

Oracle Multitenant: Isolation
In Oracle Database 12c Release 2 (12.2)
ORAC LE W H I T E P A P E R | M ARC H 2 0 1 7

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

Oracle Database 12c Release 2. Available now.

Oracle Database 12c Release 2 (12.2), the latest generation of the world’s most popular database, is

now available in the Oracle Cloud and for download from Oracle Technology Network (OTN).

ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

Table of Contents

Disclaimer 1

Oracle Database 12c Release 2. Now available on Oracle Cloud 1

Isolation 2

Managing System Access 4

Managing File Access 5

CREATE_FILE_DEST Clause 5

PATH_PREFIX Clause 5

About Lockdown Profiles 6

Creating a Lockdown Profile 6

Enabling a Lockdown Profile 7

Dropping a Lockdown Profile 8

Using Lockdown Profiles to Restrict Operations in PDBs 8

Disabling Features with Lockdown Profiles 9

Disabling Database Options with Lockdown Profiles 11

Disabling SQL Statements and Statement Clauses with Lockdown Profiles 11

Conclusion 13

1 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

Isolation

Economies of scale through consolidation are of limited use if that consolidation comes at the expense

of isolation. In Oracle Database 12c Release 2 (12.2), we introduce some very sophisticated

capabilities in this area that can ensure great isolation between PDBs and avoid what is colloquially

referred to as “the noisy neighbor problem”. Importantly, this is configurable so that the level of

isolation can be tailored appropriately for the use case.

In 12.2 we build on what was already a powerful suite of isolation capabilities to deliver a

comprehensive model, which can simply be configured to deliver precisely the appropriate level of

isolation for a particular use case.

These capabilities will be explored in more detail shortly, but it is important to understand why a “one

size fits all” approach to isolation is not appropriate for the Database Cloud, and why the true

requirement is configurable isolation. When considering this topic, it’s helpful to consider a familiar

real-world analogy: residential security. At first thought, one might think that the more security the

better, but in reality security is a trade-off with convenience. “Maximum Security” is a phrase

associated more with a prison than with a home. A home might be more secure with bars on the

windows, surrounded by a high wall topped with barbed wire, armed sentries and triple locks on a steel

door, but it probably wouldn’t be very nice to live there. On the other hand, leaving all the doors and

windows unlocked, while making it easy for the kids to come and go, is likely to result in loss of

property. One tries to find the appropriate balance, and that balance will be different in different

circumstances. In a dense city environment one is likely to take more precautions than in a suburb

where the neighbors are better known. In small towns people sometimes don’t bother to lock at all.

Everybody knows what everybody is doing. Security in business hotels is interesting to consider.

There’s typically 24-hour security, with cameras in all common areas, security guards and

sophisticated keys providing access to the guest rooms. Isn’t it interesting to think how alarming is the

prospect that a guest in another room might have access to yours, yet we typically learn to have very

little concern that the hotel staff have access to the room literally at countless times during the day

without our knowledge (except that perhaps the beds are made and the bathroom is cleaned) and in

general even when we’re in the room at night. Somehow in this situation it becomes perfectly

acceptable to delegate security to the hotel management.

Similar considerations apply to the Database Cloud in different use cases.

2 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

http:arebetterknown.In
http:there.On
http:ofisolation.In

In Database as a Service (DBaaS) on a Public Cloud, it’s reasonable to assume that “adjacent”

tenants may be competitors. This is a particularly challenging use case because each tenant wants

both powerful administrative capabilities within his own PDB, but also that this PDB is fully isolated

from all PDBAs in adjacent PDBs. A good residential analogy here is condominium ownership. One

wants full sovereignty over one’s own space. Everything on the inside of the front door is one’s

responsibility.

DBaaS on a Private Cloud is a very productive configuration for development teams. Each developer

needs to be isolated from the others to the extent that one developer’s test does not interfere with

another’s, but it’s typically a collaborative environment in which there is an expectation that everybody

will respect everybody else’s environments. A good analogy here is sharing a large house with friends.

Everybody has a key to the same front door and the individual bedroom doors are usually left

unlocked. There are some common areas and common equipment but there’s a reasonable

expectation of privacy in one’s own bedroom.

