

Oracle
Partitioning
Extreme Data Management and Performance

WHITE PAPER / FEBRUARY 19, 2019

2 WHITE PAPER / Oracle Partitioning

PURPOSE STATEMENT

This document provides an overview of features and enhancements of Oracle Partitioning. It is
intended solely to help you assess the business benefits of Oracle Database and to plan your I.T.
projects.

DISCLAIMER

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the
terms and conditions of your Oracle software license and service agreement, which has been
executed and with which you agree to comply. This document and information contained herein may
not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written
consent of Oracle. This document is not part of your license agreement nor can it be incorporated
into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for
the implementation and upgrade of the product features described. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon in making purchasing decisions.
The development, release, and timing of any features or functionality described in this document
remains at the sole discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features
described in this document without risking significant destabilization of the code.

3 WHITE PAPER / Oracle Partitioning

TABLE OF CONTENTS

Purpose Statement .. 2

Introduction .. 4

Partitioning Fundamentals ... 5

Concept of Partitioning ... 5

Partitioning for Performance ... 7

Partitioning for Manageability ... 8

Partitioning for Availability .. 9

Information Lifecycle Management with Partitioning .. 10

Partitioning Strategies .. 11

Data distribution methods for partitioned objects ... 11

Partitioning Extensions ... 12

Partition Advisor ... 14

Partitioning Functionality at a Glance ... 15

Conclusion ... 17

4 WHITE PAPER / Oracle Partitioning

INTRODUCTION

With more than 20 years in development, Oracle Partitioning has
established itself as one of the most successful and commonly used
functionalities of the Oracle database. With Oracle Partitioning, a single
logical object in the database is subdivided into multiple smaller physical
objects, so-called partitions. The knowledge about this physical partitioning
enables the database to improve the performance, manageability, or
availability for any application. Whether you have an OLTP, a data
warehouse, or a mixed workload application and whether your system is
hundreds of GBs or in the Petabyte range, you will benefit from Partitioning.
Queries and maintenance operations are sped up by an order of
magnitude, while minimizing the resources necessary for processing.
Together with zone maps pruning capabilities are unlimited: tables and
partitions are broken down into smaller physical zones that are used for
fine-grained data pruning, in addition to the knowledge of partitions in a
table.

Partitioning can greatly reduce the total cost of data ownership, using a
“tiered archiving” approach of keeping older relevant information still online,
in the most optimal compressed format and on low cost storage devices,
while storing the hottest data in Oracle’s in-memory column store. When
used together with Automatic Data Optimization and Heat Maps,
Partitioning provides a simple and automated way to implement an
Information Lifecycle Management (ILM) strategy. With hybrid partitioned
tables, introduced in Oracle Database 19c, partitioned tables now can also
spawn internal and external storage within the same logical table, bringing
ILM to the next level.

Oracle Partitioning improves the performance, manageability, and
availability for tens of thousands of customers and hundreds of thousands
of applications. Everybody can benefit from it, and so can you.

5 WHITE PAPER / Oracle Partitioning

PARTITIONING FUNDAMENTALS

Concept of Partitioning
Partitioning enables tables and indexes to be subdivided into individual smaller pieces. Each piece of
the database object is called a partition. A partition has its own name, and may optionally have its own
storage characteristics. From the perspective of a database administrator, a partitioned object has
multiple pieces that can be managed either collectively or individually. This gives the administrator
considerable flexibility in managing a partitioned object. However, from the perspective of the
application, a partitioned table is identical to a non-partitioned table; no modifications are necessary
when accessing a partitioned table using SQL DML commands. Logically, it is still only one table and
any application can access this one table as they do for a non-partitioned table.

Database objects – tables and indexes - are partitioned using a partitioning key, a set of columns
that determine in which partition a
given row will reside. The partitions
of a table physically store the data,
while the table itself is metadata
only. For example, the Sales table
shown in Figure 1 is range-
partitioned on sales (order) date,
using a monthly partitioning strategy;
the table appears to any application
as a single, 'normal' table. However,
the database administrator can
manage and store each monthly
partition individually, optimizing the

data storage according to the importance of data and the frequency of being used. Partitions storing
older ranges of data can be stored in different storage tiers using table compression (or even stored in
read only tablespaces or marked as read only partitions) while the newest partitions are marked for
being stored in Oracle’s in-memory column store. With hybrid partitioned tables, some partitions can
reside on internal storage while others reside on external storage, all within the same logical table.

