
 

 
 

 
  

Oracle Multitenant: New Features 
In Oracle Database 18c 
O R A C L E  W H I T E  P A P E R   |   M A R C H  2 0 1 8  

 



  

 

 
 
ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Disclaimer 

The following is intended to outline our general product direction. It is intended for information 

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any 

material, code, or functionality, and should not be relied upon in making purchasing decisions. The 

development, release, and timing of any features or functionality described for Oracle’s products 

remains at the sole discretion of Oracle.  



 

 

 
 
1  |  ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Table of Contents  

Disclaimer 1 

Introduction 2 

Refreshable PDB Switchover 3 

Enhanced Integration with Data Guard 7 

Snapshot Carousel 10 

Dynamic Lockdown Profiles 12 

CDB Fleet Management 14 

Summary 16 

 

  



 

 
 
2  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Introduction 

This White Paper covers various new features of Oracle Multitenant, introduced with Oracle Database 

Release 18c. In this fourth major release of Oracle Multitenant, we deliver a number of important 

enhancements:  

» Refreshable PDB Switchover 
The refreshable PDB switchover capability enables the creation and maintenance of replicas on a 
per-PDB basis with only two CDBs to manage.  

» Enhanced Integration with Data Guard 
simplifies PDB provisioning operations in high availability configurations, protected by Data Guard. 

» Snapshot Carousel 
This is a repository for periodic point-in-time copies of a PDB. The Snapshot Carousel is ideally 
suited to development environments that typically require multiple copies of databases at different 
points in time, or to augment a non-mission critical backup and recovery process. 

» Dynamic Lockdown Profiles 
Changes to Lockdown Profiles are now dynamically propagated to all applicable PDBs, without the 
need to restart either PDB or CDB. 

» CDB Fleet Management 
A CDB Fleet is a group of CDBs managed collectively. This further extends Multitenant’s operational 
efficiency advantage: In a CDB, we can manage many PDBs as one. Now, with CDB Fleet, we can 
manage many CDBs as one! 

Each of these is discussed in a section of this White Paper. 

  



 

 
 
3  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Refreshable PDB Switchover 
The refreshable PDB switchover capability, new in 18c, allows us to create and maintain replicas on a per-PDB 
basis with only two CDBs to manage. We might start by creating a PDB named Red in CDB1 and then simply 
creating a replica of this in CDB2 using the familiar refreshable PDB syntax. (This was introduced with 12.2.) We 
might add a few more PDBs: - Gold in CDB2; Brown in CDB1; Grey in CDB2. No replicas are required for Gold and 
Brown, but we want one for Grey. As simply as that, we have two pairs of replicas being refreshed in “opposite 
directions” between these two CDBs. This is illustrated in Figure 1. 

 

Figure 1. Using RSefreshable PDBs to maintain replicas 

Everything discussed so far is possible in 12.2, but now we come to the new switchover capability. There are 
several ways in which this can be very useful. For example, planned switchovers can be very helpful for load 
balancing. This role transition is executed by connecting to the current primary - You may find it helpful to think in 
terms of connecting to the “future replica” - and issuing this statement 

alter pluggable database Grey 

refresh mode every 2 minutes 

from Grey@dblink switchover; 

The syntax to setup the refreshable clone is familiar, but you’ll also notice the new keyword “switchover”. The result 
of this operation is that PDB Grey in CDB1 assumes the primary role. Its replica is now maintained in CDB2. User 
connections to Grey will now be to the new primary – now in CDB1. Figure 2 illustrates this switchover capability. 