Software as a Service (SaaS) may be compared to staying in a hotel. For the price of your room you

delegate all maintenance and security to the hotel management and within reason expect them to

respect the sovereignty of the contents of your room even though they have access more or less at

any time. (Perhaps in this case we’d use the in-room safe to secure anything sensitive from the

housekeepers.) Everyone understands that there are other guests in the hotel and there is a well-

founded expectation that no guest from another room will have access to yours.

In general, when considering the topic of PDB isolation – one that is especially important in a highly

consolidated environment such as a Database Cloud – we need to consider all of the potential risks of

sharing. These fall into several categories:

» Contention for shared computing resources
» System access
» File system access
» Network access
» Common User or Common Object Access
» Administrative Features

System and file system access can be managed by certain PDB-level parameters while the rest can
be secured by lockdown profiles.

3 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

Managing System Access
The Oracle OS user is usually a highly privileged user, and using it for operating system interactions is not
recommended. Using the same OS user for operating system interactions from different PDBs might compromise
data belonging to a given PDB. In a multitenant environment, instead of using the oracle OS user, you can
designate a specific user account in a PDB for OS interactions by using PDB_OS_CREDENTIAL initialization
parameter. When the database accesses an external procedure with the extproc agent, PDB_OS_CREDENTIAL
determines the identity of the OS user employed when interacting with the operating system from a PDB. For better
security, you should set a unique operating system user for each PDB in a multitenant environment. Using an OS
user identified by PDB_OS_CREDENTIAL can ensure that OS interactions are performed as a less powerful user
and provides the ability to protect data belonging to one PDB from being accessed by users connected to another
PDB.

If you do not set a specific user to be the operating system user for the PDB, then by default the PDB uses the
oracle operating system user. For the root, you can use the oracle OS user when you interact with the operating
system.

You can use the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure to set an operating system user for a PDB
as follows:

1. Connect to CDB$ROOT as a user who has the EXECUTE privilege for the DBMS_CREDENTIAL PL/SQL
package and ALTER SYSTEM privilege.

For example:
sqlplus c##sec_admin
Enter password: password

2. Run the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure to create an Oracle credential for the
operating system user.

For example, to set the credential for a user named os_admin:
BEGIN

DBMS_CREDENTIAL.CREATE_CREDENTIAL (
credential_name => 'PDB1_OS_USER',
username => 'os_admin',
password => 'password');

END;
/

3. Connect to the PDB for which the operating system user will be used.
For example:

CONNECT c##sec_admin@hrpdb
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the current PDB, run
the show con_name command.

4. Set the PDB_OS_CREDENTIAL initialization parameter for the user whose credential was set in Step 2.
For example:
ALTER SYSTEM SET PDB_OS_CREDENTIAL = PDB1_OS_USER SCOPE = SPFILE;
The PDB_OS_CREDENTIAL parameter is a static parameter, so you must set it using the SCOPE =
SPFILE clause.

5. Restart the PDB.
ALTER PLUGGABLE DATABASE PDB1 CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE PDB1 OPEN;

4 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

Managing File Access
We have covered how tenants can interact with the OS while making sure other tenants’ data is not at risk. Another
important principle in tenant isolation is securing file access starting from the PDB creation, for example in DBaaS in
a public cloud environment. One of the main goals here is to provide unique paths for data files and directory objects
of each tenant at the PDB creation so that there are not any shared directories across PDBs and they cannot access
to each other’s files.

CREATE_FILE_DEST Clause

Starting with Oracle Database 12c Release 1 (12.1.0.2), the CREATE_FILE_DEST clause of the CREATE
PLUGGABLE DATABASE statement specifies the default Oracle Managed Files (OMF) file system directory or
Oracle ASM disk group for the PDB’s files. This clause enables OMF for the new PDB, independent of any OMF
default path specified in the root for the CDB. The PDB’s data files and temporary files are restricted to the specified
directory and its subdirectories. However, there are a couple of pre-checks that you need to follow to successfully
use this clause. If a file system directory is specified as the default location in this clause, then the directory must
exist. Also, the user who runs the CREATE PLUGGABLE DATABASE statement must have the appropriate privileges
to create files in the specified directory. Alternatively, you can specify the name of a directory object that exists in the
CDB root (CDB$ROOT). The directory object points to the file system directory used by CREATE_FILE_DEST. If the
default OMF location is set for the CDB in the root, the value of the CREATE_FILE_DEST overrides the root’s
setting. Additionally, specifying CREATE_FILE_DEST=NONE disables OMF for the PDB. If you omit this clause and
root uses OMF, the PDB inherits the default path for OMF from the root.

