

Fast Application Notification (FAN)

Includes fanWatcher:

A utility to subscribe to ONS and view FAN events

O R A C L E W H I T E P A P E R | A P R I L 2 0 1 6

O R A C L E W H I T E P A P E R | A P R I L 2 0 1 6

1 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Contents

Purpose and Audience 2
Benefits of Using FAN Events 3

Why is it important to use FAN? 3
FAN with Oracle Database 12c Release 1 3
How to use FAN 4
How do you use FAN for Fast Failover 5
How do you use FAN for Transparent Planned Maintenance 6

What do FAN events look like? 8
FAN High Availability Events 8
FAN Load Balancing Advisory Events 12

Viewing FAN events 13
fanWatcher 13

Server-side Fast Application Notification Callouts 18
Configuring Applications to use FAN with Fast Connection Failover 22

How to Configure the Oracle Notification Service for 12c Grid Infrastructure 23
General Steps for Configuring FCF Clients 24
How to Configure FAN for 12c Java Clients 27
How to Configure FAN for ODP.Net Clients, Managed and Unmanaged Providers 29
How to Configure FAN for OCI Clients 31

Conclusion 34
Appendix A Configuring ONS 35

ONS Configuration File 35
Client-side ONS Configuration 37
Remote ONS Configuration 39
Auto-configuration of ONS 40

Appendix B Troubleshooting FAN 42
Appendix C fanWatcher sample code 43
Appendix D Sample Callout program (PERL based) 47

2 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Purpose and Audience

This white paper discusses Oracle 12c Fast Application Notification (FAN)
1
 in Real Application Clusters (RAC) and

Oracle Data Guard environments. FAN is a critical component towards solving the poor experience that end users

can encounter when planned maintenance, unplanned outages, and load imbalances occur that make database

instances unavailable or unresponsive. FAN enables end-to-end, lights-out recovery of applications and load

balancing at runtime based on real transaction performance.

With FAN, the continuous service and continuous connections built into Real Application Clusters and Data Guard

are extended to applications and application servers. When the state of database services change, (for example, up,

down, or unresponsive), the new status is posted to interested subscribers through FAN events. FAN provides rapid

notification about state changes for database services, instances, the databases themselves, and the nodes that

form the cluster, and starting with Oracle Database 12c with Global Data Services, distributed database systems.

Oracle drivers and Oracle pools use FAN events to achieve the following:

 Draining of work during planned maintenance with no errors whatsoever returned to applications,

 Very fast detection of failures so that recovery of applications can occur in real time

 Load balancing of incoming work at runtime when performance imbalances occur and also following

instances leaving and joining the system and resources becoming available.

 Affinity advice for incoming work so that related conversations, for example successive web sessions, are

routed together for best performance.

This paper:

1. Outlines the benefits of enabling FAN events for your database system

2. Dissects the FAN events and their published fields

3. Describes how to view FAN events using FANwatcher

4. Steps through how to integrate and enable FAN events for Oracle and non-Oracle applications

The target audience includes RAC database administrators, Data Guard database administrators, and application

integrators who need rapid notification of planned maintenance and unplanned outages integrated with their

applications or application servers, monitoring consoles or internal business workflow systems. It is assumed that

the reader is familiar with the concepts presented in the following references:

Oracle Clusterware Administration and Deployment Guide 12c Release 1 (12.1) Part number E48819-07

Oracle Real Application Clusters Administration and Deployment Guide 12c Release 1 (12.1) Part Number E48838-

09

1 FAN was introduced with Oracle Database 10g. This paper is relevant to all releases since then. Some
information may be specific to Oracle Database 12c (command syntax, for example).

3 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Benefits of Using FAN Events

Why is it important to use FAN?

Applications can waste time in a number of critical ways:

 Waiting for TCP/IP time-outs for minutes when a node fails without closing sockets, and for every

subsequent connection while that IP address is down.

 Attempting to connect when services are down.

 Not connecting when services resume.

 Processing the last result at the client when the server goes down.

 Attempting to execute work on slow, hung, and dead nodes.

Still worse, these sources of poor performance are not captured and reported by the standard database

performance methodologies. When a node fails without closing sockets, all sessions that are blocked in an IO (read

or write) wait for TCP keepalive. This wait status is the typical condition for an application using all databases.

Sessions processing the last result are even worse off, not receiving an interrupt until the next data is requested.

Using FAN events eliminates applications waiting on TCP time-outs, time wasted processing the last result at the

client after a failure has occurred, and time wasted executing work on slow, hung, or dead nodes.

Last century, client or mid-tier applications connected to the database relied on connection timeouts, out-of-band

polling mechanisms, or other custom solutions to realize that a system component had failed, triggering actions to

mitigate the impact of that failure. This approach had severe implications in (1) application availability because

downtimes were extended and noticeable (due to polling intervals and timeout length), and (2) management of

enterprise environments, because of the exponential growth in the number of server-side components, both

horizontally (across all nodes) and vertically (across node components such as listeners, instances and application

services) caused a major increase in the sheer number of polling actions.

FAN was released with Oracle Database 10g RAC. It solved these problems by integrating database events with

listeners, applications and application servers, and IT management consoles (including Oracle Enterprise Manager,

trouble ticket loggers and e-mail/texting servers). FAN posts events as soon as a change in the system is detected,

resulting in both immediate actions at the incident, and overall improved resource usage as it is unnecessary for

remote application components to implement status polling.

FAN with Oracle Database 12c Release 1

Starting with Oracle Database 12c, there are three important enhancements for FAN –

 FAN is default, configured and enabled out of the box with Oracle Real Application Clusters

 All Oracle clients use the Oracle Notification System (ONS) as the transport for FAN

 FAN is posted by Global Data Services (GDS) to allow FAN events to span data centers

FAN is on by Default

For Oracle Database 12c, no changes are needed to configure FAN. On the database side, FAN is configured for

Oracle Grid Infrastructure during installation. srvctl does offer an interface if a particular site needs to use different

ports, but this is the exception, not the norm. Starting with Oracle Database 12c, the goal is no configuration for all

Oracle clients. When using Oracle Database 12c with Oracle Grid Infrastructure 12c or Oracle GDS and Oracle

4 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Database client 12c, FAN is auto-configured. This means that when the client starts, it queries the databases for the

ONS end-points automatically. The automatic configuration spans data centers. The client automatically receives

an ONS configuration from each database listed in the connection URL. No configuration of ONS is required at the

client other than enabling FAN.

FAN 12c Standardizes on ONS as the Transport

From Oracle Database 12c, all Oracle 12c FAN clients use the Oracle Notification System to receive FAN events.

The reason for standardizing on ONS as the transport for FAN is “the failed component cannot tell you that it has

failed”. ONS runs outside of the database and across the system with no database dependencies. When a

database is stopped or fails, FAN posts the status change events immediately, and ONS delivers them

immediately. To support clients from earlier releases and new clients using older database versions, events are

sent over both transport methods, ONS and AQ automatically.

Global Data Services (GDS)

From Oracle Database 12c, FAN is posted by Global Data Services (GDS) for spanning data centers, particularly for

Oracle Active Data Guard farms that need runtime load balancing. GDS takes into account the service placement

attributes, automatically performs an inter-database service failover to another available database for planned

maintenance that involves a data center change, and if unplanned outages occur, notifies failures of an entire

database. The Oracle clients and connection pools are interrupted on failure events and notified when a global

service has been newly started.

How to use FAN

Using FAN requires no code changes whatsoever. The best and by far the easiest way to use FAN is to use an

Oracle connection pool, an Oracle client driver or an Oracle Application that is configured for FAN.

FAN events are integrated with:

 Oracle Fusion Middleware and Oracle WebLogic Server (Oracle® Fusion Middleware Administering JDBC

Data Sources for Oracle WebLogic Server 12c (12.1.3) Part Number E41864-02)

 Oracle Data Guard Broker (Oracle® Data Guard Broker 12c Release 1 (12.1) Part Number E48241-06)

 Oracle Enterprise Manager Cloud Control (Cloud Control Basic Installation Guide 12c Release 4

(12.1.0.4))

 Oracle JDBC Universal Connection Pool for both JDBC thin and OCI interfaces (Oracle® Universal

Connection Pool for JDBC Developer's Guide 12c Release 1 (12.1) Part Number E49541-01)

 ODP.NET (Oracle® Database Development Guide 12c Release 1 (12.1) Part Number E41452-06)

 SQLPLUS (SQL*Plus® User's Guide and Reference Release 12.1 Part Number E18404-12)

 PHP (Oracle® Database 2 Day + PHP Developer's Guide 12c Release 1 (12.1) Part Number E18554-05)

 Global Data Services (Oracle® Database Global Data Services Concepts and Administration Guide 12c

Release 1 (12.1) Part Number E22100-10)

When using 3
rd

 party clients such as IBM WebSphere and Apache TomCat, FAN is supported by IBM and Apache

respectively by replacing the default connection pool with the Oracle Universal Connection Pool. Oracle's Universal

Connection Pool (UCP) has the capability to hide planned maintenance when used with FAN, and to hide unplanned

outages when used with Oracle Database 12c and Application Continuity. UCP is the proven and recommended

client solution for Java-based applications when using Oracle RAC, Oracle Data Guard, or Active Data Guard.

5 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

How do you use FAN for Fast Failover

Figure 1: Timeline showing FAN activity during Instance Failure

Figure 1 shows a timeline for Instance Failure. The application has FAN enabled, for example UCP with Fast

Connection Failover enabled, connected to a dynamic database service that is being offered on multiple instances of

a RAC database in a UNIFORM configuration, or in a configuration where more than one instance is preferred. The

application has active sessions on all instances. The following occurs during unplanned outages. This example uses

instance failure:

 At Step 1: The instance crashes.

 The FAN planned DOWN event, delivered at Step 2, clears idle sessions from the connection pool

immediately.

Existing connections on other instances remain usable, and new connections are opened to these

instances if needed.

 For those pools that are configured to use Application Continuity, active sessions are restored on a

surviving instance and recovered by Application Continuity, masking the outage from users and

applications.

If not protected by Application Continuity, any sessions in active communication with the instance will

receive an error, as shown in Step 3. The application can test if this is a recoverable error and could initiate

a reconnection attempt at this time. If, as in our example, the service is available on another instance they

would be able to get a new connection.

6 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

 As this is a RAC database, a surviving instance will perform recovery for the failed instance, as shown in

Step 6, and then the instance is restarted by the Grid Infrastructure (Step 7).

 The FAN UP event for the service informs the connection pool that a new instance is available for use,

allowing sessions to be created on this instance at next request submission.

How do you use FAN for Transparent Planned Maintenance

Figure 2: Timeline showing FAN activity during Planned Maintenance

Figure 2 shows a timeline for Planned Maintenance, applying a database patch for example. The application has

FAN enabled, for example UCP with Fast Connection Failover enabled, connected to a dynamic database service

that is offered on multiple instances of a RAC database in a UNIFORM configuration, or in a configuration where

more than one instance is preferred. The application has active sessions on all instances. To manage a planned

outage with no application interruption the patch application rolls across RAC:

 At Step 1: Use srvctl to shut down the service on an instance as we are using a UNIFORM service. If

the service was not UNIFORM we could relocate the service to another instance. Do not use the -force

flag with any of these commands. The connection pool automatically releases a connection at a request

boundary, typically when the connection is checked in to the pool.