Refreshable PDB Switchover
Per-PDB replica with only two CDBs to manage!
Server1

CDB1

CDB2

Server2

1. create pluggable database Red;
4. create pluggable database Brown;
6. create pluggable database Grey

from Grey@CDB2_Link
refresh mode every 2 minutes;

2. create pluggable database Red
from Red@CDB1_Link
refresh mode every 2 minutes;

3. create pluggable database Gold;
5. create pluggable database Grey;



 

 
 
4  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

 

Figure 2. Refreshable PDB Switchover 

In this example, we’ve seen how trivial it is to perform load balancing with this capability, while maintaining a replica 
on a remote server just in case. In situations where the primary PDB fails for some reason, we can switchover to the 
replica and resume operations there. We refer to this as an unplanned switchover. The three steps to perform the 
role transition from replica to primary, illustrated in Figure 3, are as follows: 

1. Perform one more refresh of the replica. 
Remember that, although the source PDB is no longer available, the refresh process involves reading redo from 
the primary CDB’s redo stream – online redo log and archive redo log files. For the purposes of this discussion, 
we assume that the source CDB, including its redo stream, is intact and that the failure is confined to the source 
PDB alone. Therefore, it is reasonable to assume this final refresh will succeed. What it achieves is to transport 
and apply any transactions that were performed against the primary between the time of the previous refresh and 
the PDB’s failure. 

2. Alter the surviving replica so that it is no longer a refreshable PDB. 
3. Open the former replica read-write so that it can be used as the new primary. 

Refreshable PDB Switchover
Planned switchover
Server1

CDB1

CDB2

Server2

1. alter pluggable database Grey
refresh mode every 2 minutes
from Grey@dblink switchover;



 

 
 
5  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

 

Figure 3. Unplanned switchover with refreshable PDBs 

It’s important to note that this capability should not be considered as a replacement for Data Guard from a High 
Availability point of view. However, in the sense that it can be used to maintain a replica in another server, we’ve 
seen how refreshable PDBs may be used as replicas on which operations of certain low-load, non-critical 
applications may be resumed, whether the switchover is a planned or an unplanned event. In that sense, it’s 
worthwhile to consider the characteristics of a switchover from the point of view of Recovery Time Objectives 
(RTOs), and Recovery Point Objectives (RPOs). 

RTOs consider how long it takes before operations can resume in the event of a switchover. In other words, how 
long is the outage? RTO is affected by the amount of redo to be applied. In turn, that is a function of the rate of redo 
generation in the source PDB and the frequency of refresh of the replica. The worst case is a failure of the source 
just before the next refresh was to have occurred. Assuming a relatively steady rate of redo generation at the 
source, this situation is likely to result in the maximum amount of redo to be applied to the replica before a 
switchover can be completed. In general, a relatively high frequency of refreshes – of the order of every couple of 
minutes rather than every few hours – is likely to leave relatively little redo to be applied before a switchover can be 
completed. It is important to test thoroughly with realistic transaction volumes to ensure that the process of 
refreshing the replica can keep up with the rate of redo generation. 

RPOs apply to how much data is lost in the event of failure of the primary. In many cases the failure of the source 
PDB alone will not cause any data loss. As long as the source CDB remains operational, all committed transactions 
should be protected in the online redo logs and archive redo logs of the source. It’s therefore likely that even 
transactions that had not been applied to the replica at the time of failure of the source PDB can be recovered and 
applied to the replica before switching over to that. The worst case is a total failure of the source CDB or its host 
server. In this case the online redo logs and potentially even the archive redo logs on that server are inaccessible. 

With the basic refreshable PDB capability described so far, there is in this and similar situations the possibility that 
all transactions that happened on the source since the last refresh will be lost. For example, if the refreshable PDB 
had been created with this statement: 

Refreshable PDB Switchover
Unplanned switchover
Server1

CDB1

CDB2

Server2 1. alter pluggable database Grey
refresh;

2. alter pluggable database Grey
refresh mode none;

3. alter pluggable database Grey
open read write;



 

 
 
6  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

create pluggable database myPDB 

from myPDB@DBLink 

refresh mode every 2 minutes; 

The maximum data loss is two minutes of transactions. (This assumes that the refreshes had been able to keep up 
with the rate of generation of redo from the source.) 