For example, to use /u01/app/oracle/pdb1/ as the default OMF directory, the syntax is

CREATE PLUGGABLE DATABASE PDB1 ADMIN USER ADMIN IDENTIFIED BY PASSWORD
CREATE_FILE_DEST = ’/u01/app/oracle/pdb1/’;

Another example can be using a directory object that already exists in CDB$ROOT. Assuming there is a directory
object called pdb_dir in the root that points to /u02/oracle/pdb/, to create a PDB and set its OMF directory to
/u02/oracle/pdb/, the syntax is

CREATE PLUGGABLE DATABASE PDB2 ADMIN USER ADMIN IDENTIFIED BY PASSWORD
CREATE_FILE_DEST = pdb_dir;

PATH_PREFIX Clause

The PATH_PREFIX clause of the CREATE PLUGGABLE DATABASE statement enables you to restrict all directory
object paths associated with the PDB to a specified directory or its subdirectories. The PATH_PREFIX clause does
not apply to data files, temporary files, or files created by OMF. It only applies to user-created directory objects.
Additionally, the Oracle XML repository for the PDB, files created with the CREATE_PFILE statement, and the
export directory for Oracle wallets are all restricted to the specified PATH_PREFIX directory of their corresponding
PDB. In this clause, you can either specify an absolute path that is used as a prefix for all file paths associated with
the PDB or the name of a directory object that exists in the root. (The directory object points to the absolute path to
be used for PATH_PREFIX). In order not to impose any restrictions for the file paths, you can specify NONE, which
has the same effect as omitting the entire clause. Similar to CREATE_FILE_DEST clause, PATH_PREFIX clause
has its own restrictions. For example, after a PDB is created, you cannot change the value of PATH_PREFIX. In
addition, the value of PATH_PREFIX is always added as a prefix to all local directory objects in the PDB. Therefore,
it’s important to update local directory objects accordingly so that the prefix doesn’t affect their functionality.

For instance, to use /u01/app/oracle/pdb2/ as a prefix for all file paths associated with the PDB2, the syntax is

5 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

CREATE PLUGGABLE DATABASE PDB2 ADMIN USER ADMIN IDENTIFIED BY PASSWORD
PATH_PREFIX=’/u01/app/oracle/pdb2/’;

Be sure to specify the path name carefully so that an issue does not occur when file names are appended to it. For
example, on UNIX systems, path name must end with a forward slash (/).

About Lockdown Profiles

In the Multitenant architecture, economies of scale are achieved by sharing the key infrastructure and memory
components. However, these are not the only resources that tenants share. Besides sharing the host environment,
PDBs also share the OS, network, and common objects. Considering how certain privileges might let database
users to perform cross-PDB operations, there is a possibility that PDBs can be exposed to some vulnerabilities.
Especially in any private or public cloud environment, tenant isolation is a key requirement for security. We have
recently explored how Multitenant can help you manage OS and file system interactions. The remaining areas such
as network access, common object access, and administrative feature access can be controlled by lockdown
profiles. Lockdown profile is new capability introduced with 12.2.

A lockdown profile is a mechanism to restrict certain operations or functionalities in a PDB. This new Multitenant
feature is managed by a CDB administrator and can be used to restrict user access in a particular PDB. A lockdown
profile can prevent PDB users from:

» Executing certain SQL statements, such as ALTER SYSTEM and ALTER SESSION,
» Running procedures that access the network (e.g. UTL_SMTP, UTL_HTTP),
» Accessing a common user’s objects,
» Interacting with the OS (In addition to the capabilities covered by PDB_OS_CREDENTIAL),
» Making unrestricted cross-PDB connections in a CDB,
» Taking AWR snapshots,
» Using JAVA partially or as a whole,
» Using certain database options such as Advanced Queueing and Partitioning.