 The FAN planned DOWN event, delivered at Step 2, clears idle sessions from the connection pool

immediately and marks active sessions to be released at the next return to the pool. These FAN actions

drain the sessions from the instance without disrupting the application or users.

7 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Existing connections on other instances remain usable, and new connections are opened to these

instances if needed.

 Not all sessions, in all cases, will check their connections into the pool. It is best practice to have a timeout

period after which the instance is forcibly shut down, evicting any remaining client connections.

For those pools that are configured to use Application Continuity these remaining sessions are recovered

by Application Continuity, masking the outage from users and applications.

 Once the upgrade, patch, or repair is complete, restart the instance and the service on the original node

using srvctl (Step 3).

 The FAN UP event for the service informs the connection pool that a new instance is available for use,

allowing sessions to be created on this instance at next request submission.

8 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

What do FAN events look like?

Oracle FAN events consist of header and payload information delivered as a set of name-value pairs describing the

name, type and nature of the event, and the time that the event occurred. Based on this payload, the event recipient,

normally an Oracle Client, takes actions such as refreshing stale connection references for Oracle connection

pools, automatically recovering the in-flight work when that client is configured to use Application Continuity,

determining the last committed outcome and returning this to the user when that client is configured to use

Transaction Guard, logging a service request or sending a text to the database administrator when that client is

Enterprise Manager.

A FAN client uses the information on the connection, called the connection signature, to know which connections to

operate on when an event arrives. (Table 1)

Table 1 – FAN Connection Signature

FAN Parameter Matching Database Signature

Service sys_context('userenv', 'service_name')

Database unique name sys_context('userenv','db_unique_name')

Instance sys_context('userenv', 'instance_name')

Node name sys_context('userenv', 'server_host')

FAN High Availability Events

Oracle FAN events are based on database services as the preferred database connection point for all applications.

Database services decouple any hardwired mapping between a connection request and a database instance, and

provide value-add functionality on their own, such as connection load balancing, dynamic workload management,

service levels and priorities, connection pool reorganizations, and Application Continuity.

The event types that are important for Oracle FAN are:

 Service events for dynamic database services.

 Node events, which includes cluster membership states and native join/leave operations for nodes and

networks that are used by all clients to group operations

 Instance events that are used by OCI based clients to group operations. (JDBC includes this level in a

future release.)

 Runtime load balancing and affinity advice that are used by connection pool clients to direct incoming

database requests to the best place to run based on prior affinity and load advice.

In addition to application services, FAN standardizes on the generation, presentation, and delivery of events related

to managed database resources for high availability and for runtime load balancing. The node and VIP events

9 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

require Oracle Grid Infrastructure. The other events are provided by both Grid Infrastructure and GDS. This means

that you can use Oracle RAC, Oracle RAC One Node, Oracle Restart and Oracle Data Guard with Grid

Infrastructure for all event types, and GDS across data centers.

Table 2 – FAN High Availability Event Types

Event Type Description

event_type=NODE Oracle cluster node or network event

event_type=INSTANCE Oracle Database Instance event

event_type=DATABASE Oracle Database event

event_type=SERVICEMEMBER Application service on a particular instance event

event_type=SERVICE Application service event

Table 3 – FAN High Availability Event Status

The event status for each of these managed resources include:

Event Status Description

status=up Resource has started

status=down Resource has stopped

status=nodedown Node or public network has gone offline

status=not_restarting Resource has failed more than 3 times in 30 minutes so

is not being restarted

Table 4 – FAN High Availability Event Reasons

The event status for each managed resource is associated with an event reason. The reason further describes what

triggered the event:

Event Reason Activity Type Event triggered by

reason=USER Planned User-initiated commands by srvctl,

sqlplus, or gdsctl

reason=FAILURE Unplanned A failure has been detected for that

resource

Comment [CC1]: To do;Double check 30
minutes has not changed

Comment [t2]: Not_restarting used to mean a
resource could not fail over to a surviving node.
This also included a uniform service
“not_restarting” as there was always a member
of this service running elsewhere.
I am not sure when we send not_restarting now.
There is also an UNKNOWN status visible when
querying the resource with CRSCTL, this used
to be sent as a FAN event, but I am not sure
whether it still is broadcast via FAN.

10 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

reason=member_leave Unplanned or Planned A node has gone offline

reason=public_nw_down Unplanned or Planned Public network has gone offline

reason=BOOT Unplanned When a node starts, DATABASE,

INSTANCE or SERVICEMEMBER

events will start with reason=BOOT if

they were online before the node left

the cluster

Table 5 – FAN High Availability Event Payload Fields

Additional event payload fields further describe the unique resource whose status is being monitored and published.

These additional fields include:

Event Resource Identifier Description

VERSION=<n.n> Event payload version (currently 1.0)

timestamp=<eventDate> <eventTime> Server-side date and time when the event was detected

service=<serviceName.dbDomainName> Fully-qualified name of the database service

database=<dbName> Database unique name

instance=<SID> Name of the database instance

host=<hostname> Name of the cluster node (as returned by Grid

Infrastructure)

card=<n> Service membership cardinality

timezone=<+|- GMT> Difference from GMT

incarn Cluster Incarnation number. Only visible in NODE

DOWN event for guaranteed ordering

vip_ips The IP address(es) of any VIP(s) that has/have gone

down due to a public network failure. Only visible in

Node DOWN events with reason=public_nw_down.

Example FAN High Availability Events

The result is a FAN event with one of the following payload structures:

Node Events

 Down

11 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

 Public Network Down

 Note: incarn is always 0 when the reason=public_nw_down

Instance Events

 Instance Down

 Instance Up

Service Events

Servicemember Down

Servicemember Up

Service Down

Service Up

Database Events

Database Down

VERSION=1.0 event_type=SERVICE service=testy_pdb_srv.us.oracle.com database=testy

db_domain=us.oracle.com host=rachost_723 status=up reason=USER timestamp=2015-01-

22 17:57:13 timezone=-08:00

VERSION=1.0 event_type=SERVICE service=testy_pdb_srv.us.oracle.com database=testy

db_domain=us.oracle.com host=rachost_723 status=down reason=USER timestamp=2015-

01-21 19:25:52 timezone=-08:00

VERSION=1.0 event_type=SERVICEMEMBER service=testy_pdb_srv.us.oracle.com

instance=TESTY_2 database=testy db_domain=us.oracle.com host=rachost_723 status=up

card=3 reason=BOOT timestamp=2015-01-21 19:33:15 timezone=-08:00

VERSION=1.0 event_type=SERVICEMEMBER service=testy_pdb_srv.us.oracle.com

instance=TESTY_2 database=testy db_domain=us.oracle.com host=rachost_723

status=down reason=FAILURE timestamp=2015-01-21 19:32:43 timezone=-08:00

VERSION=1.0 event_type=INSTANCE service=testy.us.oracle.com instance=TESTY_2

database=testy db_domain=us.oracle.com host=rachost_723 status=up reason=FAILURE

timestamp=2015-01-21 19:33:10 timezone=-08:00

VERSION=1.0 event_type=INSTANCE service=testy.us.oracle.com instance=TESTY_2

database=testy db_domain=us.oracle.com host=rachost_723 status=down reason=FAILURE

timestamp=2015-01-21 19:32:43 timezone=-08:00

VERSION=1.0 event_type=NODE host=rachost_724 incarn=0 status=nodedown

reason=public_nw_down vip_ips=10.10.8.249 timestamp=2015-01-21 19:13:13 timezone=-

08:00

VERSION=1.0 event_type=NODE host=rachost_724 incarn=316152110 status=nodedown

reason=member_leave timestamp=2015-01-21 19:13:24 timezone=-08:00

12 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Database Up

FAN Load Balancing Advisory Events

Runtime Load Balancing events have been available since Oracle Database 10g Release 2. These events guide

subscribers as to where to place incoming load. By enabling runtime load balancing at the service level, FAN assists

the application servers in directing work requests to where the request can be best satisfied based on the current

response times, throughput and capacity. Runtime load balancing works together with affinity advice to keep

requests in the same conversation together and to move work away from slow, hung and unresponsive nodes.

Combined with affinity advice, runtime load balancing’s advice purpose is predictable response time or throughput

across the system, based on the service goal.

Runtime Load Balancing is provided out of the box for WebLogic Server Active GridLink, Oracle JDBC Universal

Connection Pool, ODP.NET unmanaged and managed providers, PHP, and OCI Session Pool. All that is needed is

to enable Runtime Load Balancing for the service, and to enable FAN and for ODP.NET, load balancing at the

client. Load Balancing Advisory events are posted over ONS for all 12c clients, and over Advanced Queueing (AQ)

for pre-12c OCI clients and all clients using pre-12c databases.

Table 5 – FAN Runtime Load Balancing Advisory Event

Event Resource Identifier Description

Version Version of the event payload.

Event type SERVICE_METRICS

Service Matches the service in DBA_SERVICES.

Database unique name The unique database supporting the service. Matches the initialization parameter

value for db_unique_name, which defaults to the value of the initialization

parameter DB_NAME.

Timestamp Date and time stamp (local time zone) to order events

Repeated for each event

Instance The name of the instance supporting the service. Matches the ORACLE_SID

Percent The percentage of work requests to send to this database and instance

Service Quality Weighted moving average of the service quality and bandwidth, based on the goal

VERSION=1.0 event_type=DATABASE service=testy.us.oracle.com database=testy

db_domain=us.oracle.com host=rachost_725 status=up reason=USER timestamp=2015-03-

24 21:09:27 timezone=-08:00

VERSION=1.0 event_type=DATABASE service=testy.us.oracle.com database=testy

db_domain=us.oracle.com host=rachost_725 status=down reason=USER timestamp=2015-

03-24 20:09:17 timezone=-08:00

13 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

for the service (elapsed time or throughput)

Flag Indication of the service quality relative to the service goal – Values are GOOD,

VIOLATING, NO DATA, UNKNOWN

Note: flag=UNKNOWN will occur if application work is not active on the instance (for

the listed service)

flag=NO DATA will display if the instance misses consecutive updates on load data

(for the listed service)

Load Balancing Advisory Example

Viewing FAN events

FAN events are posted automatically when using 12c Grid Infrastructure. When using an Oracle Database 12c

client, there is no further configuration other than enabling FAN at the client.

As an administrator, you may wish to see the FAN events flowing. It’s also valuable to keep a record of FAN high

availability events posted by your system. FAN callouts can provide an audit trail and timing information for what

events occurred and when.

A sample callout to log FAN events on a Linux/UNIX system could look like the following:

Refer to the section Server-side Fast Application Notification Callouts for more information on callouts.

fanWatcher

fanWatcher is a java program that connects to an ONS (Oracle Notification Service) daemon and subscribes to

FAN events. The utility displays a portion of the FAN event header information as well as the event payload.

The source code for fanWatcher can be obtained from the The WebLogic Server Blog written by Stephen Felts at

https://blogs.oracle.com/WebLogicServer/entry/fanwatcher_sample_program . A copy is

included as an Appendix to this paper.

fanWatcher can run on an Oracle client installation, on any node in a Grid Infrastructure cluster, or on any mid-tier

node that has an ONS daemon installed (for example, a node supporting WebLogic Server Active Gridlink for

RAC)
2
.