However, another strategy exists, through integration with a Data Guard remote redo repository (a component of 
Data Guard Far Sync). This possibility arises because the refreshable PDB can read data: 

» Either over database link (from online and archive redo logs on the primary – the situation described so far) 
» Or from a remote redo repository (maintained via redo transport) 

This second option – refreshing the replica PDB from a remote redo repository – has several important advantages: 

» It minimizes impact of scanning redo logs on primary 
» It minimizes amount of redo transport between CDBs 
» It enables near-zero data loss in failover situation 

This is illustrated in Figure 4. 

 

Figure 4: Integration with Data Guard Redo Repository 

  

Near-Zero Data Loss Per-PDB Switchover
Enabled by integration with Data Guard Redo Repository
Primary

Primary

PDB2 PDB3 PDB4PDB1

Standby

Standby

PDB3 PDB4PDB1

1. create pluggable database PDB3
from PDB3@DBLink 
refresh mode every 2 minutes;

2. alter system 
set remote_recovery_file_dest=
<path of local redo repository>;

Redo RepositorySynchronous Data Guard Replication

Asynch
PDB

Refresh



 

 
 
7  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Enhanced Integration with Data Guard 
Certain forms of PDB creation could become a little complicated in Data Guard configurations prior to 18c. Two of 
the most common provisioning operations – creating a new PDB from seed and creating a local cold clone work 
absolutely fine with Data Guard. Let’s walk through an illustration of this to understand what’s going on, as illustrated 
in Figure 5.  

Here we see a high availability configuration with a primary CDB at the top, and a standby CDB at the bottom, with 
replication managed by Data Guard. We begin with a “new” CDB, with no customer-created PDBs. Only PDB$Seed 
is present in this initial state. 

When we create a new PDB (from Seed), the create pluggable database operation replays successfully on the 
standby. This is possible because PDB$Seed – including its data files – is already present on the standby. The new 
PDB is created successfully on both the primary and the standby. 

Similarly, a local cold clone (that is, a clone of a PDB already present in the primary and open read-only) will 
succeed – and replay successfully on the standby – because it is already present in the standby including all the 
data files necessary to process the operation. 

However, for various reasons, some other provisioning operations are more complicated. 

For example, a hot clone – that is, a clone of a PDB performed while the source PDB remains online (or in other 
words open read-write) – is complicated by the fact that there are two “recovery” operations involved at the same 
time. One is to ensure that the hot clone itself is transactionally consistent. The other is the application of redo on the 
standby, performed by Data Guard. These two “recovery” operations would interfere with each other, and to avoid 
that, a hot clone to a Data Guard primary will have no standby replica. This may be viewed as the functional 
equivalent to including the clause “standbys=none” in the hot cloning operation on the primary. 

 

Figure 5. Provisioning operations in Data Guard configurations prior to 18c 

PDB Provisioning in Data Guard Configurations Pre-18c
No issues with simple provisioning; additional steps required in more complex cases

1. Create new PDB from Seed
– PDB$Seed present on standby
– Operation replays successfully

2. Local Cold Clone of PDB1
– PDB1 present on standby
– Operation replays successfully

3. Hot Clone
– Implicitly performed with no standby

4. Plug-in or remote cold clone
– Source DataFiles not present on standby so 

operation cannot replay successfully
– PDB3 visible but unusable on standby

(DataFiles offline)
– Data Guard recovery is halted

PDB3PDB2PDB1PDB
Seed

Primary

PDB2PDB1PDB
Seed

Standby

Da
ta

 G
ua

rd
 R

ep
lic

at
io

n

PDB3
Mounted
DataFiles

Offline

1

1

2

2

3



 

 
 
8  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

For the purposes of this discussion, a remote cold clone, that is, a cold clone of a PDB in another CDB, is 
comparable to a plug-in of an unplugged PDB. In both cases, unlike creating a new PDB from Seed, or performing a 
local cold clone, by definition the data files for the newly created PDB are not already in the CDB. Therefore the 
complication in these cases is that, not only do we need to copy the data files for the new PDB into the primary 
CDB, we also need to copy them on to the remote CDB. Prior to 18c, there was no simple way to automate this 
transport of these data files to the standby. Therefore, prior to 18c, unless the data files are carefully pre-positioned 
on the standby, manually, although the PDB is created successfully on the primary, it is not successfully created on 
the standby and Data Guard recovery was halted until the situation could be rectified by manual intervention.  