Creating a Lockdown Profile
In order to create a lockdown profile, you must have the CREATE LOCKDOWN PROFILE system privilege and be
connected to a CDB root. Once you create the lockdown profile, you can add restrictions that you want to enforce to
the profile. A lockdown profile is capable of enforcing more than one restriction at the same time. For example, a
lockdown profile can disable both the network access and the use of ALTER SYSTEM statement at the same time in
a PDB.

The following example demonstrates how to create a lockdown profile called sec_profile that restricts all the
privileges associated with the SET clause of ALTER SYSTEM statement except for changing the value of
CURSOR_SHARING parameter. Additionally, this lockdown profile disables the use of XDB protocols (FTP, HTTP,
HTTPS) by the PDB.

1. Connect to the CDB root as a user who has the CREATE LOCKDOWN PROFILE system privilege.

CONNECT c##cdb_admin

Enter password: password

2. Create a lockdown profile called sec_profile.

CREATE LOCKDOWN PROFILE sec_profile;

6 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

3. Use ALTER LOCKDOWN PROFILE statement to add restrictions to the profile.

ALTER LOCKDOWN PROFILE sec_profile DISABLE STATEMENT = (‘ALTER SYSTEM’) CLAUSE

= (‘SET’) OPTION ALL EXCEPT = (‘CURSOR_SHARING’);

ALTER LOCKDOWN PROFILE sec_profile DISABLE FEATURE = (‘XDB_PROTOCOLS’);

This is one of the typical use cases of lockdown profiles in which you can limit the administrative functionality
enabled by the grant of a privilege. Grants alone are “all or nothing”. If you are granted a privilege, you can do
everything that comes along with that privilege. For instance, an autonomous PDB administrator who has the ALTER
SYSTEM privilege can use that privilege to its full potential while the whole purpose of the grant may have merely
been to administer certain parameters. The example above shows how you can restrict the scope of the ALTER
SYSTEM privilege and only allow specific operations thanks to a lockdown profile. Lockdown profiles are
complementary to grants and they give you the ability to take away the capabilities that otherwise come bundled
with a privilege.

Enabling a Lockdown Profile
Lockdown profiles prevent users from accessing certain features or performing the operations that are disabled by
the profile. However, creating a lockdown profile and adding some restrictions to it are not sufficient to enforce those
restrictions for a PDB. A lockdown profile must be assigned to a PDB in order for it to take effect. This operation can
be done by setting the value of PDB_LOCKDOWN initialization parameter to the profile name. After the parameter is
set for the first time or changed from one profile to another, the new lockdown profile takes effect immediately. A
lockdown profile can be assigned to individual PDBs, or to all PDBs in a CDB or an application container, as follows:

» If you set PDB_LOCKDOWN parameter while connected to a CDB root, then the lockdown profile applies to all
PDBs in the CDB. It doesn’t apply to the CDB root. For example, if we have a CDB named CDB1, the syntax is:

CONNECT sys/password@localhost/CDB1 AS SYSDBA

ALTER SYSTEM SET PDB_LOCKDOWN = sec_profile;

» If you set PDB_LOCKDOWN parameter while connected to an application root, then the lockdown profile applies to
the application root and all application PDBs in the application container. For example, if we have an application
root called APP_ROOT, the syntax is:

CONNECT sys/password@localhost/APP_ROOT AS SYSDBA
ALTER SYSTEM SET PDB_LOCKDOWN = sec_profile;

» If you set PDB_LOCKDOWN parameter while connected to a PDB, then the lockdown profile applies only to that
PDB and overrides the lockdown profile that is enforced by the CDB or the application container, if one exists. For
example, if we have a PDB called PDB3, the syntax is:

CONNECT sys/password@localhost/PDB3 AS SYSDBA
ALTER SYSTEM SET PDB_LOCKDOWN = sec_profile;

As the third bullet point states, a lockdown profile that is set in an individual PDB has the higher precedence and it
overrides any other lockdown profile that is set in a CDB or application root. This capability gives you flexibility to
increase or decrease the restrictions on individual PDBs on demand while still having the ease of managing many
as one through the CDB-level or application root-level lockdown profiles.