2
 Version 1.5 of FANwatcher does not support Auto-config of ONS nor remoteONS.

#!/bin/bash

echo “`date` : $@” >> [your_path]/admin/`hostname`/callout_log.log

VERSION=1.0 database=TESTY service=testy_pdb_srv.us.oracle.com {

{instance=TESTY_2 percent=34 flag=UNKNOWN aff=FALSE}{instance=TESTY_3

percent=33 flag=UNKNOWN aff=FALSE}{instance=TESTY_1 percent=33 flag=UNKNOWN

aff=FALSE} } timestamp=2015-01-22 18:41:41

https://blogs.oracle.com/WebLogicServer/entry/fanwatcher_sample_program

14 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

If you are using Oracle Database Release 12c Releas 1 (12.1.0.2), or Oracle WebLogic Server 12.1.3 and have

compiled the fanWatcher.java sample code with the database jar files ons.jar and ojdbcN.jar that are

provided with these releases, the utility can take advantage of the ONS auto-configuration capabilities offered by

Oracle RAC. For auto-configuration of ONS to

The ONS daemon that is being subscribed to must be configured such that it is in communication with the ONS

daemon running as part of Grid Infrastructure as the Grid Infrastructure ONS daemon is the one propagating Oracle

events. Refer to the section in this paper on ONS Configuration for more information. The Grid Infrastructure may be

local or remote, and the utility can be used whether your Oracle clients are using JDBC, OCI or ODP.Net managed

and unmanaged providers.

Installing FANwatcher

Obtain a copy of the fanWatcher source code (from The WebLogic Server Blog or from the Appendix in this paper).

On a Linux/Unix machine: create a file named fanWatcher.java which contains the fanWatcher source code..

Save this file and compile the fanWatcher.java program. The CLASSPATH has to include the ons.jar and

ojdbcX.jar file distributed with Oracle Database, Grid Infrastructure or Oracle WebLogic Server. ojdbc8.jar is the

one supplied with Oracle Database 12c.

This example shows compiling and running the fanWatcher program on the server hosting Oracle Grid

Infrastructure

The directory path described by the ”Grid_Home” designation in the example variable is that specified as

ORACLE_HOME when installing an Oracle client, or Grid Infrastructure, or Oracle WebLogic server. The

fanWatcher program is looking for the pathname $ORACLE_HOME/opmn/conf/ons.config used by the ONS

daemon to start.

If you have installed fanWatcher on a WebLogic Server (WLS) midtier the WLS environment, including

CLASSPATH, is set by setWLSEnv and only has to have the local directory (where fanWatcher is installed)

included:

$ WLS_HOME/bin/setWLSEnv

$ export CLASSPATH=$CLASSPATH:.

$ javac fanWatcher.java

Note: fanWatcher.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.

$ java fanWatcher ”nodes=racNode1:6200,racNode2:6200”

$ vi fanWatcher.java

 add source code to this file

$ export CLASSPATH=Grid_Home/jdbc/lib/ojdbc8.jar:Grid_Home/opmn/lib/ons.jar:.

$ Grid_Home/jdk/bin/javac fanWatcher.java

Note: fanWatcher.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.

$ Grid_Home/jdk/jre/bin/java –Doracle.ons.oraclehome=Grid_Home fanWatcher crs

15 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

fanWatcher must be run as a user that has privilege to access the Oracle home specified above. This privilege

correlates to the user who installed the Oracle client, or Grid Infrastructure (for example, oracle) or a member of

the group to which this user belongs (for example, oinstall).

Using the fanWatcher program

The arguments passed to fanWatcher are dictated by the environment in which it is installed. The generic format for

the command line is:

 <Path to JRE>/bin/java [options] fanWatcher <config type> [event type]

where:

 options is typically:

 -Doracle.ons.oraclehome=<PATH to Grid Home>

o For example

-Doracle.ons.oraclehome=/u01/app/oracle/product/12.1/grid

 -classpath <list of class directories>

o Can be set as the UNIX environment variable CLASSPATH or on the command line as in the

following example

-classpath /u01/app/fanWatcher:/u01/app/oracle/product/12.1/grid/jdbc/lib/ojdbc8.jar:

/u01/app/oracle/product/12.1/grid/opmn/lib/ons.jar:.

event type

 Optional. If omitted ALL events are displayed. If set, the subscriber will only return limited events. This is a

very simple example, refer to the WebLogic Server Blog for a more detailed discussion:

%"eventType=database/event/servicemetrics/<serviceName> "

To run on the Grid Infrastructure server:

<Path to JRE>/bin/java –Doracle.ons.oraclehome=Grid_Home fanWatcher crs

where

Grid_Home is the install directory from which the ONS daemon is running. The

Grid Home in 12c or the ORACLE_HOME for a 10.2 Oracle RAC environment, or the client

ORACLE_HOME has a local ONS daemon running

To run on a WebLogic Server using an explicit node list

16 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

The node list is a string of one or more values of the form name=value separated by a newline character (\n).

This format is available for all versions of ONS. The following names may be specified.

nodes – This is required. The format is one or more host:port pairs separated by a comma.

walletfile – Oracle wallet file used for SSL communication with the ONS server.

walletpassword – Password to open the Oracle wallet file.

The node list will be extended in a later release of Oracle Database to allow for multiple unique topologies of remote

ONS servers to be specified. This is not supported in Oracle Database 12c Release 1 (12.1.0.2).

Running with auto-configured ONS

Auto-configuration of ONS was released with Oracle Database 12c Release 1 (12.1.0.2) and only works for a RAC

database running under Grid Infrastructure. Oracle Database Restart does not support auto-configuration of ONS.

Auto-configuration allows the client to obtain ONS information from the database server once a database session

has been established. For the fanWatcher program to obtain this information it requires a url that points to a RAC

database,and a user and password to connect to the database.

The url, user, and password can be specified as environment variables or the fanWatcher.java program can

be modified to include them.

For example:

With fanWatcher running events would then be received, as shown by the following example:

Client Node GI Node

$ export password=mypassword

$ export url='jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=\

(ADDRESS=(PROTOCOL=TCP)(HOST=racHost1)(PORT=1521))\

(ADDRESS=(PROTOCOL=TCP)(HOST=racHost2)(PORT=1521)))\

(CONNECT_DATA=(SERVICE_NAME=myServiceName)))'

$ export user=myuser

$ export CLASSPATH="$CLASSPATH:."

$ $ORACLE_HOME/jdk/jre/bin/java fanWatcher autoons

Set the WLS environment using wlserver*/server/bin/setWLSEnv

$ export CLASSPATH="$CLASSPATH:."

$ /u01/app/12.1/jdk/jre/java –

Doracle.ons.oraclehome=/u01/app/12.1/grid fanWatcher

”nodes=racHost1:6200,racHost2:6200”

17 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

** Event Header **

Notification Type: database/event/service

Delivery Time: Tue Jan 27 16:22:39 PST 2015

Generating Node: rac2.oracle.com

Event payload:

VERSION=1.0 event_type=SERVICEMEMBER service=testy_pdb_srv.us.oracle.com

instance=TESTY_3 database=testy db_domain=us.oracle.com host=rachost_725

status=up card=1 reason=USER timestamp=2015-01-27 16:22:39 timezone=-08:00

** Event Header **

Notification Type: database/event/service

Delivery Time: Tue Jan 27 16:22:39 PST 2015

Generating Node: rac2.oracle.com

Event payload:

VERSION=1.0 event_type=SERVICE service=testy_pdb_srv.us.oracle.com

database=testy db_domain=us.oracle.com host=rachost_725 status=up

reason=USER

timestamp=2015-01-27 16:22:39 timezone=-08:00

** Event Header **

Notification Type: database/event/service

Delivery Time: Tue Jan 27 16:22:40 PST 2015

Generating Node: rac2.oracle.com

Event payload:

VERSION=1.0 event_type=SERVICEMEMBER service=testy_pdb_srv.us.oracle.com

instance=TESTY_1 database=testy db_domain=us.oracle.com host=rachost_723

status=up card=2 reason=USER timestamp=2015-01-27 16:22:40 timezone=-08:00

** Event Header **

Notification Type: database/event/service

Delivery Time: Tue Jan 27 16:22:41 PST 2015

Generating Node: rac2.oracle.com

Event payload:

VERSION=1.0 event_type=SERVICEMEMBER service=testy_pdb_srv.us.oracle.com

instance=TESTY_2 database=testy db_domain=us.oracle.com host=rachost_724

status=up card=3 reason=USER timestamp=2015-01-27 16:22:40 timezone=-08:00

$ srvctl start service –d testy –s

testy_pdb_srv

$ /u01/app/12.1/jdk/jre/java –

Doracle.ons.oraclehome=/u01/app/12.1/grid fanWatcher crs

18 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Server-side Fast Application Notification Callouts

FAN callouts provide a simple yet powerful integration mechanism available with RAC that can be deployed with

minimal programmatic efforts. A FAN callout is a wrapper shell script or pre-compiled executable written in any

programming language that is executed each time a FAN event occurs. The purpose of the FAN callout is for simple

logging, filing tickets and taking external actions. The purpose of the callout is not for integrated client failover – The

FAN client failover is Fast Connection Failover in the next section. With the exception of node and network events, a

FAN callout executes for the FAN events that are generated locally to each node and thus only for actions affecting

resources on that node.

Configuring the FAN callout directory

Each FAN event posted by Grid Infrastructure results in the execution of each callout deployed in the standard Grid

Infrastructure callout directory (on Linux it is ${Your_GI_Home}/racg/usrco).

The order in which these callouts are executed is non-deterministic, and Grid Infrastructure guarantees that all

callouts are invoked once for each FAN event, in an asynchronous fashion. You can install as many callout scripts

or programs as your system requires. FAN callouts whose executions must be performed in a particular order, must

be invoked from the same callout. Carefully test each callout for execution performance and correctness before

production deployment.

Note: Ensure that the callout directory has write permissions only to the system user who installed Grid

Infrastructure, and that each callout executable or script contained therein has execute permissions only to the same

Grid Infrastructure owner.

Implementing FAN callouts

Writing FAN callouts involves the following steps:

1. Parsing FAN payload

2. Filtering incoming FAN events

3. Executing event-handling programs

Parsing callout argument list

The first step in a FAN callout is the parsing of the FAN payload. As described in the FAN event taxonomy section,

there is a set of payload arguments for each FAN event type.