In case of a composite partitioned table, a partition is further subdivided into subpartitions, using a
second set of columns for further subdivision within a partition; the data placement of a given row is
then determined by both partitioning key criteria and placed in the appropriate subpartition. With a
composite partitioned table, the partition level becomes a metadata layer. Only subpartitions are
physically stored on disk1.

In the case of a partitioned external table, the concept of having different physical segments for
different parts of a table is extended to physical storage outside the database. Each partition of an
external table has one or multiple individual files that represent the subset of data of the partition.
However, unlike regular partitioned tables, the data placement is not enforced by the database.
External tables, partitioned or non-partitioned, are read only.

Hybrid partitioned tables combine the concept of both internal and external partitioned tables. As the
name suggests, with such a partitioned table you can have both partitions being stored internal (in the
database) and external (on physical storage outside the database). The same rules apply for external
partitions of a hybrid partitioned table than for partitions of a partitioned external table: the data
placement is not enforced by the database, and the content of such partitions is read only.

One logical object, many
physical partitions

From the perspective of the
application you have one table
you access. From the perspective
of the administrator, you have
multiple partitions you manage
individually.

Figure 1: Application and DBA view of a partitioned table

6 WHITE PAPER / Oracle Partitioning

Application developers generally do not have to worry about whether or not a table is partitioned, but
they also can leverage partitioning to their advantage: for example, a resource intensive DML
operation to purge data from a table can be implemented using partition maintenance operations,
improving the runtime dramatically while reducing the resource consumption significantly.

Irrespective of the chosen table partitioning
strategy, any index of a partitioned table is either
coupled or uncoupled with the underlying
partitioning strategy of its table. Oracle Database
18c differentiates between three types of indexes2.

A local index is an index on a partitioned table
that is coupled with the underlying partitioned
table; the index 'inherits' the partitioning strategy
from the table. Consequently, each partition of a
local index corresponds to one - and only one -
partition of the underlying table. The coupling
enables optimized partition maintenance; for
example, when a table partition is dropped, Oracle
simply has to drop the corresponding index
partition as well. No costly index maintenance is
required since an index partition is by definition
only tied to its table partition; a local index
segment will never contain data of other partitions.
Local indexes are most common in data
warehousing environments.

 A global partitioned index is an index on a partitioned or non-partitioned table that is partitioned
using a different partitioning-key or partitioning strategy than the table. Global-partitioned indexes can
be partitioned using range or hash partitioning and are uncoupled from the underlying table. For
example, a table could be range-partitioned by month and have twelve partitions, while an index on
that table could be hash-partitioned using a different partitioning key and have a different number of
partitions. Decoupling an index from its table automatically means that any partition maintenance
operation on the table can potentially cause index maintenance operations. Global partitioned indexes
are more common for OLTP than for data warehousing environments.

A global non-partitioned index is essentially identical to an index on a non-partitioned table. The
index structure is not partitioned and uncoupled from the underlying table. In data warehousing
environments, the most common usage of global non-partitioned indexes is to enforce primary key
constraints. OLTP environments on the other hand mostly rely on global non-partitioned indexes.

All of the before-mentioned index types can be either created on all partitions of a partitioned table –
so-called full indexing, the default – or created only on a subset of the partitions of a partitioned table
– so-called partial indexing3.

Flexible indexing for partitioned
tables

• Indexes can be partitioned or
not.

• Indexes can be tied to table
partitions or independent of
those.

• Indexing can be for the whole
table or partially for a subset of
partitions.

1 For simplicity reasons we will refer to partitions only for the rest of this document.

2 Partitioned external tables cannot be indexed.

3 Unique indexes cannot be partial.

Figure 2: Indexing on partitioned tables

7 WHITE PAPER / Oracle Partitioning

Only indexes on partitioned tables can be partial indexes. Whether a particular partition will be indexed
is determined by the properties of the partition and applied to all partial indexes. With partial indexing
you can for example to not index the most recent partition to avoid any index maintenance work at
data insertion time, therefore maximizing data load speed. Together with zone map data pruning the
potential impact of not having indexes for selective data access of the most recent partition is
minimized.

The appropriate indexing strategy is chosen based on the business requirements and access patterns,
making partitioning well suited to support any kind of application.

Partitioning for Performance
The placement of a given row is determined by its value of the partitioning key. How the data of a table
is subdivided across the partitions is stored as partitioning metadata of a table or index. This metadata
is used to determine for every SQL operation – queries, DML, and partition maintenance operations -
what partitions of a table are relevant for a given operation, and the database automatically only
touches relevant partitions or, with zone maps, even only portions of a partition or a table. By limiting
the amount of data to be examined or operated on, partitioning provides a number of performance
benefits.

