reasons: To decrease downtime by

requiring only one recompilation run, and to preserve the possibility of

downgrading to Oracle Database 10g.

• A new listener has to be created. This can be done with Oracle Network

Configuration Assistant (NETCA).

• When switching to the new Oracle Database 11g environment, verify that

LIBPATH and ORA_NLS10 have been set correctly to point to the new

$ORACLE_HOME.

• The database will now be started in STARTUP UPGRADE mode. This will disable

system triggers and replication dependency tracking, and will suppress unwanted

error messages such as ORA-904: table or view does not exist. This

will make it easier to screen the spool file for errors during the upgrade.

SQL> spool /tmp/upgrade.log

SQL> startup upgrade pfile=’<new-init.ora>’

• Once an Oracle 9i database has opened in STARTUP UPGRADE mode the new

SYSAUX tablespace has to be created. This is only necessary when upgrading

from Oracle 9i; in Oracle Database 10g the SYSAUX tablespace already exists:

CREATE TABLESPACE SYSAUX

 DATAFILE '/oradata/sysaux_01.dbf' size 2048M

 EXTENT MANAGEMENT LOCAL

 SEGMENT SPACE MANAGEMENT AUTO

 ONLINE;

• Run the upgrade script catupgrd.sql. This will upgrade all data dictionary

objects and all components installed in the database.

SQL> @?/rdbms/admin/catupgrd.sql

Once it has completed, the upgrade script will shutdown the database so that

Upgrading from Oracle Database 9i to Oracle Database 11g Page 10

a subsequent STARTUP will be necessary to proceed:

SQL> startup pfile=’<new-init.ora>’

• If an SPFILE has been used before then it should be created from the new

init.ora:

SQL> create spfile=’...’ from pfile=’<new-init.ora>’;

• When upgrading from Oracle Database 10g to Oracle Database 11g a script

must be executed to upgrade the Automatic Workload Repository (AWR) to

the new database release:

SQL> @?/rdbms/admin/catuppst.sql

This step is not necessary when upgrading from Oracle 9i because AWR was

first introduced in Oracle Database 10g.

• Recompilation is the last step of the upgrade process. It will be done in

parallel automatically, based on the number of CPUs available in the system:

SQL> @?/rdbms/admin/utlrp.sql

The default would be to recompile with one parallel thread fewer than the

number of CPU cores installed in the system. If there are other databases

and applications running on this server it may be useful to limit the number

of parallel threads even more:

SQL> @?/rdbms/admin/utlprp 7

This will start the parallel recompilation with 7 parallel threads.

• Finally, a run of the post-upgrade status script utlu111s.sql is required to

verify that all components have been upgraded successfully to Oracle

Database 11g:

SQL> @?/rdbms/admin/utlu111s.sql

Oracle Database 11.1 Post-Upgrade Status Tool 08-13-2008 10:07:44

Component Status Version HH:MM:SS
Oracle Server VALID 11.1.0.6.0 03:06:48
JServer JAVA Virtual Machine VALID 11.1.0.6.0 00:15:43
Oracle Workspace Manager VALID 11.1.0.6.0 00:01:38
Oracle XDK VALID 11.1.0.6.0 00:35:35
Oracle XML Database VALID 11.1.0.6.0 00:04:28
Oracle Database Java Packages VALID 11.1.0.6.0 00:00:33
Oracle Multimedia VALID 11.1.0.6.0 00:05:49
Spatial VALID 11.1.0.6.0 00:08:53
Gathering Statistics 00:08:18

Total Upgrade Time: 04:27:49

The database has now been successfully upgraded to Oracle Database 11g!

Upgrading from Oracle Database 9i to Oracle Database 11g Page 11

Test run 1 – Workload on 11.1.0.6 - no parameter changes and no new features

For test run 1 the database has just been upgraded from Oracle 9i to Oracle

Database 11g without any parameter changes except required init.ora parameter

changes such as diagnostic_dest. Even special underscore parameters used in

the Oracle 9i environment have been reused and not removed.

A reference run averaging 5 independent test runs on the same system against a

9.2.0.8 production database clone was used as the basis for comparison. Average

run time in Oracle 9i was 1:45:03.

Without any adjustments, using all Oracle 9i related initialization parameters

(including those that are obsolete or superseded), and without any new statistics or

tuning features, the workload completed in 2:42:31 directly after the upgrade to

Oracle Database 11g.

While the upgrade went very smoothly, some tuning is clearly needed to achieve

the performance goals set forth for this project.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 12

Performance Optimization

The performance optimization goal had been to achieve identical completion times

for the nightly OLTP batch runs. Therefore three different areas of possible

performance optimizations have been identified:

• Initialization parameter recommendations

• SQL Plan Management

• SQL Tuning Advisor and Automatic SQL Tuning

Initialization parameter recommendations

The following init.ora parameter recommendations were identified and

implemented during the tests:

• Remove all Oracle 9i specific parameters from the initialization parameter

file, such as:

• _ALWAYS_ANTI_JOIN='OFF'
• _ALWAYS_SEMI_JOIN ='OFF'
• _SHARED_POOL_RESERVED_MIN_ALLOC=4000
• _UNNEST_SUBQUERY=FALSE
• DISK_ASYNCH_IO=FALSE
• SORT_AREA_SIZE=4194304

• Change a few parameters to values required by Oracle Database 11g:

• LOG_ARCHIVE_FORMAT='_%r_%t_%s.arc'
The ‘%r’ option is required since Oracle Database 10g specifies the resetlogs-ID within
the naming format for the archive logs.

• TIMED_STATISTICS=TRUE
Always set this parameter to true to get useful and correct performance information.

• Set new parameters:

• CURSOR_SPACE_FOR_TIME=TRUE
• DIAGNOSTIC_DEST='/m161/oracle/admin'

Specifies the new Automatic Diagnostic Repository location for all traces and dumps.
This replaces parameters such as background_dump_dest and user_dump_dest.

• OPTIMITER_INDEX_COST_ADJUST=75
This parameter was modified to favor full table scans over index scans – the workload
in this case is more CPU bound – IO is not an issue.

• OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=FALSE
• OPTIMIZER_USE_SQL_PLAN_BASELINES=FALSE
• PGA_AGGREGATE_TARGET=1000M
• RECYCLEBIN=OFF

The recycle bin has been switched off because it won’t get used in the current
production environment.

• SESSION_CACHED_CURSORS=500
• SHARED_POOL_SIZE=1250M
• _DISABLE_FLASHBACK_ARCHIVER=1

The background process FBDA has been switched off because Total Recall is a feature
which is not used in the production environment.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 13

Test run 2 – Oracle Database 11g default parameters in the init.ora

For the second test run all unnecessary initialization parameters were removed

from the init.ora file, and other parameters were set to the defaults recommended

for Oracle Database 11g.

The performance improvement from taking these basic steps was substantial,

demonstrating why it is always recommended to remove previous release specific

database parameters after upgrading. However, more work was needed to achieve

the performance goals for the project.

The next step was to create and use updated system statistics.

Test run 3 – Influence of creating system statistics

Creating system statistics within a workload period gives the database knowledge

about the IO performance of the system. These system statistics can also be

exported, preserved, and imported into a test system.

System statistics should be created based upon a workload period for at least a few

hours.

exec DBMS_STATS.GATHER_SYSTEM_STATS(‘start’);

and later:

exec DBMS_STATS.GATHER_SYSTEM_STATS(‘stop’);

The results can be monitored by querying SYS.AUX_STATS$.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 14

SQL Plan Management

SQL Plan Management (SPM) is a new feature in Oracle Database 11g. It

introduces the infrastructure and services needed to support plan maintenance, and

to performance verification of new SQL execution plans. To accomplish this, the

optimizer maintains a history of plans for individual SQL statements that are

executed more than once. Only well-known and proven SQL execution plans will

be kept in the SQL Plan Baseline. Manual feeding of plans for a set of SQL

statements is also supported.

• DBMS_SPM.LOAD_PLANS_FROM_SQLSET('mySQLTuningSet1')

• DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE(<sql-id>)

The SQL Plan Baseline and the SQL Plan History are part of the SQL

Management Base residing in the SYSAUX tablespace. Its size and its historic

extension can be controlled:
• DBMS_SPM.CONFIGURE('SPACE_BUDGET_PERCENT',20);

• DBMS_SPM.CONFIGURE('PLAN_RETENTION_WEEKS',15);

Two initialization parameters control the SQL Plan Baseline:

• optimizer_use_sql_plan_baselines = true | false

• optimizer_capture_sql_plan_baselines = true | false

As long as optimizer_use_sql_plan_baselines is set to its default value of

true, only verified or manually loaded plans stored in the SQL Plan Baseline will

be used for recurring statements.

Transporting known execution plans

The ability to load SQL execution plans directly into the SQL Plan Baseline is

ideally suited to the database upgrade scenario. This ensures that all well proven

execution plans can be transported to an upgraded database, thereby reducing the

risk of plan regressions to nearly zero.

Upgrading from Oracle 9i to Oracle Database 11g

In Oracle 9i, all statements including their execution plans can be collected and

stored into a SQL Tuning Set (STS). However, the SQL Tuning Set cannot be

loaded directly into the SQL Plan Baseline in the upgraded database. Therefore

another strategy is needed to help reduce the risk of plan regressions. It requires

that the upgraded database run for a certain amount of time with a re-

parameterized optimizer setting and with the ability to accept execution plans of

recurring SQL statements into the SQL Plan Baseline:

• optimizer_capture_sql_plan_baselines = true

• optimzer_features_enable=’9.2.0’

Upgrading from Oracle Database 9i to Oracle Database 11g Page 15

Now the application should be run against the database. It is not important to

produce a high load but to ensure that all important statements will be issued more

than once.

Figure 1: Using SQL Plan Management for a Oracle 9i upgrade

During the second phase the optimizer will now be parameterized to its release-

matching level but optimizer_capture_sql_plan_baselines will be switched

off. New execution plans now considered as equal or better than the stored plans

from the SQL Plan Baseline will be recorded to the Plan History – but the

optimizer will use the verified plans from the SQL Plan Baseline. At this point the

DBA will verify the recorded plans from the Plan History and decide whether to

move them into the SQL Plan Baseline or let them purge automatically.

• optimizer_capture_sql_plan_baselines = false

• optimzer_features_enable=’11.1.0.6’

Upgrading from Oracle Database 10g to Oracle Database 11g

Moving from Oracle Database 10g to Oracle Database 11g is even less risky

because all execution plans can be transported within a SQL Tuning Set and

loaded directly into the SQL Plan Baseline on the upgraded database. Please note

that the use of SQL Tuning Sets requires either a license for the Tuning Pack or

the Real Application Testing Pack.

All plans have to be captured on the source database into a STS. This can be done

by capturing the cursor cache or selecting statements from the AWR.

BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET('STS102WKLD');
 DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(
 sqlset_name => 'STS102WKLD',
 time_limit => 120,
 repeat_interval => 5);
END;
/

Upgrading from Oracle Database 9i to Oracle Database 11g Page 16

In the above example the cursor cache will be polled 5 times within a time period

of 120 seconds. Subsequently the SQL Tuning Set STS102WKLD containing all

SQL statements including their execution plans has to be packaged into a staging

table:

BEGIN
 DBMS_SQLTUNE.CREATE_STGTAB_SQLSET(
 table_name => 'STGTAB102');
 DBMS_SQLTUNE.PACK_STGTAB_SQLSET(
 sqlset_name => 'STS102WKLD',
 staging_table_name => 'STGTAB102');
END;
/

and moved via Data Pump export/import or a database link to the target Oracle

Database 11g system.

Figure 2: Transporting execution plans from 10g to 11g into the SQL Plan Baseline

There it will be unpacked and the containing execution plans will be written into

the SQL Plan Baseline.