The event type is displayed as the first argument in the FAN payload. For example:

SERVICEMEMBER VERSION=1.0 service=testy_pdb_srv.us.oracle.com database=testy

instance=TESTY_1 host=rachost_723 status=down reason=USER timestamp=2015-01-27

17:56:08 timezone=-08:00 db_domain=us.oracle.com

A BASH shell script to parse the event could be as follows:

#!/bin/bash

Scan and parse HA event payload arguments:

NOTIFY_EVENTTYPE=$1 # Event type is handled differently

for ARGS in $*; do

PROPERTY=`echo $ARGS | $AWK -F"=" '{print $1}'`

VALUE=`echo $ARGS | $AWK -F"=" '{print $2}'`

19 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

case $PROPERTY in

VERSION|version) NOTIFY_VERSION=$VALUE ;;

SERVICE|service) NOTIFY_SERVICE=$VALUE ;;

DATABASE|database) NOTIFY_DATABASE=$VALUE ;;

INSTANCE|instance) NOTIFY_INSTANCE=$VALUE ;;

HOST|host) NOTIFY_HOST=$VALUE ;;

STATUS|status) NOTIFY_STATUS=$VALUE ;;

REASON|reason) NOTIFY_REASON=$VALUE ;;

CARD|card) NOTIFY_CARDINALITY=$VALUE ;;

VIP_IPS|vip_ips) NOTIFY_VIPS=$VALUE ;; #VIP_IPS for public_nw_down

TIMESTAMP|timestamp) NOTIFY_LOGDATE=$VALUE ;; # catch event date

TIMEZONE|timezone) NOTIFY_TZONE=$VALUE ;;

??:??:??) NOTIFY_LOGTIME=$PROPERTY ;; # catch event time (hh24:mi:ss)

esac

done

Filtering incoming events

You can filter the incoming events based on payload information. For example, you may decide to apply the

following filtering criteria for each target event handler to be invoked from the callout:

Example Target Event Handler Target Services to Filter Event Type (and Status) to filter

Start or stop local applications All SERVICE (up or down)

SERVICEMEMBER (up or down)

NODE (node down)

Log a service request in help system FIN_APAC, PROD SERVICE (down)

DATABASE (down)

NODE (down)

Email or message IT Supervisor All NODE (nodedown)

SERVICE (up or down)

Forward SNMP traps to remote

management console

WEB_GL all

Notify local vendor components Custom remove applications NODE (down)

Table 5 – Example filtering criteria for specific FAN event handlers

In the following BASH shell script example, a trouble ticket system (using the second filtering example in Table 5) is

invoked only when the Oracle Grid Infrastructure framework posts a SERVICE, DATABASE or NODE event type,

with status either “down”, “nodedown”, or “public_nw_down” and only for two application service names: HQPROD

and FIN_APAC:

20 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

#!/bin/bash

FAN events with the following conditions will be inserted

into the critical trouble ticket system:

NOTIFY_EVENTTYPE => SERVICE | DATABASE | NODE

NOTIFY_STATUS => down | public_nw_down | nodedown

NOTIFY_DATABASE => HQPROD | FIN_APAC

if ((([$NOTIFY_EVENTTYPE = "SERVICE"] ||

[$NOTIFY_EVENTTYPE = "DATABASE"] || \

[$NOTIFY_EVENTTYPE = "NODE"] \

) && \

([$NOTIFY_STATUS = "down"] || \

[$NOTIFY_STATUS = "public_nw_down"] || \

 [$NOTIFY_STATUS = "nodedown "] \

)) && \

([$NOTIFY_DATABASE = "HQPROD"] || \

[$NOTIFY_DATABASE = "FIN_APAC"] \

))

then

<< CALL TROUBLE TICKET LOGGING PROGRAM AND PASS RELEVANT NOTIFY_*

ARGUMENTS >>

fi

This is an example of what can be done with callouts. Sample code is available through OTN and Oracle Support to

perform many tasks: relocate services on a preferred node when an instance starts, remove client connections

immediately when a service stops, and so forth.

An example of a FAN callout that would log all events generated on a given node could be constructed by:

1. Create a file in the callout directory:

a. vi $ORA_CRS_HOME/racg/usrco/log_callouts.sh

2. Add the following lines to the file (creating a BASH script):

a. #!/bin/bash

echo “`date` : $@” >> [your_path]/admin/`hostname`/callout_log.log

3. Set the execute permission on the file

a. chmod +x $ORA_CRS_HOME/racg/usrco/log_callouts.sh

4. Copy this file to all nodes in the GI cluster and aggregate callout_log.log files to see all events on the

system.

A sample callout_log.log entry may look like:

Tue Jan 31 17:56:08 PST 2015: SERVICEMEMBER VERSION=1.0

service=testy_pdb_srv.us.oracle.com database=testy instance=TESTY_1 host=rachost_723

status=down reason=USER timestamp=2015-01-27 17:56:08 timezone=-08:00

db_domain=us.oracle.com

21 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

More information on FAN and FAN Callouts can be found in Chapter 5 Workload Management with Dynamic

Database Services of the Oracle® Real Application Clusters Administration and Deployment Guide 12c Release 1

(12.1), Part Number E48838-09

22 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Configuring Applications to use FAN with Fast Connection Failover

Fast Connection Failover (FCF) is the pre-configured and proven FAN client-side integration. There is no need

whatsoever to modify application code to receive and use FAN events. You should always use an FCF-capable

client.

FCF is the FAN client solution for all application stacks, whether Oracle or third party. An FCF client automatically

subscribes to and acts on FAN events. FCF clients understand which database sessions are impacted by an event,

by using the FAN connection signature shown in Table 1. By matching the payload in the FAN event with that in the

connection signatures, FCF clients know which sessions to act on when a FAN event is received. FCF operates as

follows based on the event type (table 2), event status (table 3), and reason (table 4):

Down – Events with status=down and reason=FAILURE are caused by failures at the database server.

The FCF client aborts the related connections immediately so that the application does not hang on

TCP/IP timeouts, but rather receives an interrupt fast. The dead connections are removed from pooled

FCF clients. When the application is configured to use Application Continuity or TAF, the application is

automatically failed over.

Planned Down – Events with status=down and reason=PLANNED are posted when the DBA stops an

instance or service or database to start planned maintenance using srvctl or gdsctl or Data Guard

Broker. The FCF client drains the sessions ahead of the planned maintenance by allowing the active

work to complete and then closing the session. For planned draining by FAN and FCF, there is no

application interruption whatsoever. For Oracle Database 12c UCP and JDBC clients, the system property

oracle.ucp.PlannedDrainingPeriod allows for a time period to be set over which the draining

occurs.

Up – Events with status=up are posted when a service starts for the first time or resumes. The FCF

client re-allocates the sessions so that load is balanced across the database server. Rebalancing is a

gradual process so as not to interrupt performance.

Load % - When runtime load balancing is enabled, the FAN events carry an advised percentage to

distribute load across the service. The FCF client uses this advice to balance sessions locally when using

RAC and globally when using GDS.

Affinity - When runtime load balancing is enabled, the FAN events carry advice as to when to keep the

client conversation locality. This advice is applied for repeated borrows and returns from the same client.

Load % and Affinity are applicable to pooled FCF clients (see Table 7). All other actions apply to all FCF

clients

FCF is provided with the following clients beginning with the releases listed in Table 7. Table 7 also shows the

transport over which FAN is received by release.

23 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Table 6. Fast Connection Failover by Oracle Database Release

Database Version

FCF Client 10g 11g 12c

JDBC Implicit Connection Cache (ICC) ONS ONS ICC
deprecated

JDBC Universal Connection Pool (UCP) ONS ONS

WebLogic Server Active GridLink ONS ONS

3
rd

 Party Application Servers using UCP: Apache TomCat, IBM
WebSphere

 ONS ONS

ODP.Net Unmanaged (OCI) AQ AQ ONS

ODP.Net Managed (C#) ONS ONS ONS

OCI Session Pool AQ AQ ONS

PHP AQ AQ ONS

SQL*Plus AQ AQ ONS

Tuxedo ONS ONS

JDBC Thin Standalone Client ONS ONS

OCI/OCCI Driver AQ AQ ONS

Net and SCAN Listeners ONS ONS ONS

Beginning with Oracle Database 12c Release 1 (12.1), ONS is the transport when using an Oracle Database 12c

Release 1 (12.1) and a server Oracle Database 12c Release 1 (12.1) FAN AQ HA notification feature is deprecated

and maintained only for backward compatibility when there is an old client (pre-Oracle Database 12c Release 1

(12.1)) or old server (pre-Oracle Database 12c Release 1 (12.1)).

How to Configure the Oracle Notification Service for 12c Grid Infrastructure

FAN uses the Oracle Notification Service (ONS) for event propagation to all clients from Oracle Database 12c

onwards and for JDBC, Tuxedo and listener clients before 12c. ONS is installed as part of Oracle Grid Infrastructure

on a cluster, in an Oracle Data Guard installation, and when Oracle WebLogic is installed. ONS is responsible for

propagating FAN events to all other ONS daemons it is registered with. ONS comes pre-configured and enabled

with Oracle Grid Infrastructure. It is not necessary to manually configure ONS for it to operate.

Grid Intrastructure comes pre-configured with FAN. No steps are needed to configure or enable FAN at the server-

side with one small exception: OCI FAN and ODP FAN require –notification is set to TRUE for the service by

srvctl or gdsctl. For variations on the server side, refer to the appendix.

For FCF clients, ONS is installed as part of WebLogic Server, and as part of the Oracle client installation. With FAN

auto-configuration at the client, ONS must be on the CLASSPATH or in the ORACLE_HOME dependent on your

client. Transparently, the FCF client spawns an ONS thread to subscribe to interested FAN events.

Refer to the section Appendix A: Configuring ONS in this paper for more information on ONS configuration.

24 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

General Steps for Configuring FCF Clients

Follow these steps before progressing to driver specific instructions:

 Use a dynamic database service

 Use the Oracle notification service

 How many ONS connections are needed?

 How to pass ONS through Firewalls

 Use a NET connection that provides high availability

 Enable connection checking

Use a Dynamic Database Service

Using FAN requires that the application connects to the database using a dynamic database service. This is a

service created using srvctl, if RAC, or gdsctl, if using global database services. Do not connect using the database

service or PDB service – these are for administration only and are not supported for FAN. The TNSnames entry or

URL must use the service name syntax and follow best practice by specifying a dynamic database service name.

Refer to the examples later in this section.

Use the Oracle Notification Service

When you use FAN with JDBC thin or Tuxedo or Oracle Database 12c Release 1 (12.1.0.1) OCI or ODP.Net clients,

FAN is received over ONS. When you use Oracle Database10g or Oracle Database 11g OCI or ODP.NET

unmanaged provider FCF clients, FAN is received over AQ.

The target for FAN clients of Oracle Database 12c and later is no configuration. Accordingly, in Oracle Database 12c

ONS FAN auto-configuration is introduced such that FCF clients discover the server-side ONS networks and self

configure. FAN is automatically enabled when ONS libraries or jars are present. In Oracle Database 12c, it is still

necessary to enable FAN on most FCF clients. Listeners and SQL*Plus require no client-side configuration.

FAN auto-configuration removes the need to list the Grid Infrastructure servers that an FCF client needs. Listing

server hosts is incompatible with location transparency and causes issues with updating clients when the server

configuration changes. Clients already use a TNS address string or URL to locate the remote listeners. FAN auto-

configuration uses the TNS addresses to locate the databases and then asks each server database for the ONS

server-side addresses. When there is more than one database, for example, FAN auto-configuration contacts each

and obtains an ONS configuration for each one.

When using Oracle Database 12c, the ONS network is discovered from the URL. An ONS node group is

automatically obtained for each address list when LOAD_BALANCE is off across the address lists. This is the default

shown here. If LOAD_BALANCE is TRUE or ON across all address lists, only one set of ONS end points is created.

(Note that this is the LOAD_BALANCE value across the ADDRESS_LIST. The LOAD_BALANCE inside each address

list is to expand the SCAN address.)

How many ONS connections are needed?