You can enable a lockdown profile for all PDBs in a CDB as follows:

1. Connect to the CDB root as user who has common ALTER SYSTEM or common SYSDBA privilege.
CONNECT c##cdb_admin

Enter password: password

7 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

2. Run the ALTER SYSTEM SET PDB_LOCKDOWN statement.
ALTER SYSTEM SET PDB_LOCKDOWN = sec_profile;

The details of the available lockdown profiles, such as profile name, rules, and rule types, are available in the
DBA_LOCKDOWN_PROFILES data dictionary view.

Dropping a Lockdown Profile
Similar to creating and enabling lockdown profiles, dropping a lockdown profile is a single-command operation as
well. Especially in a cloud environment where restrictions on PDBs might change dynamically, you should be able to
easily create, modify, or drop lockdown profiles. In order to drop a lockdown profile, you must be connected to CDB
root and must have the DROP LOCKDOWN PROFILE system privilege, either granted commonly or granted locally in
the CDB root. If the lockdown profile you want to drop is assigned to the PDB_LOCKDOWN initialization parameter (in
other words, if it is currently in use), then the effect of the lockdown profile will be disabled immediately when you
drop it. However, the value of the PDB_LOCKDOWN parameter will remain as the name of the dropped profile. You
can find the list of existing lockdown profiles by querying DBA_LOCKDOWN_PROFILES in CDB root.

You can drop a lockdown profile as follows:

1. Connect to the CDB root as user who has the DROP LOCKDOWN PROFILE system privilege.
CONNECT c##cdb_admin

Enter password: password

2. Run the DROP LOCKDOWN PROFILE statement.
DROP LOCKDOWN PROFILE sec_profile;

Using Lockdown Profiles to Restrict Operations in PDBs
Lockdown profiles can play a crucial role in both on-premises and cloud deployments of Oracle Multitenant 12.2.
Database consolidation is an area that requires operational isolation as well as proper resource allocation among
tenants. However, providing isolation and allocating resources for independent tenants are not always sufficient,
especially when you are dealing with vast number of tenants in private or public cloud environments. In addition to
providing initial isolation and resource allocation, maintaining these two throughout the life span of a CDB is another
key principle. In other words, you need to make sure your tenants are not violating any resource usage limitations or
they do not have more privileges than they are supposed to have. If you remember our SaaS analogy earlier, it’s not
so different than managing an enormous hotel with thousands of rooms. When a new guest arrives, they get their
room key that also has access to certain common areas. Each room is completely isolated from each other. In other
words, you don’t give your guests the keys to the other rooms. Moreover, if a guest is a VIP customer or has a
special membership, they might have access to VIP lounges or they might be eligible for free room service. In other
words, different guests might have access to different resources while these policies are strictly protected. This is
indeed very similar to administering a CDB in the cloud. In our hotel example, a guest’s access rights determined by
the hotel management are embedded into their room key. In a CDB, this is achieved by lockdown profiles that are
applied on tenant PDBs. For illustration, Oracle Exadata Express Cloud Service is a cloud platform that actively
benefits from lockdown profiles. Several resource manager parameters such as CPU_COUNT, SESSIONS, and
SGA_TARGET are set and restricted by lockdown profiles with varying values based on the service level in Exadata
Express Service.

Lockdown profiles can be used to restrict database features, options, SQL statements, and clauses of SQL
statements.

8 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

http:principle.In

Disabling Features with Lockdown Profiles

The FEATURE clause of ALTER LOCKDOWN PROFILE statement lets you disable or enable operations associated
with certain database features. You can specify one or more feature names in the FEATURE clause or just feature
bundle name to disable or enable user operations for all features in that bundle. For example,
COMMON_USER_LOCAL_SCHEMA_ACCESS and LOCAL_USER_COMMON_SCHEMA_ACCESS are two feature names
that belong to the feature bundle COMMON_SCHEMA_ACCESS. Table 1 presents all supported features with their
corresponding feature bundles and operation descriptions.