The complications just described are greatly simplified in 18c. This involves some additional one-time steps in the 
process of setting up the Data Guard environment and a simple procedure to follow in each of these formerly 
somewhat more complicated provisioning cases.  

First, let’s discuss the additional one-time steps involved in Data Guard setup, as illustrated in Figure 6.  

1. We start by creating a self-referencing database link on the primary. This replays successfully on the 
standby to create a database link referencing the primary. 

2. Next, we set a parameter on the standby. This is named standby_PDB_source_file_DBLink and it should 
reference the database link created in the previous step. 

3. Finally, CDB$Root of the standby should be opened read-only. (Note that no Active Data Guard license is 
required if only CDB$Root is opened read-only on the standby.) This allows Data Guard to read the value 
of the parameter just specified. When a create pluggable database operation is replayed on the standby, 
but the required data files are not already present on the standby, those data files may be copied from the 
primary via this database link. 

 

Figure 6. Additional one-time steps in Data Guard Setup 

Now we introduce a simple new procedure employing what we refer to as a “transient no-standby PDB”. Following 
this procedure reduces what were formerly more complex provisioning operations to a few trivial steps. 

Enhanced Integration With Data Guard
Additional one-time Data Guard setup steps enable standby to access files on primary

1. Create self-referencing DB Link on 
primary
• Replays on standby to create DB Link 

which references primary

2. New parameter to set on standby:
• standby_PDB_source_file_DBLink
• Identifies DB Link created in previous 

step

3. Open standby CDB$Root read-only
• When a create PDB operation is replayed 

on standby, and required data files are 
not on standby, they are copied from 
primary across this link
• Standby CDB$Root may be read-only 

without requiring Active Data Guard

• Create DB Link CDB1_Link

PDB3PDB2PDB1PDB
Seed

Primary

PDB2PDB1PDB
Seed

Standby

D
at

a 
G

ua
rd

 R
ep

lic
at

io
n



 

 
 
9  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

For example, let’s say that our intention is to plug-in an unplugged PDB or to perform a remote cold clone. We want 
this new PDB to be named PDB3. 

1. We start by creating what is referred to as a “transient no-standby PDB”. To do this, simply include the 
clause “standbys=none” in the create pluggable database statement. The result of this is that on the 
standby, the transient PDB will be visible in mounted state but its data files will show as unnamed or 
offline. 

2. Next, we create the desired PDB – PDB3 – as a local cold clone of the transient no-standby PDB. This 
replays successfully on the standby by copying the PDB’s data files across the database link Identified by 
the parameter standby_PDB_source_file_DBLink. 

3. The transient no-standby PDB may now be dropped. 

So, what was formerly a relatively complicated procedure is reduced to this simple 1-2-3, illustrated in Figure 7. 

 

Figure 7. Simple PDB plug-in or remote clone using “transient no-standby PDB” with Data Guard 

Follow this same, simple, 1-2-3 procedure for hot clones in high availability configurations protected by Data Guard. 

1. As before, the first step is to create the “transient no-standby PDB”, this time as a hot clone. Again, it’s 
important to include the clause “standbys=none” in the create pluggable database statement. Remember, 
the intention of a hot clone is to take the clone while the source remains online. Clearly, this requirement is 
met in this case. 

2. Next, we create the desired PDB as a local cold clone of the transient no-standby PDB. This replays 
successfully on the standby by copying the PDB’s data files across the database link Identified by the 
parameter standby_PDB_source_file_DBLink. 