By default the FCF client maintains three hosts for redundancy in each node group in the ONS configuration.. Each

node group corresponds to each Grid Infrastructure cluster or each GDS data center. For example, if there is a

primary database and several Oracle Data Guard standbys there is by default, 3 ONS connections maintained at

each node group. The node groups are discovered when using FAN auto-configuration, or if before Oracle Database

12c use ons.configuration. With node_groups defined by FANauto-configuration, load_balance=false

(the default), more ONS end points are not required. If you want to increase the number of end points you can do

this by increasing maxconnections. This applies to each node group. Increasing to 4 in this example, maintains

four ONS connections at each node. Increasing this value consumes more sockets.

25 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

 oracle.ons.maxconnections=4

ONS Node groups: oracle.ons.nodes

If the client is to connect to multiple clusters, and receive FAN events from both, for example in the RAC with Data

Guard situation, then multiple ONS node groups are needed. FAN auto-configuration creates these node groups

using the URL or TNS names for 12c client and 12c database. If not using auto-ons, specify the node groups in the

ig or oraaccess.xml configuration files.

Consider the situation with two clusters of 8 nodes each. Specify two node lists (one for each cluster):

Leaving oracle.ons.maxconnections at the default of 3, for every active node list, results in the ONS client

trying to maintain 6 total connections in this case.

How to pass ONS through Firewalls

When a firewall is present between the ONS node groups and the FCF client, a port needs to be opened to ons

traffic. The recommended approaches are –

1) Add ons.exe to the firewall exceptions list

2) Manually set the port to use in the ONS configuration, then add the port to the firewall's exceptions list

Use a NET Connection that provides High Availability

For OCI and ODP.NET unmanaged provider clients use the following TNS names structure:

(DESCRIPTION = (CONNECT_TIMEOUT=90) (RETRY_COUNT=30)(RETRY_DELAY=3)

(TRANSPORT_CONNECT_TIMEOUT=30)

(ADDRESS_LIST =

 (LOAD_BALANCE=on)

 (ADDRESS = (PROTOCOL = TCP)(HOST=primary-SCAN)(PORT=1521)))

(ADDRESS_LIST =

 (LOAD_BALANCE=on)

 (ADDRESS = (PROTOCOL = TCP)(HOST=secondary-SCAN)(PORT=1521)))

(CONNECT_DATA=(SERVICE_NAME = gold-cloud)))

For JDBC thin clients use the following URL structure through to 12.1.0.2:

 jdbc:oracle:thin = (CONNECT_TIMEOUT=4) (RETRY_COUNT=30)(RETRY_DELAY=3)

 (ADDRESS_LIST =

 (LOAD_BALANCE=on)

 (ADDRESS = (PROTOCOL = TCP)(HOST=primary-SCAN)(PORT=1521)))

 (ADDRESS_LIST =

 (LOAD_BALANCE=on)

 (ADDRESS = (PROTOCOL = TCP)(HOST=secondary-SCAN)(PORT=1521)))

 (CONNECT_DATA=(SERVICE_NAME = gold-cloud)))

Note that after Oracle Database 12c Release 1 (12.1.0.2), JDBC and OCI align and you should use the OCI version

for all connection descriptions.

Best Practices for the NET Connections

AUTOONS creates a separate node group for each addresslist in the TNS connection

descriptor:

oracle.ons.nodes.001=node1a:6250,node1b:6250,node1c:6250,node1d:6250,node1e:6250,nod

e1f:6250,node1g:6250,node1h:6250

oracle.ons.nodes.002=node2a:6250,node2b:6250,node2c:6250,node2d:6250,node2e:6250,nod

e2f:6250,node2g:6250,node2h:6250

26 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

ALWAYS use dynamic database services to connect to the database. These are created using srvctl or gdsctl.

Do not use the database service or PDB service – these are for administration only, not for application usage and do

not provide FAN and many other features because they are available at mount.

For JDBC, use the current client driver (Oracle Database 12c Release 1) with current or older RDBMS

Use one DESCRIPTION in the TNS names entry or URL – using more causes long delays connecting when

RETRY_COUNT and RETRY_DELAY are used.

Set CONNECT_TIMEOUT=90 or higher to prevent logon storms for OCI and ODP clients. Use a lower setting for

JDBC clients, CONNECT_TIMEOUT=4, as a temporary measure until TRANSPORT_CONNECT_TIMEOUT is available.

Do not also set JDBC property oracle.net.ns.SQLnetDef.TCP_CONNTIMEOUT_STR as it overrides

CONNECT_TIMEOUT

Set LOAD_BALANCE=ON per address to expand SCAN names starting with Oracle Database 11g Release 2

(11.2.0.3) for OCI and Oracle Database 12c Release 1 (12.1.0.2) for JDBC

Do not use Easy*Connect syntax (EZConnect) – it has no High Availability capabilities.

Enable Connection Checks

Depending on the outage, applications may receive stale connections when connections are borrowed before FCF

is processed. This can occur, for example, on a clean instance down when sockets are closed coincident with

incoming connection requests. To prevent the application from receiving any errors, connection checks should be

enabled at the connection pool.

JDBC Universal Connection Pool

setValidateConnectionOnBorrow(boolean) – Specifies whether or not connections are validated when the

connection is borrowed from the connection pool. The method enables validation for every connection that is

borrowed from the pool. The default value is false. Set the value to true so validation is performed.

OCI Connections

To verify that the connection to the server is terminated by either FAN or an OCI_ERROR, an application can check

the value of the attribute OCI_ATTR_SERVER_STATUS in the server handle. If the value of the attribute is

OCI_SERVER_NOT_CONNECTED, then the connection to the server has been terminated and the user session

should be reestablished.

OCI_ATTR_SERVER_STATUS is set to OCI_SERVER_NOT_CONNECTED for both FAN unplanned down and

FAN planned down use cases. When using FAN to report unplanned down, the application receives an error

immediately. When using FAN to report planned maintenance, a custom OCI pool can check

OCI_ATTR_SERVER_STATUS before borrow and after return to the pool, and drop the session at only these safe

places only. Dropping closed connections before borrow and after return leads to a good user experience with no

application errors received during planned maintenance.

ODP.NET Provider

CheckConStatus is on by default.

This property checks the status of the connection before putting the connection back into the ODP.NET connection

pool. This registry entry is not created by the installation of ODP.NET. However, the default value 1 is used.

 For custom ODP.NET programs, test ConnectionState.Open. For example -

27 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

 if(OracleConnection.State!=ConnectionState.Open)

 OracleConnection.Open()

How to Configure FAN for 12c Java Clients

Using Universal Connection Pool

The best way to take advantage of FCF with the Oracle Database JDBC thin driver is to use either the Universal

Connection Pool (UCP) or WebLogic Server Active GridLink. Setting the pool property

FastConnectionFailoverEnabled on the Universal Connection Pool enables Fast Connection Failover (FCF).

Active GridLink always has FCF enabled by default. Third party application servers including IBM WebSphere and

Apache Tomcat support UCP as a connection pool replacement. For more information on embedding UCP with

other web servers refer to these white papers:

Design and Deploy WebSphere Applications for Planned, Unplanned Database Downtimes and Runtime Load
Balancing with UCP (http://www.oracle.com/technetwork/database/application-development/planned-unplanned-
rlb-ucp-websphere-2409214.pdf) and

Design and deploy Tomcat Applications for Planned, Unplanned Database Downtimes and Runtime Load Balancing

with UCP (http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-

tomcat-2265175.pdf).

Follow these configuration steps to enable Fast Connection Failover:

1. The connection URL of a connection factory must use the service name syntax and follow best practice by

specifying a dynamic database service name and the JDBC URL structure (above and also below). All

other URL format do not provide high availability. The URL may use JDBC thin or JDBC OCI.

2. If wallet authentication has not previously been established or the cluster is running a version earlier than

Oracle Grid Infrastructure 12.1.0.2 then remote ONS configuration is needed. This can be done through

the pool property setONSConfiguration which can be set through a property file as shown in the

following example:

The property file specified must contain an oracle.ons.nodes property and optionally, properties for

oracle.ons.walletfile and oracle.ons.walletpassword. An example of an

ons.properties file is shown here:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("FCFSamplePool");

pds.setFastConnectionFailoverEnabled(true);

pds.setONSConfiguration("propertiesfile=/usr/ons/ons.properties");

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

pds.setURL("jdbc:oracle:thin@((CONNECT_TIMEOUT=4)(RETRY_COUNT=30)(RETRY_DELAY=3) "+

 " (ADDRESS_LIST = "+

 " (LOAD_BALANCE=on) "+

 " (ADDRESS = (PROTOCOL = TCP)(HOST=RAC-SCAN)(PORT=1521))) "+

 " (ADDRESS_LIST = "+

 " (LOAD_BALANCE=on) "+

 "(ADDRESS = (PROTOCOL = TCP)(HOST=DG-SCAN)(PORT=1521)))"+

 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-websphere-2409214.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-websphere-2409214.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf

28 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

3. Ensure the pool property setFastConnectionFailoverEnabled=true is set.

4. The CLASSPATH must contain ons.jar, ucp.jar, and the jdbc driver jar file, for example ojdbc7.jar.

5. The following is not required and is an optimization to force re-ordering of the SCAN IP addresses returned

from DNS for a SCAN address:

6. If you are using JDBC thin with Oracle Database 12c Application Continuity can be configured to failover

the connections after FAN is received.

7. If the database is earlier than 12c or if the configuration needs different ONS end points to those auto-

configured, the ONS end points can be enabled as per the following example:

Or in the situation with multiple clusters and when using autoons – autoons would gerate node lists similar

to the following -

oracle.ons.maxconnections is set to 3 by default for EVERY active nodelist, so there is no need to

explicitly set this. This example will result in the ONS client trying to maintain 6 total connections.

oracle.ons.nodes.001=node1a:6250,node1b:6250,node1c:6250,node1d:6250,node1e:6250,nod

e1f:6250,node1g:6250,node1h:6250

oracle.ons.nodes.002=node2a:6250,node2b:6250,node2c:6250,node2d:6250,node2e:6250,nod

e2f:6250,node2g:6250,node2h:6250

pds.setONSConfiguration(“nodes=mysun05:6200,mysun06:6200,

mysun07:6200,mysun08:6200”);

oracle.jdbc.thinForceDNSLoadBalancing=true

oracle.ons.nodes=racnode1:4200,racnode2:4200

oracle.ons.walletfile=/oracle12/onswalletfile

29 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

How to Configure FAN for ODP.Net Clients, Managed and Unmanaged Providers

To take advantage of Fast Connection Failover (FCF) with Oracle Database unmanaged provider or ODP.NET
managed provider, the application uses the ODP.Net Connection Pool. FCF is supported for the connection pools
and for Oracle Services for Microsoft Transaction Server (OraMTS).

Configuration for Oracle Database 12c ODP.Net Unmanaged and Managed Provider Clients with 12c

Database Server

1. To enable FAN with ODP.NET at the client side, specify HA events in the connect string:

2. To enable Runtime Load balancing with ODP.NET at the client side, also specify load balancing in the connect

string:

3. ODP.Net needs to be able to find the ONS listeners. Using 12c FAN autoons, ONS configuration information is

passed directly to ODP.Net from the database server itself. Autoons uses the TNSnames to find the end

points. Set the OCI TNS address best practice with full high availability capabilities

Note that Transparent Application Failover (TAF) can be used with FCF and ODP.Net unmanaged provider. After

FAN has interrupted the session, TAF will execute the failover using the FAILOVER_TYPE specified – BASIC or

SELECT. Application Continuity will be available in a future release.