DECLARE
 my_plans pls_integer;
BEGIN
 DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET(
 sqlset_name => 'STS102WKLD',
 sqlset_owner => '%',
 replace => TRUE,
 staging_table_name => 'STGTAB102');
 my_plans := DBMS_SPM.LOAD_PLANS_FROM_SQLSET(
 sqlset_name => 'STS102WKLD',
 sqlset_owner => 'SYS',
 basic_filter => 'sql_text like ''%''',
 fixed => 'YES',
 enabled => 'YES',
 commit_rows => 1);
END;
/

Upgrading from Oracle Database 9i to Oracle Database 11g Page 17

Preserving a SQL Plan Management

It can be useful to preserve SQL Plan Baselines, to load them into a test system or

into a restored database for another Database Replay run, to verify performance in

Oracle Database 11g with Oracle 9i-like execution plans. Therefore all plans from

the baselines will be loaded into a staging table and this table will be exported:

DECLARE
 spm number;
BEGIN
 DBMS_SPM.CREATE_STGTAB_BASELINE(
 table_name=>'SPM_SAVED',
 table_owner=>'SYSTEM');
 spm := DBMS_SPM.PACK_STGTAB_BASELINE(
 table_name=>'SPM_SAVED',
 table_owner=>'SYSTEM');
END;
/

$ exp system/manager file=bls.dmp tables=SPM_SAVED

Once the system has been reset the stored baselines will be imported and

unpacked again using the DBMS_SPM.UNPACK_STGTAB_BASELINE procedure.

Now a captured workload can be replayed with the optimizer set to 11.10.6:

$ imp system/manager file=bls.dmp full=y

DECLARE
 spm number;
BEGIN
 spm := DBMS_SPM.UNPACK_STGTAB_BASELINE(
 table_name=>'SPM_SAVED',
 table_owner=>'SYSTEM');
END;
/

Conclusion

SQL Plan Management is a great new feature to ensure plan stability upon a

database upgrade. Especially when moving from Oracle Database 10g to Oracle

Database 11g, it will reduce the risk of plan regressions to zero.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 18

Optimization and Load Simulation with Real Application Testing

Oracle Real Application Testing (RAT) pack consists of two components:

• SQL Performance Analyzer (SPA)

SPA can be used to predict SQL performance deviations before end-users can

be impacted. It executes each SQL statement stored in a SQL Tunings Set

using the production context, and compares ‘before’ and ‘after’ execution

plans and run-time statistics. SPA’s goal is to identify the set of SQL

statements with improved and/or regressed performance.

• Database Replay

With Database Replay a real workload can be captured on a production system

and replayed on a test system with production characteristics including

concurrency, synchronization and dependencies. It helps to assess the impact

of change on workload throughput. The goal of Database Replay is

comprehensive testing of all sub-systems of the database server using a real

production workload.

Licensing of Real Application Testing includes SQL Tuning Sets (STS) as well.

The next two sections will show the usage and benefit of SQL Performance

Analyzer and Database Replay for a database upgrade project.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 19

SQL Performance Analyzer – Easy detection of changed execution plans

One of the biggest challenges in upgrade projects is to find out how known SQL

statements will perform after a release change. SPA is the right tool to find out

which SQL statements will improve or regress and which execution

plans will change in the new release - before the upgrade. Therefore all SQL

statements have to be captured in the current database system.

Test goal

The initial goal when using the SQL Performance Analyzer is to find out which

execution plans will change in the new release and establish an easy performance

comparison mechanism.

Test setup

A complete nightly batch run will be the basis for the test evaluation. This run

defines the test baseline when run against a clone of the Oracle 9.2.0.8 production

database. All necessary information will be gathered through SQL trace event

10046. The trace information will be transported and preprocessed according to an

object mapping table. Once preprocessed, this information can be reused as often

as required. Setup and parameters can be changed, SQL Profiles can be created,

the SQL Plan Management can be used – and all changes can be verified

immediately.

Capturing SQL statements

First, it is important to switch on statistics timing either by setting it in the

initialization parameter file or by issuing:

 ALTER SYSTEM SET TIMED_STATISTICS=TRUE;

Capturing SQL in Oracle Database 9.2.0.8 will be done with SQL tracing – either

by DBMS_SUPPORT (see Metalink Note:62294.1) or by using event 10046 to also

gather all bind variables:

ALTER SYSTEM SET EVENTS ‘10046 TRACE NAME CONTEXT

FOREVER, LEVEL 4’;

Now all SQL for all newly connected sessions will be captured in trace files.

Tracing can later be switched off with:

ALTER SYSTEM SET EVENTS ‘10046 TRACE NAME CONTEXT OFF’;

NOTE: It is strongly recommented that you empty the directory specified by

USER_DUMP_DEST before starting SQL tracing. It is likely that a huge amount of

trace information will be gathered as part of this process. In this case

approximately 60-80 GB of trace files were written to disk. Results will vary

depending on the database and workload.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 20

In addition to the SQL traces, a mapping table must be created and transported via

export/import to the evaluation database:

CREATE TABLE MAPPING_TABLE AS
 SELECT OBJECT_ID ID, OWNER,
 SUBSTR(OBJECT_NAME, 1, 30) NAME
 FROM DBA_OBJECTS
 WHERE OBJECT_TYPE NOT IN

 ('CONSUMER GROUP', 'EVALUATION

 CONTEXT', 'FUNCTION', 'INDEXTYPE',

 'JAVA CLASS', 'JAVA DATA', 'JAVA

 RESOURCE', 'LIBRARY', 'LOB',

 'OPERATOR', 'PACKAGE', 'PACKAGE

 BODY', 'PROCEDURE', 'QUEUE',

 'RESOURCE PLAN', 'SYNONYM',

 'TRIGGER', 'TYPE', 'TYPE BODY')

 UNION ALL

 SELECT USER_ID ID, USERNAME OWNER, NULL NAME

 FROM DBA_USERS;

Loading statements into a SQL Tuning Set

Once imported into the 11g database, the mapping table is used to make the 9i

trace information fit into an 11g STS.