3. The transient no-standby PDB may now be dropped. 

As you see, now in 18c we can use this same, simple procedure, employing the “transient no-standby PDB” 
technique for provisioning operations which were formerly relatively complicated in Data Guard configurations. 

  

Plug-in or remote clone PDB as PDB3
1. Create “transient no-standby PDB”

• Either as PDB plug-in or remote clone
• Important: Include clause 

“standbys=none” 
in create pluggable database statement

2. Create desired PDB as cold clone of 
this transient no-standby PDB
• Replays successfully on standby by 

copying files across DB Link 
identified by standby parameter 
standby_PDB_source_file_DBLink

3. Transient no-standby PDB may now 
be dropped

TransientPDB3

PDB3PDB2PDB1PDB
Seed

Standby

PDB2PDB1PDB
Seed

Primary

Da
ta

 G
ua

rd
 R

ep
lic

at
io

n

1

Simple PDB plug-in or remote clone using “transient no-standby PDB” with Data Guard
Enhanced Integration With Data Guard

2

3



 

 
 
10  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Snapshot Carousel 
The snapshot carousel is a repository for periodic point-in-time copies of a PDB. It makes sense to limit the number 
of historical snapshots we take. The maximum number of snapshots to be retained is configurable. The default is 
eight, which is also the highest value that is currently supported.  

 

Figure 8. Snapshot Carousel 

For example, if we are taking nightly snapshots of a particular PDB, perhaps we only need snapshots for the past 
week. This is illustrated in Figure 8. Every 24 hours, at midnight, we drop the oldest snapshot. You can think in 
terms of the carousel rotating by one slot. The newly vacated slot now becomes the slot for T-0. A fresh snapshot is 
taken, and this is dropped into slot T-0. 

A great use case for Snapshot Carousel is as a source for debugging date-specific problems. For example, we 
might have a problem reported on Friday. It’s a new problem, which seems to be data-related, which arose earlier in 
the week. However, the report is not specific about the exact date on which it was first encountered. 

We might try a “bracketing” approach: Take clones from the snapshots from Monday, Tuesday and Wednesday and 
run tests to see whether the problem shows up. The problem was not reproducible on Monday, so we can eliminate 
that date. Further testing shows that the problem shows up already on Tuesday. Therefore, we can eliminate 
Wednesday too. We now drill into Tuesday in more depth. This is illustrated in Figure 9.  

You’ll notice how agile this process can be. These are the sorts of capabilities that modern, cloud-based 
development organizations require so that they can keep up with the demands of the modern business climate. 
Technically, snapshots can be materialized as either full clones, or as storage-efficient snapshot clones. 

 

Snapshot Carousel
Repository for periodic point-in-time copies of a PDB

T-0
T-1 T-2

T-3

T-4
T-5T-6

T-7

3

1

2

2

March 2018

12th

Monday

#B4PDB we needed 

more DB serversP

March 2018

13th
Tuesday

#B4PDB we managed 
DBs individually



 

 
 
11  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

 

Figure 9. Using Snapshot Carousel to debug date-specific problems 

Another great use case for Snapshot Carousel is as a convenient source for simple point-in-time recovery of a PDB. 
Let’s say a few days go by uneventfully. Business proceeds smoothly and snapshots are taken automatically every 
midnight. But then we discover that a serious data error was introduced on Wednesday 21st. It is determined that 
the simplest remedy is to recover from Tuesday’s snapshot – taken before the data error was introduced. We simply 
drop the current PDB and restore a clone of Tuesday’s snapshot, before the data error was made. See Figure 10. 