Partitioning pruning (a.k.a. partition elimination) is the simplest and also the most effective means to
improve performance. It can often improve query performance by several orders of magnitude by
leveraging the partitioning metadata to only touch the data of relevance for a SQL operation. For
example, suppose an application contains an Orders table containing an historical record of orders,
and that this table has been partitioned by day on order date. A query requesting orders for a single
week would only access seven partitions of the Orders table. If the table had 2 years of historical data,
this query would access seven partitions instead of 730 partitions. This query could potentially execute
100x faster simply because of partition pruning. Partition pruning works with all of Oracle's other
performance features. Oracle will utilize partition pruning in conjunction with any indexing technique,
join technique, or parallel access method.

Zone maps4 expand Oracle’s pruning capabilities beyond the partitioning metadata of a table. Data
pruning can occur on a partition level and even on a much finer granularity, on ‘zones’. A zone is a
contiguous region of blocks for which a zone map tracks the minimum and maximum values for
specified columns. Note that these columns are not the partition key columns; while partition key
columns can be included, the most common usage of zone maps is to use other non-partition key
columns. For partitioned tables the zone map also contains the aggregated minimum and maximum
column values for every partition. Whenever a SQL operation is using the columns specified in a zone
map to limit (filter) the data of interest, Oracle will compare the filter and the zone map information and
not access zones and partitions that do not contain matching data. Zone maps are similar to Exadata
Storage indexes in that sense but provide additional benefits that complement Storage Indexes. Zone
maps are persistent data structures processed in the database and allow the specification of local
columns – columns of the table with the zone map - and joined columns.

[

4 See the Oracle Data Warehousing Guide for a detailed and comprehensive discussion of zone maps.

8 WHITE PAPER / Oracle Partitioning

Having zone maps in the database allows every statement to benefit. Using the Sales table from the
previous example, any query requesting information about sales orders that were shipped in a specific
time period has to access all partitions of the Orders table (because the partitioning key is order date,
not ship date). While there is a correlation between the order date and the ship date, it is impossible to
limit the partitions being accessed using the ship date alone. With zone maps, however, the database
knows about the minimum and maximum values for ship date as well; the zone map stores this
information for every partition. If the order data and ship date are within a business week of one
another, queries asking for products that were shipped in the last three weeks would only have to
access the partitions for orders of the last four weeks, and within these partitions only zones that were
shipped in that time period. You get partition and zone map pruning without having specified any filter
criteria on the partition key column.

Partitioning can also improve the performance of multi-table joins, by using a technique known as
partition-wise joins. Partition-wise joins can be applied when two tables are being joined together,
and at least one of these tables is partitioned on the join key. Partition-wise joins break a large join into
smaller joins of 'identical' data sets for the joined tables. 'Identical' here is defined as covering exactly
the same set of partitioning key values on both sides of the join, thus ensuring that only a join of these
'identical' data sets will produce a result and that other data sets do not have to be considered. Oracle
is using either the fact of already (physical) equi-partitioned tables for the join or is transparently
redistributing (= “repartitioning”) one table – the smaller one - at runtime to create equi-partitioned data
sets matching the partitioning of the other table, completing the overall join in less time, using less
resources. This offers significant performance benefits both for serial and parallel execution.

Partitioning for Manageability
By partitioning tables and indexes into smaller, more manageable units, database administrators can
use a "divide and conquer" approach to data management. Oracle provides a comprehensive set of
SQL commands for managing partitioning tables. These include commands for adding new partitions,
dropping, splitting, moving, merging, truncating, and exchanging partitions.

With partitioning, maintenance operations can be focused on particular portions of tables. For
example, a database administrator could compress a single partition containing say the data for the
year 2017 of a table, rather than compressing the entire table; as part of the compression operation,
this partition could also be moved to a lower cost storage tier, reducing the total cost of ownership for
the stored data even more. This partition maintenance operation can be done in a completely online
fashion, allowing both queries and DML operations to occur while the data maintenance operation is in
process.

Beginning with Oracle Database 18c you can execute partition maintenance operations on multiple
partitions as single atomic operation: for example, you can merge the three partitions ‘January 2018’,
‘February 2018’, and ‘March 2018’ into a single partition ‘Q1 2018’ with a single merge partition
operation.