TABLE 1 - LOCKDOWN PROFILE FEATURES

Feature Bundle Feature Operations

AWR_ACCESS AWR_ACCESS The PDB taking automatic and manual
Automatic Workload Repository (AWR)
snapshots

COMMON_SCHEMA_ACCESS COMMON_USER_LOCAL_SCHEMA_A
CCESS

A common user invoking an invoker’s rights
code unit or accessing a BEQUEATH
CURRENT_USER view owned by any local
user in the PDB

COMMON_SCHEMA_ACCESS LOCAL_USER_COMMON_SCHEMA_A
CCESS

• A local user with an ANY system privilege
(for example, CREATE ANY TABLE)
creating or accessing objects in a
common user’s schema for which the
privilege applies. Note: Disabling the
LOCAL_USER_COMMON_SCHEMA_AC
CESS feature does not prevent a local
user with the SYSDBA privilege or
specific object privileges from creating or
accessing objects in a common user’s
schema.

• A local user with the BECOME USER
system privilege becoming a common
user

• A local user altering a common user by
issuing an ALTER USER statement

• A local user using a common user for
proxy connections

COMMON_SCHEMA_ACCESS SECURITY_POLICIES Creation of certain security policies by a local
user on a common object, including:

• Data Redaction

• Fine Grained Auditing (FGA)

• Real Application Security (RAS)

• Virtual Private Database (VPD)

CONNECTIONS COMMON_USER_CONNECT A common user connecting to the PDB directly.
If this feature is disabled, then in order to
connect to the PDB, a common user must first
connect to the CDB root and then switch to the
desired PDB using the ALTER SESSION SET
CONTAINER statement.

9 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

CONNECTIONS LOCAL_SYSOPER_RESTRICTED_MO
DE_CONNECT

A local user with the SYSOPER privilege
connecting to a PDB that is open in
RESTRICTED mode

CTX_LOGGING CTX_LOGGING Logging in Oracle Text PL/SQL procedures
such as CTX_OUTPUT.START_LOG and
CTX_OUTPUT.START_QUERY_LOG

JAVA JAVA Java as a whole. If this feature is disabled, then
all options and features of the database that
depend on Java will be disabled.

JAVA_RUNTIME JAVA_RUNTIME Operations through Java that require
java.lang.RuntimePermission

NETWORK_ACCESS AQ_PROTOCOLS Using HTTP, SMTP, and OCI notification
features through Oracle Streams Advanced
Queuing (AQ)

NETWORK_ACCESS CTX_PROTOCOLS Operations that access the Oracle Text
datastore types FILE_DATASTORE and
URL_DATASTORE

Printing tokens as part of CTX logging with
events EVENT_INDEX_PRINT_TOKEN and
EVENT_OPT_PRINT_TOKEN

NETWORK_ACCESS DBMS_DEBUG_JDWP Using the DBMS_DEBUG_JDWP PL/SQL
package

NETWORK_ACCESS UTL_HTTP Using the UTL_HTTP PL/SQL package

NETWORK_ACCESS UTL_INADDR Using the UTL_INADDR PL/SQL package

NETWORK_ACCESS UTL_SMTP Using the UTL_SMTP PL/SQL package

NETWORK_ACCESS UTL_TCP Using the UTL_TCP PL/SQL package

NETWORK_ACCESS XDB_PROTOCOLS Using HTTP, FTP, and other network protocols
through XDB

OS_ACCESS DROP_TABLESPACE_KEEP_DATAFIL
ES

Dropping a tablespace in the PDB without
specifying the INCLUDING CONTENTS AND
DATAFILES clause in DROP TABLESPACE
statement

OS_ACCESS EXTERNAL_GLOBAL_AUTHENTICATI
ON

Creating external and global users in the PDB

Creating external and global roles in the PDB

OS_ACCESS EXTERNAL_FILE_ACCESS Using external files or directory objects or
directory objects in the PDB when
PATH_PREFIX is not set