 

Figure 10. Snapshot Carousel as a source for point-in-time recovery of a PDB  

Snapshot Carousel

Date-specific bug
1. Reported on Friday
2. “Bracket” problem
3. Eliminate Monday
4. Eliminate Wednesday
5. Drill-in on Tuesday

Ideal source for debugging date-specific problems

Prod

16th

15th 14th

13th

12th

11th10th

9th

Wed
c1

Tue
c4

Tue
c2

Tue
c1

Mon
c1

Dev

P

P

March 2018

16th
Friday

#B4PDB production 
clones were always 

stale
March 2018
12th

Monday
#B4PDB we needed more DB servers

March 2018

13th
Tuesday

#B4PDB we managed 
DBs individually

March 2018

14th
Wednesday

#B4PDB provisioning 
new DBs took ages

Snapshot Carousel
Convenient source for a simple point-in-time recovery of a PDB

21st

20th 19th

18th

17th

16th15th

14th
1

2
Point-in-Time Recovery
1. Data error made on 

Wednesday

2. Recover from 
Tuesday’s snapshot

March 201820 thTuesday#B4PDB cloud 

migration was difficult

March 2018

21st
Wednesday

#B4PDB resizing DBs 
involved downtime



 

 
 
12  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Dynamic Lockdown Profiles 
Unlike various competitive offerings, which may deliver some of the requirements of the Cloud at the expense of 
major compromises on other requirements, Multitenant delivers on the full promise of the Cloud, which from the 
point of view of a database may be summarized as isolation and agility with economies of scale. Focusing on 
this isolation requirement, our philosophy is configurable isolation. In 12.2 we introduced a very powerful capability – 
Lockdown Profiles to address this requirement. (Incidentally, we use these very extensively in various Oracle Cloud 
services, such as Autonomous Data Warehouse Cloud.) 

Lockdown Profiles are significantly enhanced in 18c. New in this release, changes to a Lockdown Profile take effect 
immediately in all associated PDBs. There is no need to restart either CDB or PDBs. 

Consistent with our philosophy of managing many as one, the concept is to create a few “isolation stencils” centrally. 
There may just be one, which would apply to all PDBs. Perhaps you’d have two or three, one of which would be the 
default. (Some people think of these in terms of “tee shirt sizes.”) As new PDBs are added to the CDB, they inherit 
the default Lockdown Profile, or a specific profile can be applied to them. 

There are four major aspects to a Lockdown Profile: 

» Database Options and Features 

» Parameter Settings 

» Security Capabilities 

» Resource Manager Plans 

The table at the top of Figure 11 illustrates how three Lockdown Profiles might be defined. These Lockdown Profiles 
are shown in the column on the left. Let’s call them Red, Mustard and Purple. At a glance, the degree of lockdown is 
relatively low in Red, medium in Mustard and high in Purple,  

 

Figure 11. Simplified Illustration of Lockdown Profiles 

Centralized Definitions Applied Dynamically to PDBs
DB Options & Features Parameters Security Resource Manager

alter session set alter system set

nls_territory
= ‘AMERICA’

disable all except
(’plsql_debug’); 2 50 5GB

nls_territory
= ‘AMERICA’

disable all except
(’plsql_debug’); 8 200 20GB

nls_territory
= ‘AMERICA’

disable all; 32 800 80GB

C##



 

 
 
13  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Examining this in a little more detail, the four major categories are listed in the header row: 

» Database Options and Features 

» Parameter Settings 

» Security Capabilities 

» Resource Manager Plans 

In the next row we have greater detail in each category. For example, In the category of DB Options and Features, 
we see: Java in the database, Partitioning, Network Access, OS Access, Common Schema Access. The Red 
Lockdown Profile enables all of these. Mustard enables Java and Partitioning. All are disabled in Purple. (In reality 
there is much finer grained control within some of these categories, which is well documented in the White Paper 
“Isolation in Oracle Multitenant Database 12c Release 2 (12.2)”.) 

In the next column we have the category of database Parameters. Here we see the setting for parameter 
NLS_Territory. It looks like this CDB is US-based, so the applicable value should be “AMERICA” for all Lockdown 
Profiles. This is the only parameter shown in this illustration, although there’s no limit to the number of parameter 
settings that can be specified.  