Another typical usage of partitioning for manageability is to support a 'rolling window' load process in a
data warehouse. Suppose that a DBA loads new data into a table on daily basis. That table could be
range-partitioned so that each partition contains one day of data. The load process is simply the
addition of a new partition. Adding a single partition is much more efficient than modifying the entire
table, since the DBA does not need to modify any other partitions.

9 WHITE PAPER / Oracle Partitioning

Removing data in a very efficient and elegant manner is another key advantage of partitioning. For
example, to purge data from a partitioned table you simply drop or truncate one or multiple partitions, a
very cheap and quick data dictionary operation, rather than issuing the equivalent delete command,
using lots of resources and touching all the rows to being deleted. The common operation of removing
data with a partition maintenance operation such as drop or truncate is optimized beginning with
Oracle Database 18c: these operations do not require any immediate index maintenance to keep all
indexes valid, making it fast metadata-only operations5.

While Partition maintenance operations allow the fast removal of data, the granularity of such an
operation is tied to the bounds of the partitions being dropped or truncated. But as often in life, there
are rules to the exception: for example, as part of you rolling window operation you want to remove all
data that is older than 3 years, but you must not remove any order that has not been officially closed.
While this is a very rare situation for your business, this business requirement rules out to use a
truncate or drop partition out of the box. You have to cope with this situation programmatically by
preserving the outliers. Beginning with Oracle Database 18c, partition maintenance operations got
enhanced to allow filtering of data as part of any partition maintenance operation. In our example,
moving the partition and preserving all old records that are not officially closed achieve the removal of
the data. Filtered partition maintenance operations bring data maintenance to partition maintenance
operations6.

Furthermore, existing nonpartitioned and partitioned tables can be modified to a partitioned table or to
change the partitioning strategy in a fully online manner, including the modification of all existing
indexes. Whether you have the need to introduce partitioning for a growing system, to adjust the
partitioning strategy to address changing business requirements, or to cope with even more growth,
Oracle Database got you covered.

Partitioning for Availability
Partitioned database objects provide partition independence. This characteristic of partition
independence can be an important part of a high-availability strategy. For example, if one partition of a
partitioned table is unavailable, all of the other partitions of the table remain online and available. The
application can continue to execute queries and transactions against this partitioned table, and these
database operations will run successfully if they do not need to access the unavailable partition (when
an operation tries to access data that is not available then such an operation will obviously fail; Oracle
only returns true and valid results, no matter what).

The database administrator can specify that each partition be stored in a separate tablespace; this
would allow the administrator to do backup and recovery operations on an individual partition or sets of
partitions (by virtue of the partition-to-tablespace mapping), independent of the other partitions in the
table. In the event of a disaster, the database can be recovered with just the partitions comprising of
the active data, and then the inactive data in the other partitions can be recovered at a convenient
time, thus decreasing the system down-time. The most relevant data becomes available again in the
shortest amount of time, irrespective of the size of the overall database.

5 Asynchronous global index maintenance is discussed in the VLDB and Partitioning Guide

6 Filtered partition maintenance operations allow filter predicates on the partitioned table only and does not support joins or any
other complex SQL constructs.

10 WHITE PAPER / Oracle Partitioning

Moreover, partitioning can reduce scheduled downtime. The performance gains provided by
partitioning may enable database administrators to complete maintenance operations on large
database objects in relatively small batch windows.

Information Lifecycle Management with Partitioning
Today's challenge of storing vast quantities of data for the lowest possible cost can be optimally
addressed by using Oracle Partitioning with Automatic Data Optimization and Heat Map. The
independence of individual partitions, together with efficient and transparent data maintenance
operations for partitions, are key enablers for addressing the online portion of a “tiered archiving”
strategy. Specifically, in tables containing historical data, the importance - and access pattern – of the
data heavily relies on the age of the data; Partitioning enables individual partitions (or groups of
partitions) to be stored on different storage tiers, providing different physical attributes – such as
compression or whether data is read only or not - and price points. With hybrid partitioned tables some
of the older partitions can even reside outside the Oracle database on external storage. Such data is
by nature read only.

For internal partitions you can set individual partitions to read only, in addition to read only tablespaces
- which prevent any physical changes to the underlying storage container(s) of a tablespace. Setting a
partition to read only prevents any DML of the data within a partition to prevent any inadvertent
changes to the data within a read only partition. Technically speaking, read only guarantees that the
data in all existing columns of the table at the point when a partition was made read only must not
change. For example, in a Sales orders table containing 5 years’ worth of data, you could store only
the most recent quarter on an expensive high-end storage tier and keep the rest of the table (almost
90% of the data) on an inexpensive low-cost storage tier. You furthermore can store the oldest 2 years
as external partitions outside the database and the next 2 years as read only partitions. Only the most
recent years’ data can be changed, and all the older data is immutable and still available from within
the system for regulatory purposes, even if not all data is stored within the database7.