Which Steps Differ if Using ODP.Net UnManaged Provider 11g or ODP.Net UnManaged Provider with Oracle

Database Release 10g or Release 11g?

When using an earlier database or client version, than Oracle Database 12c with unmanaged provider the steps are

the same as 12c client and 12c database with one exception. FAN events are delivered over AQ, which requires

notification to be set on the database service, similar to the following example:

srvctl modify service -db EMEA -service GOLD -notification TRUE

myAlias=(DESCRIPTION=

 (CONNECT_TIMEOUT=90)(RETRY_COUNT=30)(RETRY_DELAY=3)

 (TRANSPORT_CONNECT_TIMEOUT=3)

 (ADDRESS_LIST=(LOAD_BALANCE=ON)

 (ADDRESS=(PROTOCOL=TCP)(HOST=RAC-scan)(PORT=1521)))

 (ADDRESS_LIST=(LOAD_BALANCE=ON)

 (ADDRESS=(PROTOCOL=TCP)(HOST=DG-Scan)(PORT=1521)))

 (CONNECT_DATA=(SERVICE_NAME=service_name)))

"user id=oracle; password=oracle; data source=HA; pooling=true; HA events=true; load

balanacing=true“

"user id=oracle; password=oracle; data source=HA; pooling=true; HA events=true;“

30 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Which steps differ if you want to custom configure ONS end points with 12c:

For a customized ONS configuration

Edit oraaccess.xml located in $ORACLE_HOME/network/admin.

In case of custom ONS configuration, the application specifies the <host>:<port> values for every potential database

that it can connect to. The <host>:<port> value pairs represent the ports on the the different Oracle RAC nodes

where the ONS daemons are talking to their remote clients.

Additional information on configuring ONS is available in the Appendix attached to this paper.

Refer to the following for FAN and ODP.Net Provider Oracle® Data Provider for .NET Developer's Guide 12c

Release 1 (12.1) Part Number E17732-11: Real Application Clusters and Global Data Services.

<onsConfig mode=”remote”>

 <ons database=”db1”>

 <add name=”nodeList” value=”racnode1:6700, racnode2:6700” />

 </ons>

 <ons database=”db2”>

 <add name=”nodeList” value=”racnode3:6700, racnode3:6700” />

 </ons>

</onsConfig>

31 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

How to Configure FAN for OCI Clients

OCI clients embed FAN at the driver level so that all clients can use them regardless of the pooling solution. Starting

with Oracle database and client 12c, OCI clients use ONS for the FAN transport. Both the server and the client must

use version 12c. If either the client or server is using version 11.2 or earlier, then the FAN transport used is

advanced queues.

Configuration for SQL*Plus and PHP

1. Set notification for the service

2. For PHP clients only, add oci8.events=On to php.ini:

Important

If oraccess.xml is present with events=-false or events not specified, this disables the usage of FAN. To maintain

FAN with SQL*Plus and PHP when oraccess.xml is in use, set events=-true

3. On the client side and using a 12c client and Oracle Database 12c database, enable FAN in

oraaccess.xml.

Configuration for 12c OCI Clients when using 12c Database Server

1. Tell OCI where to find ONS Listeners

Starting with 12c, the client install comes with ONS linked into the client library. Using ons auto-config, the ONS

end points are discovered from the TNS address. This automatic method is the recommended approach. Like

ODP.Net, manual ONS configuration is also supported using oraaccess.xml.

2. Enable FAN high availability events for the OCI connections

To enable FAN requires editing the OCI file oraaccess.xml specify the global parameter events. This file is

located in $ORACLE_HOME/network/admin:

<oraaccess> xmlns="http://xmlns.oracle.com/oci/oraaccess"

 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"

 schemaLocation="http://xmlns.oracle.com/oci/oraaccess

 http://xmlns.oracle.com/oci/oraaccess.xsd">

 <default_parameters>

 <events>true</events>

 </default_parameters>

</oraaccess>

php.ini:

oci8.events=on

srvctl modify service -db EMEA -service GOLD -notification TRUE

32 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

3. Tell OCI where to find ONS Listeners

Starting with 12c, the client install comes with ONS linked into the client library. Using ons auto-config, the

ONS end points are discovered from the TNS address. This automatic method is the recommended

approach. Like ODP.Net, manual ONS configuration is also supported using oraaccess.xml.

4. Enable FAN at the server for all OCI clients

Continuing with Oracle Database 12c, it is still necessary to enable FAN at the database server for all OCI

clients (including SQL*Plus).

Which steps differ if you want to custom configure ONS end points with Oracle Database 12c

If you want to custom configure ONS, use syntax similar to the following example. This is not the recommended

method.

srvctl modify service -db EMEA -service GOLD -notification TRUE

myAlias=(DESCRIPTION=

 (CONNECT_TIMEOUT=90)(RETRY_COUNT=30)(RETRY_DELAY=3)

 (TRANSPORT_CONNECT_TIMEOUT=3)

 (ADDRESS_LIST=(LOAD_BALANCE=ON)

 (ADDRESS=(PROTOCOL=TCP)(HOST=RAC-SCAN-address)(PORT=1521)))

 (ADDRESS_LIST=(LOAD_BALANCE=ON)

 (ADDRESS=(PROTOCOL=TCP)(HOST=DG-SCAN-address)(PORT=1521)))

 (CONNECT_DATA=(SERVICE_NAME=myServiceName)))

 (CONNECT_DATA=(SERVICE_NAME=service_name)))

<oraaccess> xmlns="http://xmlns.oracle.com/oci/oraaccess"

 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"

 schemaLocation="http://xmlns.oracle.com/oci/oraaccess

 http://xmlns.oracle.com/oci/oraaccess.xsd">

 <default_parameters>

 <events>true</events>

 </default_parameters>

</oraaccess>

33 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

OCI and Oracle Database 11g

If either the client or the database is using Oracle Database 11g or earlier, then FAN events are sent over Advanced

Queues (AQ).

For an Oracle Database 11g application, the application itself must:

 Initialize the OCI Environment in OCI_EVENTS mode

 Link with a thread library

 Set –notification for the service using srvctl or gdsctl

Refer to Oracle® Call Interface Programmer's Guide 12c Release 1 (12.1) E49886-05, Chapter 10 More OCI

Advanced Topics for more information.

srvctl modify service -db EMEA -service GOLD -notification TRUE

 <oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"

 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"

 schemaLocation="http://xmlns.oracle.com/oci/oraaccess

 http://xmlns.oracle.com/oci/oraaccess.xsd">

 <default_parameters>

 <fan>

 <!-- only possible values are "trace" or "error" -->

 <subscription_failure_action>

 error

 </subscription_failure_action>

 </fan>

 <ons>

 <subscription_wait_timeout>

 5

 </subscription_wait_timeout>

 <auto_config>true</auto_config>

 <!—The following provides the manual configuration for ONS.

 Note that this functionality should not need to be used

 as auto_config can normally discover this information. -->

 <servers>

 <address_list>

 <name>pacific</name>

 <max_connections>3</max_connections>

 <hosts>10.228.215.121:25293, 10.228.215.122:25293</hosts>

 </address_list>

 <address_list>

 <name>Europe</name>

 <max_connections>3</max_connections>

 <hosts>myhost1.mydomain.com:25273,

 myhost2.mydomain.com:25298,

 myhost3.mydomain.com:30004</hosts>

 </address_list>

 </servers>

 </ons>

 <events>true</events>

 </default_parameters>

 </oraaccess>

34 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Conclusion

FAN - Tells the applications when actions are required

To achieve fast recovery and mitigate flow-on effects after a failure of the hardware or the software supporting the

application session, the session must be interrupted immediately when a failure is detected.

For service configuration changes, Grid Infrastructure and GDS post FAN events immediately when a state change

occurs for services in the system. Instead of waiting for the application server or driver to timeout and detect a

problem, using FAN the application server or driver receives these events and acts immediately.

For unplanned down events, the disruption to the application is minimized as connections to the failed instance or

node are terminated and sockets are closed. In-flight requests are terminated and the application user is notified

immediately, or if using TAF for OCI or Application Continuity for Java, the user experiences a slight disruption while

the session is re-established at a functioning service. Not-borrowed sessions are cleaned up immediately, and

application users requesting connections are directed to instances offering functioning services only.

For planned down events the disruption to the application is minimized by dropping the session at a safe place when

returned to the connection pool, where the application receives no error whatsoever. Same as unplanned, not-

borrowed sessions are cleaned up immediately, and application users requesting connections are directed to

instances offering functional services only.

For Up events, when services are started, new connections are created automatically so the application can

immediately take advantage of the extra resources.

The FANwatcher utility described in this paper enables you to determine the ONS topology that has been
constructed and whether an event can be received by a subscribing client.

35 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Appendix A Configuring ONS

ONS is installed as part of Oracle Grid Infrastructure on a cluster, in an Oracle Data Guard installation, and when

Oracle Web Logic Server Active Gridlink is installed. ONS is responsible for propagating FAN events to all other

ONS daemons it is registered with. It is not necessary to manually configure ONS for it to operate as part of a Grid

Infrastructure cluster. ONS will also be installed as part of an Oracle client installation and may also be spawned by

a standalone client application through a process named Remote ONS configuration.

Oracle application clients will subscribe, through an ONS daemon, to events in which it, the client, is interested.

ONS Configuration File

The ONS configuration file, $ORACLE_HOME/opmn/conf/ons.config, defines how ONS behaves. Information in

this file is stored as a set of key-value pairs as shown in Table 6.

Parameter Definition

localport The port number on the local host that ONS will use to talk to

local clients. Default in Grid Infrastructure is localport=6100

remoteport The port number used by ONS to talk to other ONS daemons.

The default value in Grid Infrastructure is remoteport=6200

nodes A comma-separated list of nodes and ports indicating other ONS

daemons to talk to. The port value is the remoteport entry that

each ONS daemon will be listening on. In a Grid Infrastructure

configuration all nodes in the cluster will be named. An example

would look like

nodes=myhost1.example.com:6500,myhost2.example.com:6500,

logcomp (optional parameter) An optional parameter that specifies what subcomponents to

log.The format is <component>[<subcomponent>,…]

Exclusion of subcomponents is also allowed by preceding the

subcomponent by an exclamation mark (!). For example, to log

all components, except for secure specify

logcomp=ons[all,!secure]

logfile (optional parameter) The location of the log file used for logging messages. The

default value is

logfile=$ORACLE_HOME/opmn/logs/ons.log

walletfile (optional parameter) Specifies the wallet file used by the Oracle Secure Sockets Layer

(SSL) to store SSL certificates. If a wallet file is specified to ONS,

then it uses SSL when communicating with other ONS instances

and require SSL certificate authentication from all ONS instances

that try to connect to it.

In 12.1.0.2 a Grid Infrastructure installation will have the

36 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

walletfile set by default, thus enforcing the use of SSL for all

ONS connections. Existing UCP users will need to verify that

they are using a walletfile, and ensure the contents are the same

as the wallet on the server.

useocr (optional GI-SERVER ONLY

parameter)

This parameter is only to be used on a Grid Infrastructure node.