The next column shows the category of Security settings. In this illustration we’re severely restricting the scope of 
“alter system”. It’s completely locked down in Purple. In Red and Mustard, all clauses are disabled except for 
“PLSQL_Debug”. This means that we can grant alter system to any user in an PDB subject to these Lockdown 
Profiles and the only aspect of “alter system” that would be effective is to set “PLSQL_Debug”. In this way Lockdown 
Profiles can be viewed as complementary to grants. Where a grant of a powerful privilege such as alter system may 
be seen as too broad, the Lockdown Profile can be defined in this way to restrict the scope of alter system to just the 
few capabilities that are really required. This is consistent with a best practices philosophy of granting minimum 
privileges. Another important point to make here is that these restrictions are applied at run time. Since they’re not 
considered during compilation time, there is no invalidation of objects involved when these restrictions are put in 
place. 

In the final category we have settings for various parameters which drive the behavior of Resource Manager. Here 
we see settings for CPU Count, IOPS and SGA_Max_Size. Red is a small Lockdown Profile, with 2 CPUs, 50 IOPS 
and 5GB SGA. Mustard is medium, with 8, 200 and 20 respectively. Purple is large, with 32, 800 and 80 
respectively. 

Across the bottom, we see a CDB with several PDBs plugged into it. The various colored shields on these PDBs 
represent the application of the appropriate lockdown profile to each of these PDBs. 

  



 

 
 
14  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

CDB Fleet Management 
Ever since its introduction in 12.1, Multitenant has helped organizations greatly reduce operating costs by managing 
many PDBs as one. CDB Fleet extends this advantage by allowing many CDBs to be managed as one. 
Organizations tend to have large estates of PDBs deployed across several CDBs, for several good reasons. The 
physical capacity of individual servers may require several of them to support the entire estate. Data sovereignty or 
latency requirements may dictate that the servers be physically distributed around the world. Occasionally the 
technical limit of the number of PDBs per CDB (4,096 PDBs per CDB in Exadata and Oracle Cloud; 252 PDBs per 
CDB on other platforms) may require multiple CDBs to be created within a single server. In these situations, CDB 
Fleet allows the entire Fleet of CDBs to be managed as if it were a single CDB. 

A CDB Fleet is a group of CDBs managed collectively. There are two possible roles within the CDB Fleet: 

» Lead CDB 
Only one CDB in the Fleet may be designated as the Lead CDB. This role is designated by setting the 
LEAD_CDB database property to TRUE. 

» Member CDB 
A CDB becomes a member of a CDB Fleet by setting its LEAD_CDB_URI database property to identify the 
appropriate Lead CDB. This is expressed in terms of a database link. (Note that this database link must use “fixed 
user” semantics, which means that the user name and password are in the link definition. Database links with 
“connected user semantics” may not be used.) 

As Member CDBs are added to the CDB Fleet, a Proxy PDB for each Member CDB is automatically created in the 
Lead CDB. Figure 12 illustrates how a CDB Fleet may be set up. 

 

Figure 12. Setting up a CDB Fleet 

 

 

CDB Fleet
Setting up a CDB Fleet

CDB Fleet

Boston New
York

Wash-
ington Atlanta Miami

East

San
Francisco

Redwood
Shores

Los
AngelesSeattle Portland

West

East

Proxy

West

Proxy
Chicago Tulsa Austin

Central
1. alter database

set Lead_CDB = ‘TRUE’;

4. {Repeat steps performed in East}

2. create database link Central_Link
connect to c##system
identified by secret
using ‘Central’;

3. alter database
set Lead_CDB_URI = ‘Central_Link’;



 

 
 
15  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

These two database properties – LEAD_CDB & LEAD_CDB_URI – are mutually exclusive. Only two-level CDB 
Fleets may be configured; it is not possible to nest sub-fleets within larger fleets. 