DECLARE
 syscur DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET('SPA_STS');
 OPEN syscur FOR
 SELECT VALUE(p) FROM
 TABLE(DBMS_SQLTUNE.SELECT_SQL_TRACE(
 directory => 'SPA_DIR',
 file_name => '%ora%',
 mapping_table_name => 'MAPPING_TABLE',
 select_mode=>dbms_sqltune.single_execution)) p;
 DBMS_SQLTUNE.LOAD_SQLSET(
 sqlset_name => 'SPA_STS',
 populate_cursor => syscur,
 commit_rows => 5);
 CLOSE syscur;
END;
/

If many trace files were generated then it will make sense to split them up equally

into separate sub-directories and load them in parallel. As a general rule, an ideal

number of directories across which to distribute the traces would be one fewer

than CPUs in the server. In this case, parallel loading reduced the time to load all

2760 individual statements into the STS from 9.5 hours down to 1.5 hours. If this

strategy has been used to populate STSs in parallel then a merge operation is

required at the end of the load:

DECLARE
 cur DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET('SPA_MAIN_STS');

Upgrading from Oracle Database 9i to Oracle Database 11g Page 21

 OPEN cur FOR
 SELECT VALUE(p)
 FROM TABLE(
 DBMS_SQLTUNE.SELECT_SQLSET('SQLSET1')) p;
 DBMS_SQLTUNE.LOAD_SQLSET(
 sqlset_name => 'SPA_MAIN_STS',
 populate_cursor => cur,
 load_option => 'MERGE',
 update_option => 'ACCUMULATE');
END;
/

This action has to be done for SQLSET1 ... SQLSETn.

The following query can be used to monitor how many unique SQL statements

have already been loaded into the STS:

SELECT STATAMENT_COUNT
 FROM DBA_SQLSET
 WHERE NAME=’SPA_STS’;

In addition, the view DBA_SQLSET_STATEMENTS can be queried to monitor details
on specific SQLs loaded into an STS.

Preservation of the SQL Tuning Set

Populating the SQL Tuning Set has to be just done once. Hence this STS should

be saved in an exportable staging table. If the test system can be setup to a certain

point in time then this STS can be reused as often as required.

-- Create the staging table
-- Please note that the name of the mapping table
-- currently cannot exceed 19 characters

BEGIN
 DBMS_SQLTUNE.CREATE_STGTAB_SQLSET(
 table_name => 'SPA_STS_STGTAB');
END;
/

-- Load the SQL Set into the mapping table

BEGIN
 DBMS_SQLTUNE.PACK_STGTAB_SQLSET(
 sqlset_name => 'SPA_STS',
 staging_table_name => 'SPA_STS_STGTAB');
END;
/

The staging table SPA_STS_STGTAB can now be exported, stored in a save location
and re-imported at any time to the test system. Once it has been imported it can be
unpacked:

BEGIN
 DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET(
 sqlset_name => '%',
 replace => TRUE,
 staging_table_name => 'SPA_STS_STGTAB');
END;
/

Upgrading from Oracle Database 9i to Oracle Database 11g Page 22

Creating and parameterizing an SPA analysis task

To analyze the SQL statements stored in the STS with SPA, an analysis task has to

be created first:

DECLARE
 tname VARCHAR2(100);
BEGIN
 tname := DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 sqlset_name=>'SPA_STS',
 task_name=>'SPA_TASK_9i_11g',
 description=>'Move on from 9i to 11g');
END;
/

The analysis task should be parameterized to allow for control over the analysis:

BEGIN
 DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(
 task_name => 'SPA_TASK_9i_11g',
 parameter => 'workload_impact_threshold',
 value => 0);
 DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(
 task_name => 'SPA_TASK_9i_11g',
 parameter => 'sql_impact_threshold',
 value => 10);
end;
/

WORKLOAD_IMPACT_THRESHOLD defines the minimum threshold, as a percentage,

for a SQL to impact the workload before SPA will label it improved or regressed.

This parameter can be set to zero, since the 9i STS we are using for SPA does not

contain execution frequency information.

SQL_IMPACT_THRESHOLD sets the minimum threshold as a percentage for a SQL’s

per-execution performance to be impacted before SPA will label it improved or

regressed (in addition to the workload impact threshold). The default value for

this parameter is 1. In this case it has been set to 10 to avoid flooding the report

with tiny, irrelevant regressions. Setting these two values will cause SPA to justify

improvement or regression findings for any SQL whose individual performance

increases or decreases by at least ten percent, ignoring the rest of the workload.

Execution of the SPA trail with the Oracle 9i performance data

Processing the SQL information in the STS from the 9i database means just

copying statistics from the STS into the SPA task. It does not execute any SQL

statements and therefore it is a lightweight operation completing very quickly.

BEGIN
 DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name => 'SPA_TASK_9i_11g',
 execution_name => 'EXEC_SPA_TASK_9i',
 execution_type => 'CONVERT SQLSET',
 execution_desc => 'Convert 9i Workload');
END;
/

Upgrading from Oracle Database 9i to Oracle Database 11g Page 23

Execution of the SPA trail with the Oracle Database 11g performance data

Creating a SPA trail with the Oracle Database 11g performance data will now
execute each statement in the freshly prepared test database.

BEGIN
 DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name => 'SPA_TASK_9i_11g',
 execution_name => 'EXEC_SPA_TASK_11g',
 execution_type => 'TEST EXECUTE',
 execution_desc => 'Test 9i Workload in 11g');
END;
/

This step will be much more resource intensive because it actually executes every
statement. It can be monitored by running the following query:

select sofar, totalwork from v$advisor_progress
where task_id = <tid>;

Reporting / Comparison

Once the tasks have been executed the results can be compared on several metrics:
PARSE_TIME, ELAPSED_TIME, CPU_TIME, USER_IO_TIME, BUFFER_GETS,

DISK_READS, DIRECT_WRITES and OPTIMIZER_COST.