OS_ACCESS EXTERNAL_PROCEDURES Using external procedure agent extproc
in the PDB

OS_ACCESS FILE_TRANSFER Using the DBMS_FILE_TRANSFER package

OS_ACCESS JAVA_OS_ACCESS Using java.io.FilePermission from Java

OS_ACCESS LOB_FILE_ACCESS Using BFILE and CFILE data types

OS_ACCESS TRACE_VIEW_ACCESS Using the following trace views:
• [G]V$DIAG_OPT_TRACE_RECORDS �

• [G]V$DIAG_SQL_TRACE_RECORDS �

• [G]V$DIAG_TRACE_FILE_CONTENTS

10 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

• V$DIAG_SESS_OPT_TRACE_RECORD
S

• V$DIAG_SESS_SQL_TRACE_RECORD
S

OS_ACCESS UTL_FILE Using UTL_FILE. If this feature is disabled, then
the database blocks use of the
UTL_FILE.FOPEN function.

The following example disables all features in the feature bundle NETWORK_ACCESS:

ALTER LOCKDOWN PROFILE sec_profile DISABLE FEATURE = ('NETWORK_ACCESS');

The following example disables all features except the COMMON_USER_LOCAL_SCHEMA_ACCESS and
LOCAL_USER_COMMON_SCHEMA_ACCESS features:

ALTER LOCKDOWN PROFILE sec_profile DISABLE FEATURE ALL EXCEPT =

('COMMON_USER_LOCAL_SCHEMA_ACCESS', 'LOCAL_USER_COMMON_SCHEMA_ACCESS');

Disabling Database Options with Lockdown Profiles

The OPTION clause of ALTER LOCKDOWN PROFILE statement lets you disable or enable certain database options.
Similar to limiting database features, supported database options can be disabled altogether by specifying the ALL
clause or partially by using the ALL EXCEPT. The latter disables all supported database options except for the ones
specified in the SQL statement. Currently, Oracle Database Advanced Queueing and Oracle Partitioning are the
options that can be turned on or off by lockdown profiles.

The following example disables user operations associated with the Oracle Partitioning option:

ALTER LOCKDOWN PROFILE sec_profile DISABLE OPTION = (‘PARTITIONING’);

The following example enables user operations associated with the Oracle Database Advanced Queueing option:

ALTER LOCKDOWN PROFILE sec_profile ENABLE OPTION = (‘DATABASE QUEUEING’);

Disabling SQL Statements and Statement Clauses with Lockdown Profiles

Lockdown profiles can also be used as means of limiting the scope of certain SQL statements. This is a powerful
capability as it can restrict mission critical operations being performed by any user who has the right privilege. For
this purpose, you can disable any combination of ALTER DATABASE, ALTER PLUGGABLE DATABASE, ALTER
SESSION, and ALTER SYSTEM statements by a lockdown profile. However, if you don’t want to disable these
statements completely, it is also possible to disable only certain clauses of these statements. In order to do this,
specifying enough keywords to unambiguously identify a single clause is required. For instance, specifying
ARCHIVE to disable ARCHIVE LOG clause of ALTER SYSTEM statement is sufficient while specifying FLUSH to
disable FLUSH SHARED_POOL clause of ALTER SYSTEM statement is not adequate because several ALTER
SYSTEM statements begin with this keyword such as ALTER SYSTEM FLUSH GLOBAL CONTEXT.

Additionally, being specific to the SET clause of ALTER SYSTEM or ALTER SESSION statements, you can set
default, min or max values for the option that you specify. The VALUE clause lets you set default value for a clause
option and goes into effect for any PDB to which the profile applies after you close and reopen the PDB. However, if
the lockdown profile that you are enabling does not contain the VALUE clause for any of its rules then you don’t have
to close and reopen the PDB since the profile takes effect immediately as mentioned in previous sections. The goal
of this clause is to simultaneously set a default value for an option and restrict users from setting or modifying the

11 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

value. The MINVALUE and MAXVALUE clauses, on the other hand, restrict you from setting a value less than or
greater than the value of the option clause respectively. MINVALUE and MAXVALUE settings take effect immediately
when the lockdown profile is assigned to a PDB without requiring you to close and reopen the PDB.