The CDB Fleet allows the entire estate of PDBs, physically distributed across various CDBs, to be treated as if they 
were all in a single CDB. There are some important corollaries to this.  

1. All PDB names must be unique within the entire CDB Fleet. In other words, the CDB Fleet represents a single 
logical namespace for all PDBs. 

2. As mentioned above, fleet membership is determined by the setting of the database property LEAD_CDB_URI. 
This specifies a database link that must be defined in “fixed user semantics”. This user – the Fleet Common 
User – must be defined identically in every CDB in the CDB Fleet. 

Some important fleet-wide operations enabled by CDB Fleet include: 

» Queries against CDB views 
» Queries against GV$ views 
» Containers() queries 

In general, in each of these situations, these queries, executed against CDB$Root of the Lead CDB in the CDB 
Fleet, will aggregate data from all PDBs in the CDB Fleet as if they were in a single CDB. The precise requirement is 
that data will be returned for all PDBs in which the Fleet Common User has container_data privilege for all objects or 
for the specific object being queried. Figure 13 shows a CDB-Fleet-wide query against a CDB View. 

 

Figure 13. CDB-Fleet-wide query against a CDB View 

  

CDB Fleet
Managing many CDBs as one

CDB Fleet

Boston New
York

Wash-
ington Atlanta Miami

East

San
Francisco

Redwood
Shores

Los
AngelesSeattle Portland

West

Chicago
East

Proxy

West

Proxy
Tulsa Austin

Central

SQL> select PDB_Name
2 from CDB_PDBs
3 order by PDB_Name;

SQL> select PDB_Name
2 from CDB_PDBs
3 order by PDB_Name;

PDB_NAME
---------------------------------------------------------------
ATLANTA
AUSTIN
BOSTON
CHICAGO
EAST_PROXY
LOS_ANGELES
MIAMI
NEW YORK
PORTLAND
REDWOOD SHORES
SAN FRANCISCO
SEATTLE
TULSA
WASHINGTON
WEST_PROXY

15 rows selected.

SQL>



 

 
 
16  |   ORACLE MULTITENANT: NEW FEATURES IN ORACLE DATABASE 18C 

Summary 
Since its introduction in 2013, Oracle Multitenant has been widely adopted by ISVs and customers alike and 
deployed both on-premises and in the Cloud. Indeed, many Oracle Cloud Database Services, including Exadata 
Express and Autonomous Data Warehouse Cloud, rely on Multitenant for tenant isolation, agility and scalability. 
Oracle Database 18c introduces a number of enhancements to existing multitenant functionality including: 

» Refreshable PDB Switchover 
enables extremely simple management of per-PDB replicas 

» Enhanced Integration with Data Guard 
simplifies PDB provisioning operations in high availability configurations 

» Snapshot Carousel 
a repository for periodic point-in-time copies of a PDB 

» Dynamic Lockdown Profiles 
enable changes to isolation configurations to be applied immediately to PDBs without needing to restart either the 
CDB or PDBs 

» CDB Fleet Management 
allows many CDBs to be managed as one 

The multitenant architecture of Oracle Database 18c enables tenant isolation and agility with economies of 
scale, whether deployed in the Oracle Cloud, on-premises or hybrid cloud environments.  

 



 
 

 

  

 

 

Oracle Corporation, World Headquarters  Worldwide Inquiries 
500 Oracle Parkway Phone: +1.650.506.7000 
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200 

 

 

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the 
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other 
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or 
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are 
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, 
electronic or mechanical, for any purpose, without our prior written permission.  
 
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 
 
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are 
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116 
 
Oracle Multitenant: New Features in Oracle Database 18c 
March 2018 
Author: Patrick Wheeler, Senior Director, Product Management, Oracle Database 
 

 

 
 

 

C O N N E C T  W I T H  U S  

 
blogs.oracle.com/multitenant 

 
facebook.com/oracle 

 
twitter.com/OraclePDB 

 
oracle.com/goto/multitenant 