BEGIN
 DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name => 'SPA_TASK_9i_11g',
 execution_name => 'Compare 9i 11g CPU_TIME',
 execution_type => 'COMPARE PERFORMANCE',
 execution_params =>
 DBMS_ADVISOR.ARGLIST(
 'comparison_metric',
 'cpu_time',
 'execution_name1','EXEC_SPA_TASK',
 'execution_name2','TEST 9i 11g CPU'),
 execution_desc => 'Compare 9i to 11g CPU_TIME');
END;
/

Display a report on this comparison:

SELECT
 xmltype(DBMS_SQLPA.REPORT_ANALYSIS_TASK
 ('SPA_TASK_9i_11g', 'html', 'typical', 'summary',
 null, 350, 'Compare 9i to 11g CPU_TIME'))
 .getclobval(2,2)
FROM dual;

This can now be done for different metrics. The CPU_TIME and BUFFER_GETS
metrics are the most meaningful when testing with Oracle 9i data.

Results of the SQL Performance Analyzer

The SQL Performance Analyzer was used throughout the whole performance

evaluation phase of this project. Once the statements were loaded from the source

database they could be reiterated as often and as many times as required. This

Upgrading from Oracle Database 9i to Oracle Database 11g Page 24

made SPA an extremely helpful tool when tuning a database because it took just a

re-execute of the SPA task to verify the results.

An example shows the optimization of optimizer parameters with SPA. The best

settings had been found by just re-executing the SPA task again and again with

different initialization parameters set. Please be aware that this does require

knowledge about the application and its SQL statements.

In this case especially, the high-load regressed execution plans were checked in

detail in the SPA reports. The evaluation SQL Tuning Set consisted of 2397 unique

SQL statements. The optimization was targeted for CPU_TIME, because

BUFFER_GETS are relatively cheap for this specific workload.

The operation of recommended 10gR2 parameters such as

_optimizer_cost_based_transformation=off and

_new_initial_join_order=false were verified as well. But, the results

showed clearly that those are not necessary in Oracle Database 11g, and that

furthermore the use of these parameters will lead to worse execution results.

Reports on CPU_TIME Report on BUFFER_GETS

optimizer_features_enable=9.2.0

optimizer_features_enable=11.1.0.6

_optimizer_cost_based_transformation=off

Upgrading from Oracle Database 9i to Oracle Database 11g Page 25

_new_initial_join_order=false

optimizer_index_cost_adj=75

optimizer_mode=first_rows_10

Test run 4 – Optimization of the init.ora with SPA

SPA is the ideal tool to optimize the init.ora. The load has just to be done once

and the SPA task can be reiterated again and again.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 26

With SPA the following parameters had been found to optimize the workload

processing:

optimizer_index_cost_adj=75
optimizer_mode=first_rows_10

This lead to excellent execution timings, beating the Oracle 9i workload

completion for the first time during this proof of concept.

Conclusion SQL Performance Analyzer

The SQL Performance Analyzer is a great tool to detect plan regressions before

upgrading and evaluating different remedies. It does not require application of a

patch to the source systems, which means that no additional downtime on the

production system is needed to use SPA, and it does not change actual data. Once

all statements have been collected into a SQL Tuning Set and transported to the

target system it can be evaluated again and again - effortless.

A minor disadvantage of SPA currently does not take into account how often a

statement was executed originally. Therefore it does not allow benchmarking of a

single statement in comparison to the overall workload.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 27

Database Replay

Database Capture and Replay was introduced with Oracle Database 11g. This

option allows capture of a full workload running against a database and – after

preprocessing it – replay of that workload against an Oracle Database 11g database

on any platform. The capture can be run in an Oracle 9.2.0.8, Oracle Database

10.2.0.2, 10.2.0.3, 10.2.0.4 or Oracle Database 11.1 environment, but pre-10.2.0.4

databases require a patch to enable the capture functionality. Metalink-Note:

560977.1 points directly to the required patch numbers. In an Oracle Database

10.2.0.4 the script

@$ORACLE_HOME/rdbms/admin/wrrenbl.sql

has to be run to enable workload capture capabilities. This will automatically set

the PRE_11G_ENABLE_CAPTURE initialization parameter to TRUE.

Capture functionality can always been disabled by changing the initialization

parameter PRE_11G_ENABLE_CAPTURE to FALSE.

Test goal

The initial goal when using Database Replay is to find out how the new system will

perform with a complete nightly batch load. Therefore the whole workload will be

captured when run against the Oracle 9.2.0.8 database. Once the captured

workload has been preprocessed it can be used for evaluation in the Oracle

Database 11g environment as often as required. Due to the fact that the captured

workload will actually change data, it is important to restore the upgraded database

to a status that will allow it to process the complete workload again and again.

Test setup

A complete nightly batch run will be the basis for the test evaluation. This run

defines the test baseline when run against a clone of the Oracle 9.2.0.8 production

database. All necessary information will be captured in binary capture files. These

files have to be preprocessed once. They can be reused and they are platform

independent – so the workload information is useful not only for a database

evaluation, but also to evaluate OS features, a storage subsystem, or other changes

to the operating environment.

To replay the captured files, workload replay clients have to be started on the OS

level. The database has to be reset to a specific point in time for a successful

processing and completion of the recorded workload. Several options can be used

to achieve this:

• Backup the upgrade database with RMAN and restore it for each replay.

o Advantage:

Is well tested and does not add any overhead to the test.

o Disadvantage:

Takes longer to complete (approximately 1 hour).

Upgrading from Oracle Database 9i to Oracle Database 11g Page 28

• Enable Flashback Database – this requires the Archivelog mode to be

switched on – and create a guaranteed restore point. Then the workload can

be replayed and afterwards the database can be flashed back to the

guaranteed restore point.

o Advantage:

Easy to setup and extremely fast.

o Disadvantage:

Adds additional overhead to the test load because of the creation

of the flashback logs. Also requires additional disk space

(estimate: as much as archivelogs will get created).

• Snapshot Standby – a physical standby database will be converted

temporarily into a Snapshot Standby database. After the workload has been

replayed it will be converted back into a physical standby. Data Guard will

then synchronize all changes from the production database to the standby.

o Advantage:

Easy to setup and extremely fast.

o Disadvantage:

Requires a physical standby database usable for testing purposes.