It indicates whether ONS should store all GI configuration in the

Oracle Cluster Registry (OCR). To store information in OCR use

useocr=on

allowgroup (optional parameter) Specifies the ONS setting to indicate the user group connecting

to the localport. When set to true, ONS allows users within

the same OS group to connect to its local port. When set to

false, ONS only allows the user who started the ONS daemon

to access its local port. The default value of this parameter is

false. When using remote ONS configuration, there is no need

to set this parameter.

Note that the modification of these parameters in a Grid Infrastructure installation is done using srvctl with the modify

nodeapps command. The following help screen excerpt shows the relevant parameters:

$ srvctl modify nodeapps -h

Modifies the configuration for a node application.

Usage: srvctl modify nodeapps {[-node <node_name> -address

{<vip_name>|<ip>}/<netmask>[/if1[|if2...]] [-skip]] | [-subnet

<subnet>/<netmask>[/if1[|if2|...]]]} [-nettype {STATIC|DHCP|AUTOCONFIG|MIXED}]

[-emport <em_port>] [-onslocalport <ons_local_port>] [-onsremoteport

<ons_remote_port>] [-remoteservers <host>[:<port>][,<host>[:<port>]...]]

[-clientdata <file>] [-pingtarget "<pingtarget_list>"] [-verbose]

 -node <node_name> Node name

…

 -onslocalport <ons_local_port> ONS listening port for local client

connections

 -onsremoteport <ons_remote_port> ONS listening port for connections from

remote hosts

 -remoteservers <host>[:<port>][,<host>[:<port>]...] List

of remote host/port pairs for ONS daemons outside this cluster

…

 -clientdata <file> file with wallet to import, or empty string

to delete wallet used for SSL to secure ONS communication

…

 -verbose Verbose output

 -help Print usage

37 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Client-side ONS Configuration

CLIENT-SIDE ONS IS NOT RECOMMENDED PRACTICE. For applications, use AUTO-ONS or remote ONS.

For Oracle clients that require an ONS daemon to be running, it is necessary to edit the ons.config file directly

and to then start the ONS daemon.

The default location for an Oracle Client installation is $ORACLE_HOME/opmn/conf/ons.config, although this

may vary for other Oracle product installations.

A sample Oracle Client ons.config file could look like:

As indicated in this example it is necessary to specify the cluster nodes on which RAC instances will run, so that this

client will receive FAN events for which it is interested. It is not necessary to specify all of the cluster nodes, as ONS

will discover daemons running within the topology it constructs. However if only one, or a subset of nodes is

specified in the nodes=… list the risk is taken that this node may be down when the ONS topology is being

discovered and constructed.

The $ORACLE_HOME/opmn/bin/onsctl utility can then be used to start the ONS daemon.

The onsctl command

onsctl can be used to start, shutdown, reconfigure and monitor the ONS daemon. Available command options to

onsctl are:

Command Action Output

start Start the ONS daemon onsctl: ons started

shutdown Stop the ONS daemon onsctl: shutting down ons

daemon

reload Re-read the ons.config file and

update settings (ONS daemon not

stopped)

ping [max-retry] Verifies the local ONS daemon is

running. Will attempt max-retry

times

ons is running

debug Print debug information for the local

This is an example ons.config file

The first three values are required

localport=4100

remoteport=4200

nodes=racnode1.example.com:6200,racnode2.example.com:6200

38 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

ONS daemon.

usage Print a detailed help screen.

help Print simple usage information

Note that ONS is managed as part of Grid Infrastructure if it is running in a cluster. The srvctl utility allows for

ONS start and stop through the nodeapps option as shown by this help screen:

Validating ONS Topology

The onsctl debug command produces output that can be useful in determining the topology being used by the

ONS daemons. It shows the server:port combinations on which ONS daemons are present, and thus capable of

receiving FAN events.

An edited sample of the onsctl debug output from a 4-node Grid Infrastructure cluster is shown here:

$ srvctl stop nodeapps -h

Start the node applications running on a node.

Usage: srvctl start nodeapps [-node <node_name>] [-adminhelper | -onsonly]

[-verbose]

 -node <node_name> Node name

 -adminhelper Start Administrator helper only

 -onsonly Start ONS only

 -verbose Verbose output

 -help Print usage

39 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

The section titled Listener: shows the localport and remoteport Port numbers being communicated over.

The section titled Connection Topology: (4) shows the IP addresses and port numbers where an ONS

daemon is running (that the daemon that generated this output is aware of). In this case the daemon running on
rac1.oracle.com:6200 is communicating with ONS daemons at the IP address:Port combinations:

10.10.10.247:6200, 10.10.10.246:6200, 10.10.10.245:6200 and 10.10.10.244:6200 (which is

the local daemon running on rac1.oracle.com). Daemons that each of these ONS processes is aware of are

shown as sub entries.

The section titled Server connections: shows all ONS daemons other than the local daemon that are visible.

Remote ONS Configuration

UCP for JDBC supports ONS configuration through the ONSConfiguration pool property. This property is used to

set the remote ONS configuration. The parameter string closely resembles the content of the ONS configuration file

(ons.config). The string contains a list of name=value pairs separated by a newline character (\n). The name can

be one of nodes, walletfile, or walletpassword.

== rac1.oracle.com:6200 5844 15/01/28 17:50:50 ==

Listener:

 TYPE BIND ADDRESS PORT SOCKET

-------- --------------------------------------- ----- ------

Local ::1 6100 6

Local 127.0.0.1 6100 7

Remote any 6200 8

Remote any 6200 -

Connection Topology: (4)

 IP PORT VERS TIME

--------------------------------------- ----- ----- --------

 10.10.10.247 6200 4 54c5a3e3

 ** 10.10.10.244 6200

 ** 10.10.10.245 6200

 ** 10.10.10.246 6200

 10.10.10.246 6200 4 54c5a3e3

 ** 10.10.10.244 6200

 ** 10.10.10.245 6200

 ** 10.10.10.247 6200

 10.10.10.245 6200 4 54c5a3e3

 ** 10.10.10.244 6200

 ** 10.10.10.247 6200

 ** 10.10.10.246 6200

 10.10.10.244 6200 4 54c5a3e3=

 ** 10.10.10.247 6200

 ** 10.10.10.245 6200

 ** 10.10.10.246 6200

Server connections:

 ID CONNECTION ADDRESS PORT FLAGS SENDQ REF WSAQ

-------- --------------------------------------- ----- ------ ----- --- ----

 0 10.10.10.245 6200 010405 00000 001

 1 10.10.10.246 6200 010405 00000 001

 2 10.10.10.247 6200 010405 00000 001

40 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

The parameter string should at least specify the ONS configuration nodes attribute as a list of host:port pairs

separated by a comma. SSL would be used when the walletfile attribute is specified as an Oracle wallet file.

A JDBC code example of setting the ONS configuration string on a PoolDataSource is:

If your application is using Oracle Database 12c Release 1 (12.1.0.1) UCP and does not require an ONS wallet or

keystore it is no longer necessary to use the setONSConfiguration method. Your application can then use auto-

configuration of ONS.

It is also possible to set ONS configuration using a Java properties file. In this case the name=value passed to

setONSConfiguration can only be propertiefile=<path to ons.properties file>:

The property file specified must contain an oracle.ons.nodes property and optionally, properties for

oracle.ons.walletfile and oracle.ons.walletpassword. An example of an ons.properties file is

shown here:

Auto-configuration of ONS

oracle.ons.nodes=racnode1:4200,racnode2:4200

oracle.ons.walletfile=/oracle11/onswalletfile

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("FCFSamplePool");

pds.setFastConnectionFailoverEnabled(true);

pds.setONSConfiguration("propertiesfile=/usr/ons/ons.properties");

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

pds.setURL("jdbc:oracle:thin@((CONNECT_TIMEOUT=4)(RETRY_COUNT=30)(RETRY_DELAY=3) "+

 " (ADDRESS_LIST = "+

 " (LOAD_BALANCE=on) "+

 " (ADDRESS = (PROTOCOL = TCP)(HOST=RAC-SCAN)(PORT=1521))) "+

 " (ADDRESS_LIST = "+

 " (LOAD_BALANCE=on) "+

 "(ADDRESS = (PROTOCOL = TCP)(HOST=DG-SCAN)(PORT=1521)))"+

 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("FCFSamplePool");

pds.setFastConnectionFailoverEnabled(true);

pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=

/oracle11/onswalletfile");

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

pds.setURL("jdbc:oracle:thin@((CONNECT_TIMEOUT=4)(RETRY_COUNT=30)(RETRY_DELAY=3) "+

 " (ADDRESS_LIST = "+

 " (LOAD_BALANCE=on) "+

 " (ADDRESS = (PROTOCOL = TCP)(HOST=RAC-SCAN)(PORT=1521))) "+

 " (ADDRESS_LIST = "+

 " (LOAD_BALANCE=on) "+

 "(ADDRESS = (PROTOCOL = TCP)(HOST=DG-SCAN)(PORT=1521)))"+

 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

41 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Auto-configuration of ONS, often referred to as auto-ONS, allows the client to retrieve the ONS server configuration

information when an initial connection is made to the database. The ONS configuration can then be used to

construct a remote subscription the ONS daemon.

No client –side configuration of ONS is required. The ONS daemon does not have to run locally.

42 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Appendix B Troubleshooting FAN

 The following checklist can be used in the diagnosis of FAN delivery and retrieval related problems:

Is one or both Oracle Clusterware Grid Infrastructure being used or Global Data Services ? FAN

requires Oracle Clusterware or GDS for posting. You can use these with Oracle Restart, RAC, RAC

One, DG, and ADG. The important point is the database is being monitored.

 Is a dynamic database service being used? That is a service created and operated using one of srvctl

or gdsctl.

 Does the client connect using one of the recommended connect strings discussed in this paper? See

examples in the sections titled General Steps for Configuring FCF clients, or How to Configure FAN

(for your particular client type).

 Are FAN events being generated at the database tier? Install FANWatcher on any of the database

nodes and confirm FAN events can be generated and received.

 Are FAN events being generated at the client or mid-tier? Install FANWatcher on the client or mid-tier

node(s) and confirm FAN events can be received

o Ensure that the events being received at the client or mid-tier are for the DATABASE or

SERVICE you are connected to. Examine the FAN event payload for this information

 Have you set the appropriate settings on the client side for FAN?

o For Universal Connection Pool with JDBC thin driver, ensure the bolean pool property

FastConnectionFailoverEnabled = true is set when using Universal Connection

Pool with the JDBC thin driver

http://st-doc.us.oracle.com/database/121/JJDBC/urls.htm#r7c1-t7

o For ODP.Net, ensure that pooling=true; HA events=true is set in the connect string

o For OCI clients, refer to the section How to configure FAN for OCI clients where you will find

examples of how to:

 Set “<events>true</events>” in oraaccess.xml and enable notifications

on the dynamic database service “srvctl modify service –notification

TRUE …

o For WebLogic Active Grid Link, FAN is on by default. This is visible in the admin console.