The following examples better illustrate what the syntax looks like and how these functionalities work.

» Disable ALTER DATABASE statement:

ALTER LOCKDOWN PROFILE sec_profile DISABLE STATEMENT = (‘ALTER DATABASE’);

» Disable ALTER SYSTEM SUSPEND and ALTER SYSTEM RESUME statements:

ALTER LOCKDOWN PROFILE sec_profile

DISABLE STATEMENT = ('ALTER SYSTEM')

CLAUSE = ('SUSPEND', 'RESUME');  

» Disable COMMIT_WAIT and CURSOR_SHARING parameters of ALTER SESSION statement:

ALTER LOCKDOWN PROFILE sec_profile

DISABLE STATEMENT = ('ALTER SESSION’)

CLAUSE = (‘SET’)

OPTION = (‘COMMIT_WAIT’, ‘CURSOR_SHARING’);

» Disable PDB_FILE_NAME_CONVERT parameter of ALTER SESSION statement. It also sets the default value for
PDB_FILE_NAME_CONVERT to 'cdb1_pdb0', 'cdb1_pdb1'. This default value will take effect the next time
the PDB is closed and reopened.

ALTER LOCKDOWN PROFILE sec_profile

DISABLE STATEMENT = ('ALTER SYSTEM')

CLAUSE = (‘SET’)

OPTION = (‘PDB_FILE_NAME_CONVERT’)

VALUE = ('cdb1_pdb0', 'cdb1_pdb1');

» Disable CPU_COUNT parameter of ALTER SESSION statement for values less than 2 or greater than 6:

ALTER LOCKDOWN PROFILE sec_profile

DISABLE STATEMENT = ('ALTER SYSTEM')

CLAUSE = (‘SET’)

OPTION = (‘CPU_COUNT’)

MINVALUE = ‘2’

MAXVALUE = ‘6’;

12 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

Conclusion
Oracle Multitenant 12.2 delivers economies of scale through consolidation while providing great isolation across
tenants. Considering each PDB might have different resource and operational requirements, the ability to provide
custom isolation levels for independent PDBs comes forward as one of main principles in 12.2. While being a highly
capable product in 12.1, significant enhancements are delivered in the area of tenant isolation with 12.2.

Unlike first generation cloud architectures, in which individual databases are hosted in dedicated VMs and therefore
the relationship between number of databases and cost is linear, Multitenant delivers true economies of scale to the
Database Cloud. The greater the scale, the greater the economies, and therefore the key requirement for this
potential to be fulfilled is to eliminate any barriers to consolidation. Tenant isolation is a major component of this. In a
highly consolidated environment, tenants share not only the key infrastructure and memory components but also the
network, OS, file system, and common objects of the database. Use PDB_OS_CREDENTIAL parameter to designate
a less powerful OS user to reduce the potential risk of OS interactions. Furthermore, CREATE_FILE_DEST and
PATH_PREFIX clauses enable CDB administrators to set PDB-specific paths for PDBs’ data files and directory
objects respectively. In addition to these two capabilities, starting with 12.2, we offer another powerful feature called
lockdown profiles. A lockdown profile is fundamentally a security mechanism to limit certain operations in a PDB. It
can restrict the scope of powerful privileges such as ALTER SYSTEM or ALTER SESSION. Moreover, lockdown
profiles can make CDB management significantly easier by disabling access to certain resources and administrative
features. All these solutions come hand in hand when it comes to tenant isolation and help us deliver a world-class
database cloud architecture.

13 | ORACLE MULTITENANT: ISOLATION IN ORACLE DATABASE 12C RELEASE 2

http:inaPDB.It
http:componentofthis.In

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

CO NNE C T W I TH U S

blogs.oracle.com/multitenant

facebook.com/oracle

twitter.com/OraclePDB

oracle.com/goto/multitenant

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registere d trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116

Oracle Multitenant: Isolation In Oracle Database 12c Release 2 (12.2)
March 2017
Author: Can Tuzla
Contributing Author: John P. McHugh, Prashanth Shanthaveerappa, Patrick Wheeler