For this project there was no physical standby database available

and the workload will only be completely replayable if the

database will be rolled back to the point in time of the capture

run.

Workload Capture

For a successful workload capture an empty capture directory must be defined and

the database should be started in RESTRICTED mode before the capture begins.

This will enable the capture process to catch all user calls. As soon as the capture

starts, the database will be switched automatically to UNRESTRICTED mode

allowing users to connect.

CREATE OR REPLACE DIRECTORY RAT_DIR as '/oracle/rat';

STARTUP RESTRICTED;

Filters can be added to the capture for either exclusion or inclusion of specific

users:

BEGIN
 DBMS_WORKLOAD_CAPTURE.ADD_FILTER(
 fname => 'FILTER_FOR_USER_SYS',
 fattribute => 'USER',
 fvalue => 'SYS');
END;
/

Upgrading from Oracle Database 9i to Oracle Database 11g Page 29

The workload capture can be started and monitored:

BEGIN
 DBMS_WORKLOAD_CAPTURE.START_CAPTURE(
 name => 'RAT_9208',
 dir => 'RAT_DIR');
END;
/
SELECT * FROM DBA_WORKLOAD_CAPTURES;

If it has not been limited to run for a specific duration then it can be stopped with:

EXECUTE DBMS_WORKLOAD_CAPTURE.FINISH_CAPTURE;

If the capture has done on an Oracle Database 10g or Oracle Database 11g release

database afterwards the AWR should be exported for later comparisons:

BEGIN
 DBMS_WORKLOAD_CAPTURE.EXPORT_AWR(
 capture_id => 5);
END;
/

Preprocessing

The captured workload then has to be preprocessed before it can be transported

and replayed on any operation system:

EXECUTE DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE(
 capture_dir => 'RAT_DIR');

Workload Replay

The workload replay can only be done in an Oracle Database 11g system. To start

a successful workload replay, the target database must be reset to the same point in

time when the capture was started. Otherwise it is possible that not all calls will

succeed. The exported AWR snapshot should be imported for later comparison:

DECLARE db_id number;
BEGIN
 db_id := DBMS_WORKLOAD_CAPTURE.IMPORT_AWR(
 capture_id => 5,
 staging_schema => 'TEST');
END;
/

The next step should be creating valid and current statistics and an AWR snapshot:

exec dbms_stats.gather_dictionary_stats;
exec dbms_stats.gather_fixed_objects_stats;
exec dbms_stats.gather_system_stats('start');
exec dbms_stats.gather_system_stats('stop');

New object statistics should be created:

exec dbms_auto_task_immediate.gather_optimizer_stats;

Upgrading from Oracle Database 9i to Oracle Database 11g Page 30

The job can be monitored with:

SELECT job_name,state
FROM dba_scheduler_jobs
WHERE program_name='GATHER_STATS_PROG';

Once current statistics have been created the replay can be initialized:

BEGIN
 DBMS_WORKLOAD_REPLAY.INITIALIZE_REPLAY(
 replay_name => 'TEST_REPLAY1',
 replay_dir => 'RAT_DIR');
END;
/

The Workload Replay Clients (WRC) have to be calibrated at the operating system

level. This will estimate the number of WRCs to start:

$ wrc mode=calibrate replaydir=/oracle/rat

Recommendation:
Consider using at least 1 clients divided among 1 CPU(s).

Workload Characteristics:
- max concurrency: 23 sessions
- total number of sessions: 343

Assumptions:
- 1 client process per 50 concurrent sessions
- 4 client process per CPU
- think time scale = 100
- connect time scale = 100
- synchronization = TRUE

The replay can be parameterized in several modes:

• SYNCHRONIZATION = TRUE | FALSE

The COMMIT order in the captured workload will be honored, meaning that

actions will be executed only after dependent COMMITs have completed.

• CONNECT_TIME_SCALE = 0 [%] – 100 [%]

Optional parameter for specifying the elapsed time from when the workload

capture has been started to when the session connects. This is interpreted as a

percentage value and used for increasing or decreasing the number of users.

• THINK_TIME_SCALE = 0 [%] – 100 [%]

Optional parameter for regulating the elapsed time between two user calls. Setting

it to 0 would lead to the fastest possible replay.

• THINK_TIME_AUTO_CORRECT = TRUE | FALSE

Optional parameter correcting THINK_TIME_SCALE between calls when

user calls take longer to complete during replay than during capture.

BEGIN
 DBMS_WORKLOAD_REPLAY.PREPARE_REPLAY(
 SYNCHRONIZATION => TRUE);

Upgrading from Oracle Database 9i to Oracle Database 11g Page 31

END;

/

The database is now waiting for the workload replay clients to connect against it.

Workload Replay clients have to be started at the command line prompt – the

previous calibrate will suggest a number of wrc-clients to start:

$ wrc userid=system password=mypwd

 replaydir=/oracle/rat

Then the actual workload replay should be started:

BEGIN
 DBMS_WORKLOAD_REPLAY.START_REPLAY;
END;
/

It can be monitored either in Enterprise Manager Database Control or with the

view DBA_WORKLOAD_REPLAYS:

SELECT id, name, status,
 start_time, end_time, num_clients
 FROM dba_workload_replays;

A workload replay can be canceled as follows:

BEGIN
 DBMS_WORKLOAD_REPLAY.CANCEL_REPLAY ();
END;
/

Reporting

A script will display the replay overall statistics:

set long 10000000
set lines 128
column output format a120
set trimspool on
spool report_replay_text.txt
set heading off
set pages 0
select dbms_workload_replay.report(&&1,'TEXT') output from
dual;
spool off

set heading off
set pages 0
set long 1000000000
spool /tmp/replay_&&1.html
select dbms_workload_replay.report(&&1,'HTML') from dual;
spool off

Conclusion

Database Replay is very helpful in verifying the application-level functional

completeness for an upgrade of either a patch or full release. It gives many useful

hints about how the target system will perform by re-executing the captured

workload. And it can be used to evaluate not only the database, but also the system

or storage performance compared to the current setup.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 32

In this case, Database Replay confirmed that no application changes were needed

as a result of the upgrade to Oracle Database 11g. Application changes had caused

a lot of effort in the past, such as during the migration from Oracle 8i to Oracle 9i.