For WebLogic also set ons.configuration at the admin console for the ons end

points.

o For JDBC OCI clients using Universal Connection Pool set

fastConnectionFailover=true

 Check for required patches – WebLogic Active GridLink needs 19033547, 20907322

 You should also check whether your application is frequently returning connections to the pool that it

is using. This is required for Fast Connection Failover functionality including planned draining, runtime

load balancing, affinity routing, and is also required by Application Continuity.

43 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Appendix C fanWatcher sample code

The following sample code is reproduced from the blog: The WebLogic Server Blog by Stephen Felts -

https://blogs.oracle.com/WebLogicServer/entry/fanwatcher_sample_program

Save the sample code printed below as fanWatcher,java and compile with the jar files (ons.jar,

ojdbcXX.jar) as per the description in the blog or that reproduced in this paper:

/* Beginning of sample Code for fanWatcher program */

/*

 * Copyright (c) 2015 by Oracle. All Rights Reserved

 */

import oracle.ons.ONS;

import oracle.ons.Subscriber;

import oracle.ons.Notification;

import java.util.Date;

import java.nio.ByteBuffer;

import java.sql.DriverManager;

import java.util.Properties;

import oracle.jdbc.internal.OracleConnection;

public class fanWatcher

{

 private static boolean debug = false;

 private static Subscriber s;

 public static void main(String args[]) {

 String subType = "";

 if (args.length < 1) {

 System.out.println("Usage: java fanWatcher config [events ...]");

 System.out.println("Set config to 'crs' to use CRS");

 System.out.println("Set config to 'autoons' to use Auto-ONS; set user,

password, and url in the environment to connect to the database");

 System.out.println("Set config to the configuration string otherwise, e.g.,

nodes=host:port,...");

 return;

 }

 String config = args[0];

 for (int i = 1; i < args.length; i++) {

 System.out.println("Subscribing to events of type: " + args[i]);

 subType = args[i];

 subType = "%\"" + subType + "\"";

 System.out.println("SubType: " + subType);

 }

 fanWatcher onc_s = new fanWatcher(config, subType);

 while (onc_s.receiveEvents());

 }

https://blogs.oracle.com/WebLogicServer/entry/fanwatcher_sample_program

44 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

 public fanWatcher(String config, String eventType) {

 if (config.equals("autoons")) { // auto-ONS

 try {

 Class.forName("oracle.jdbc.OracleDriver");

 String user = System.getenv("user");

 String password = System.getenv("password");

 String url = System.getenv("url");

 if (url == null || user == null || password == null) {

 System.out.println("Environment variables for user, password, and url must be set");

 System.exit(1);

 }

 java.util.Properties p = new java.util.Properties();

 p.put("url", url);

 p.put("user", user);

 p.put("password", password);

 OracleConnection oc = (OracleConnection)

 DriverManager.getConnection(p.getProperty("url"), p);

 Properties props = oc.getServerSessionInfo();

 config = props.getProperty("AUTH_ONS_CONFIG");

 if (config == null || config.equals("")) {

 System.out.println("Failed to get Auto-ONS configuration; maybe an older release");

 System.exit(1);

 }

 System.out.println("Auto-ONS configuration="+config);

 oc.abort();

 oc.close();

 } catch (Exception e) {

 System.out.println("Failed to connect to database");

 e.printStackTrace();

 System.exit(1);

 }

 }

 if (config.equals("crs")) {

 s = new Subscriber(eventType, ""); // subscribe to service events only

 } else {

 ONS ons = new ONS(config.trim());

 if (ons == null) {

 System.out.println("Failed to get ONS server");

 System.exit(1);

 }

 System.out.println("Opening FAN Subscriber Window ...\n\n\n");

 s = ons.createNewSubscriber(eventType, "");

 }

 if (s == null) {

 System.out.println("Failed to get subscriber");

 System.exit(1);

 }

 if (debug) {

 System.out.println("FANWatcher starting");

 }

 }

45 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

 public boolean receiveEvents() {

 if (debug) {

 System.out.println("** In receiveEvents. Creating Notification now ...");

 }

 if (s == null) {

 System.out.println("Failed to get ONS server");

 System.exit(1);

 }

 Notification e = s.receive(true); // blocking wait for notification receive

 // print event header to std out. Make debug only eventually

 if (debug) {

 System.out.println("** HA event received -- Printing header:");

 e.print();

 }

 // Print the header details

 printEvtHeader(e);

 if (debug) {

 System.out.println("** Body length = " + e.body().length);

 System.out.println("** Event type = " + e.type());

 }

 /* Test the event type to attempt to determine the event body format.

 Database events generated are "free-format" events -

 the event body is a string. It consists of space delimited

 key=value pairs.

 The following test only looks for database events.

 Other events will be received, but their bodies will not be displayed.

 */

 if (e.type().startsWith("database")) {

 if (debug) { System.out.println("Printing event"); }

 evtPrint(e);

 } else {

 System.out.println("Unknown event type. Not displaying body");

 }

 try {

 if (e.type().equals("onc/shutdown")) {

 if (debug) {

 System.out.println("Shutdown event received.");

 System.out.println(" ONC subscriber exiting!");

 }

 s.close();

 return false; // don't continue

 } else {

 java.lang.Thread.currentThread().sleep(100);

 if (debug) {

 System.out.println("Sleep and retry.");

 }

 }

 } catch (Exception te) {

 te.printStackTrace();

 }

 return true;

 }

46 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

 public void printEvtHeader(Notification e) {

 System.out.println("\n** Event Header **");

 System.out.println("Notification Type: " + e.type());

 System.out.println("Delivery Time: " + new Date (e.deliveryTime()));

 System.out.println("Creation Time: " + new Date (e.creationTime()));

 System.out.println("Generating Node: " + e.generatingNode());

 }

 // Print free format event

 public void evtPrint(Notification e) {

 if (debug) {

 System.out.println("De-coding a free-format event");

 ByteBuffer ffbuf = ByteBuffer.wrap(e.body());

 showBufferData(ffbuf,"ffbufName");

 }

 if (debug) {

 System.out.println("** About to generate Body Block **");

 }

 // convert the byte array event body to a String

 System.out.println("Event payload:\n" + new String(e.body()));

 }

 private void showBufferData(ByteBuffer buf, String name) {

 //Displays byte buffer contents

 int pos = buf.position();

 buf.position(0);

 if (buf.hasArray()) System.out.println("There is an array!");

 System.out.println("Raw Data for " + name);

 while(buf.hasRemaining()) {

 System.out.print(buf.get() + " ");

 }

 System.out.println();

 //Restore position and return

 buf.position(pos);

 }

}

/* End of fanWatcher Sample code */

47 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Appendix D Sample Callout program (PERL based)

The following sample code will attempt to start a SERVICE when an INSTANCE UP event is received.

Note that this program is a PERL script and requires modification before it can be run. This script must be fully

tested on your system so that its behavior is understood

Save the sample code as a file, place the file in the Grid_Home/racg/usrco directory and ensure it has execute

permissions for the Grid Infrastructure owner

#!/usr/bin/perl -w

Callout program that will, on an INSTANCE UP event start any services defined against

this database. This is to address the issue of INSTANCE STOP setting non-uniform service state

to OFFLINE.

Note: Running services will not be relocated.

CHANGE History: 13-JUN-2006 TANTHONY Created

use strict;

Replace the following variables with appropriate values

my $CRS_HOME="FULL PATH TO CRS HOME";

my $ORACLE_HOME="FULL PATH TO ORACLE HOME";

my $GetHOST = "/bin/hostname";

TMP refers to the log location only

my $TMP = "/tmp";

Logging enabled

my $LOGFILE = "$TMP/SRV_co.log";

my $instance;

my $database;

my $host;

my $service;

my $state;

my $reason;

my $card;

my $status;

my ($key,$value) = "";

my $myHost = "";

my ($myServ) = "";

Open a logfile

local *LOG_FILE;

open (LOG_FILE, ">>$LOGFILE") or do {

 print "Cannot open $LOGFILE\n";

 exit(1);

};

MORE CODE BEYOND THIS POINT

48 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Determine this host

system("$GetHOST > $TMP/myhost");

local *TEMP_FILE;

open (TEMP_FILE,"$TMP/myhost") or do {

 print "Cannot determine hostname\n";

 exit(1);

};

while (<TEMP_FILE>) {

 chomp;

 $myHost = $_;

};

close(TEMP_FILE);

Uncomment these lines if only interested in specific events

if ($ARGV[0] ne "INSTANCE") { exit(0); };

#if ($ARGV[0] ne "SERVICEMEMBER") { exit(0); };

#if ($ARGV[0] ne "SERVICE") { exit(0); };

#if ($ARGV[0] ne "NODE") { exit(0); };

for (my $i=0; $i <= $#ARGV; $i++) {

 #print "$i $ARGV[$i]\n";

 if ($ARGV[$i] =~ m#=#) {

 ($key,$value) = (split /=/, $ARGV[$i]);

 #print "Key = $key Value = $value\n";

 if ($key eq "service") {

 $service = $value;

 } elsif ($key eq "instance") {

 $instance = $value;

 $ENV{ORACLE_SID} = $value;

 } elsif ($key eq "database") {

 $database = $value;

 } elsif ($key eq "host") {

 $host = $value;

 } elsif ($key eq "card") {

 $card = $value;

 } elsif ($key eq "status") {

 $status = $value;

 } elsif ($key eq "reason") {

 $reason = $value;

 }

 }

}

MORE CODE BEYOND THIS POINT

49 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

The following function will set service state such that they will restart

if ($host eq "$myHost") {

 if ($status eq "up" && $ARGV[0] eq "INSTANCE") {

print LOG_FILE "Attempting set of service state for database: $database\n";

 # Determine services associated with this database

 srvMap($database, $instance);

 } else {

 }

} else {

 #print LOG_FILE "Event generated on a different node\n";

}

Sub routine to start services defined against a particular database

sub srvMap {

 my ($dbIn, $instanceIn) = @_;

 local*SRVFILE;

 #print LOG_FILE "In srvMap subroutine for $dbIn\n";

 #system("date +'%D %H:%M:%S.%N' >> /tmp/SRV_co.log") ;

Identify services defined for this database

 system("$ORACLE_HOME/bin/srvctl config service -d $dbIn > $TMP/serviceMap-$dbIn.out");

 open (SRVFILE,"$TMP/serviceMap-$dbIn.out") or do {

 print "Cannot open SRVFILE\n";

 exit(1);

 };

 while (<SRVFILE>) {

 chomp;

 ($myServ) = ($_ =~ m#^([\w]+) #);

 # print LOG_FILE "Starting service $myServ for database $database\n";

MORE CODE BEYOND THIS POINT

50 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Only one of the following two lines needs to be active. The first line will attempt to

start each service somewhere in the system. Depending on the system configuration, this

may cause other instances to start.

The second method will ONLY start the service on the instance that just started.

Neither method will affect currently running services.

 system("$ORACLE_HOME/bin/srvctl start service -d $dbIn -s $myServ");

system("$ORACLE_HOME/bin/srvctl start service -d $dbIn -s $myServ -i $instanceIn");

 };

 #system("date +'%D %H:%M:%S.%N' >> /tmp/SRV_co.log") ;

 print LOG_FILE "Routine complete\n";

END OF CALLOUT PROGRAM

51 | FAST APPLICATION NOTIFICATION WITH ORACLE DATABASE 12C

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0416

Fast Application Notification

April 2016

Author: Troy Anthony and Carol Colrain

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