The Database Replay results gave the customer great confidence in moving

forward to the new release.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 33

PL/SQL Native Compilation

Oracle PL/SQL is normally an interpreted language, but Native Compilation has

been available since Oracle 9i. Starting with Oracle Database 11g no external

compiler is necessary, which makes Native Compilation more efficient and easier

to use. Simply set the initialization parameters:

plsql_code_type=native
plsql_optimization_level=3

to the appropriate values and PL/SQL code can then be recompiled schema by

schema with the following procedure:

exec DBMS_UTILITY.COMPILE_SCHEMA(‘<username>’);

Test run 5 – PL/SQL Native Compilation

All schemas in the database containing PL/SQL procedures and packages were

recompiled. After doing this the workload completed nearly 2 minutes faster than

without Native Compilation.

Conclusion

Even though most PL/SQL code in this specific customer scenario just issues a lot

of SQL statements, the Native Compilation of PL/SQL code lead to a slightly

better overall completion timing of the workload. The improvement can be even

more dramatic if procedures, functions, and packages perform computations and

more intensive PL/SQL processing.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 34

SQL Tuning Advisor and Automatic SQL Tuning

Available starting with Oracle Database 10g, the database package Tuning Pack

interacts closely with the Diagnostic Pack and is capable of creating SQL Profiles

to make SQL statements perform faster without changing either the SQL or the

application code. Each unique SQL statement gets a hash value assigned to it upon

normalization, and a SQL Profile can be bound to the statement on this sql_id.

To create a SQL Profile the optimizer must be set into Comprehensive Mode. This

will allow it to calculate all possibilities in a specific amount of time to execute this

particular statement faster during regular database operation. Such SQL Profiles

consist of additional information and notes for the optimizer – they are not static

like Stored Outlines – and they are persistent. As of Oracle Database 10gR2 those

SQL Profiles can be transported from one database to another within a Staging

Table.

Beginning with Oracle Database 11g, the process of choosing high-load SQL

statements manually and scheduling the SQL Tuning Advisor to analyze these

statements can be automated by Automatic SQL Tuning. Every time (by default

every 60 minutes) that an AWR snapshot is gathered and stored in the Automatic

Workload Repository, the Automatic SQL Tuning process will start calculating

SQL Profiles for the high-load SQL statements marked in this AWR snapshot. It

can implement all SQL Profiles automatically so that they will apply immediately if

one of the profiled statements will be executed again.

Automatic SQL Tuning can be enabled and disabled with:

BEGIN
 DBMS_AUTO_TASK_ADMIN.ENABLE(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

BEGIN
 DBMS_AUTO_TASK_ADMIN.DISABLE(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

Automatic SQL Tuning can be parameterized to accept SQL Profiles automatically

without any manual intervention necessary:

BEGIN
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER(
 task_name => 'SYS_AUTO_SQL_TUNING_TASK',
 parameter => 'ACCEPT_SQL_PROFILES',
 value => 'TRUE');
END;
/

Upgrading from Oracle Database 9i to Oracle Database 11g Page 35

The tuning results will be shown using the following report:

variable my_rept CLOB;

BEGIN
 :my_rept :=DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK(
 begin_exec => NULL,
 end_exec => NULL,
 type => 'TEXT',
 level => 'TYPICAL',
 section => 'ALL',
 object_id => NULL,
 result_limit => NULL);
END;
/

print :my_rept

The report would look like this, in which the Automatic SQL Tuning Advisor has

found seven tuning candidates across two AWR snapshots:

GENERAL INFORMATION SECTION

Tuning Task Name : SYS_AUTO_SQL_TUNING_TASK
Tuning Task Owner : SYS
Workload Type : Automatic High-Load SQL W
Execution Count : 2
Current Execution : EXEC_20
Execution Type : TUNE SQL
Scope : COMPREHENSIVE
Global Time Limit(seconds) : 3600
Per-SQL Time Limit(seconds) : 1200

MY_REPT

Completion Status : COMPLETED
Started at : 08/27/2008 22:00:02
Completed at : 08/27/2008 22:05:19
Number of Candidate SQLs : 7
Cumulative Elapsed Time of SQL (s) : 1052

The report contains four findings: one SQL Profile with a benefit of 90%, one

index with a benefit of 98% and restructuring hints for two statements.

 Global SQL Tuning Result Statistics

MY_REPT

Number of SQLs Analyzed : 7
Number of SQLs in the Report : 4
Number of SQLs with Findings : 4
Number of SQLs with SQL profiles recommended : 1
Number of SQLs with Index Findings : 1
Number of SQLs with SQL Restructure Findings : 2

SQLs with Findings Ordered by Maximum (Profile/Index) Benefit, Object ID

objID SQL ID statistics profile(benefit) index(benefit) restructure
------ ------------- ---------- ---------------- -------------- -----------
 13 bgjxn875surdu 98.10%
 12 6p8uzacmr06kr 90.37%
 9 a9cq9s90q2k5w 1
 14 9b87y60nh1jcg 3

Tables with New Potential Indices (ordered by schema, number of times, tab)

 Schema Name Table Name Index Name Nb Time
----------------------- --------------------------- -------------- --------
 USER_ABC M123_AUSZEICH_DAT IDX$$_00010006 1

Upgrading from Oracle Database 9i to Oracle Database 11g Page 36

Following these global tuning results the report will reveal all tuning

recommendations in detail.

For later reuse, and to have the ability to re-import SQL Profiles upon a restore

operation of the database during the test cycles, the SQL Profiles will be written

into a staging table and exported. They will be imported and unpacked again after

the test system restore has finished. This procedure can also be used to transport

SQL Profiles from a test system to a production database.

At first the staging table will be created. Note that it cannot be located in the SYS

user schema:

begin
 DBMS_SQLTUNE.CREATE_STGTAB_SQLPROF (
 table_name=>'STAB_PROFILES',
 schema_name=>'SYSTEM');
end;
/

Then all SQL Profiles get written into the staging table:

BEGIN
 DBMS_SQLTUNE.PACK_STGTAB_SQLPROF (
 profile_name => '%',
 profile_category => 'DEFAULT',
 staging_table_name => 'STAB_PROFILES',
 staging_schema_owner => 'SYSTEM');
END;
/

Now the Staging Table containing all the SQL Profiles can be exported with Data

Pump Export and imported later when the test system has been restored again. It can

also be moved via an existing database link to another database. Once unpack the SQL

Profiles will applied to the target system:

BEGIN
 DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF (
 profile_name => '%',
 profile_category => 'DEFAULT',
 staging_table_name => 'STAB_PROFILES',
 staging_schema_owner => 'SYSTEM',
 replace => TRUE);
end;
/

Upgrading from Oracle Database 9i to Oracle Database 11g Page 37

Test run 6 – SQL Tuning Advisor and Automatic SQL Tuning

For test run 6 all five SQL Profiles gathered during past workloads runs were

loaded into the database.

The above graph shows clearly the SQL Profiles improved performance of the

application – without the need to rewrite any SQL statement or change application code. The

Oracle 9i reference workload timings were outperformed by more than 10 minutes,

or nearly 10%.

Conclusion

Statement tuning with the SQL Tuning Advisor is extremely efficient and very easy

to use. During workload processing the database was monitored in Enterprise

Manager Database Control, and high-load statements were selected manually and

delivered to the SQL Tuning Advisor for optimization.

Once verified, the recommended SQL Profiles were preserved and reloaded for

further test runs. SQL Profiles do not require the application code to be changed,

so they are the ideal method of tuning suboptimal SQL statements without

changing anything. The SQL Profiles created by the SQL Tuning Advisor led to an

average 80% better SQL performance for those statements identified as needing to

be tuned.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 38

Final Test run – Switch off all automation and statistics features

Although the results of the Oracle 9i workload completion timings had already

been improved in Oracle Database 11g, one final test run had to be done to have a

reliable basis for comparison: the Oracle 9i databases needed to be run without

timed_statistics or STATSPACK enabled. This is because with Oracle Database

11g the database has a lot of tuning mechanisms like AWR snapshots, advisor jobs

and Automatic SQL Tuning in Oracle Database 11g switched on by default. For

the final test run all those features had been disabled.

statistics_level=basic
_ash_enable=false
timed_statistics=false

SQL Profiles were deleted as well.

The results should not be misinterpreted. This test has been done only to compare

the initial results with the Oracle Database 11g timing on an identical basis. For

production purposes the full diagnostic and tuning functionality should and will be

switched on.

It is remarkable that enabling all diagnostic and tuning features and using SQL

Profiles had a much better effect on the overall performance, than running the

workload with all tuning mechanisms switched off. The workload timings from the

Final Test Run were not as good as the results from Test Run 6. This proves the

claim wrong that disabling all Oracle performance features will speed up the

database performance - and it impressively demonstrates the benefit a database

application can gain from those features.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 39

FINAL CONCLUSION

When this Proof-of-Concept was started, the main targets were to find the best

way to upgrade 400 Oracle databases from Oracle 9.2.0.8 to Oracle 11.1.0.7 and to

ensure that the original Oracle 9i completion timings could be achieved without

requiring any application changes. Even a 10% decrease in overall performance

would have been acceptable, but the PoC far exceeded that level of acceptability by

delivering a 10% performance increase.

The most remarkable fact for the customer was that no application changes at all

were necessary during this upgrade.

The upgrade itself was very easy and smooth – much smoother than was expected

by the customer. The automation features like Automatic Statistics Gathering and

Automatic SQL Tuning eased maintenance quite a bit during the regular operation

of the database. And, the tuning recommendations were detected by the database –

no manual intervention or additional tuning time was required.

Overall the results have been rated “excellent”. The actual move of the first 30 of

400 database will be done in January 2009 – all databases should have gone live by

end of May 2009.

Upgrading from Oracle Database 9i to Oracle Database 11g Page 40

REFERENCES

1. Why Upgrade to Oracle Database 11g?

http://www.oracle.com/technology/

2. Oracle Database 11g Upgrade Guide

http://www.oracle.com/pls/db111/to_pdf?pathname=server.111/b28300.pdf

3. Oracle Database 11g Upgrade Companion

https://metalink.oracle.com/metalink/plsql/ml2_documents.showDocument?p_database_id=NOT&p_id=601807.1

4. Complete checklist for manual upgrade to Oracle Database 11g:

https://metalink.oracle.com/metalink/plsql/ml2_documents.showDocument?p_database_id=NOT&p_id=429825.1

5. Testing the SQL Performance Impact of an Oracle 9i/10g Release 1 to Oracle

Database 10g Release 2 upgrade with SQL Performance Analyzer

http://www.oracle.com/technology/products/manageability/database/pdf/owp_spa_9i_10g.pdf

6. Database Upgrade webpage on OTN:

http://www.oracle.com/technology/products/database/oracle11g/upgrade/index.html

7. Upgrade Discussion Forum on OTN:

http://forums.oracle.com/forums/forum.jspa?forumID=583

8. Upgrading from Oracle Database 9i to 10g – What to Expect from the Optimizer?

http://www.oracle.com/technology/products/bi/db/10g/pdf/twp_bidw_optimizer_10gr2_0208.pdf

Upgrading from Oracle 9i to Oracle Database 11g:

A Real World Customer Experience

October 2008 – V1.1

Author: Mike Dietrich

Conributing Authors: Thomas Kempkens, Roy Swonger, Carol Tagliaferri, Carol Palmer

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2008, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of

Oracle Corporation and/or its affiliates. Other names may be trademarks

of their respective owners.