The addition of Automatic Data Optimization – ADO – allows you to define policies that specify when
storage tiering and compression tiering should be implemented for a given partition, based on the
usage statistics automatically collected by Heat Map. ADO policies are automatically evaluated and
executed by the Oracle Database without any manual intervention required, making it possible to
experience the cost savings and performance benefits of storage tiering and compression without
creating complex scripts and jobs8.

7 Note that while external partitions are read only from within the database, the database does not have control over its content nor
can it guarantee that the data is not changed from outside the database. Only for read only internal partitions Oracle can
guarantee that the data of such partitions cannot be changed as long as a partition is set to read only.

8 ADO supports only internal (database-managed) storage tiers as of today.

11 WHITE PAPER / Oracle Partitioning

PARTITIONING STRATEGIES

Oracle provides the most comprehensive set of partitioning strategies, allowing customers to optimally
align the data subdivision with the actual business requirements. All available partitioning strategies
rely on fundamental data distribution methods that can be used for either single (one-level) or
composite (two-level) partitioned tables. Furthermore, Oracle provides a variety of partitioning
extensions, increasing the flexibility for the partitioning key selection, providing automated partition
creation as-needed, sharing partitioning strategies across groups of logically connected tables through
parent-child relationships, and advising on partitioning strategies for non-partitioned objects.

Data Distribution Methods for Partitioned Objects
Oracle Partitioning offers three fundamental, basic data distribution methods that control how the data
is placed into partitions, namely:

• Range: The data is distributed based on a range of values of the partitioning key (for a date column
as the partitioning key, the 'January-2018' partition contains rows with the partitioning-key values
between '01-JAN-2018' and '31-JAN-2018'). Range distribution is a continuum without any holes.
Ranges are always defined as an excluding upper boundary of a partition, and the lower boundary
of a partition is automatically defined by the exclusive upper boundary of the preceding partition.
Partition boundaries are always increasing; as a consequence, the first partition of a table – the one
with the lowest range boundary - is always open-ended towards lower values. The last partition –
the one with the highest partition boundary – can be optionally set to being open-ended as well.
Range partitioning can have one or multiple partition key columns, up to 16 columns.

• List: The data distribution is defined by a discrete list of values of the partitioning key (for a region
column as the partitioning key, the 'North America' partition may contain values 'Canada', 'USA', and
'Mexico'). A special 'DEFAULT' partition can be defined to catch all values for a partition key that are
not explicitly defined by any of the lists. For heap tables, list partitioning can have one or multiple
partition key columns, up to 16 columns. Index-organized tables only support one partition key
column.

• Hash: An internal hash algorithm is applied to the partitioning key to determine the partition for a
given partition key. Unlike the other two data distribution methods, hash does not provide any logical
mapping between the data and any partition, but it provides roughly equi-balanced sizes of the
partitions. You get the best balance of partition sizes with a sufficient number of distinct values for
the partitioning key and by choosing a number of partitions that is a power of two, e.g. 4, 16, 64.
Hash partitioning can have one or multiple partition key columns, up to 16 columns.

Using these three fundamental data distribution methods range, list, and hash, a table can be
partitioned either as single or composite partitioned table.

In addition to the fundamental methods Oracle offers System partitioning: the database only
provides the framework to partition a table but does not store any metadata to determine the data
placement. The application layer manages the data placement, both for data insertion and for data
access (if the application wants to leverage partition pruning). System partitioning is designed as
development framework with special needs for data placement or access, such as domain indexes,
and only supports heap tables with single (one-level) partitioning. The definition and management of
the equivalent of a partition key is solely in the discretion of the application.

SINGLE (ONE-LEVEL) PARTITIONING

12 WHITE PAPER / Oracle Partitioning

A table is defined by specifying one of the above-mentioned data distribution methodologies, using
one or more columns as the partitioning key. For example consider a table with a number column as
the partitioning key and two partitions 'less_than_five_hundred' and 'less_than_thousand', the
'less_than_thousand' partition contains rows where the following condition is true: 500 <= Partitioning
key <1000. The partitions of a single partitioned table or index are individual physical segments in the
database that store the actual data of the object.

You can specify range, list, hash, and system partitioned heap tables and index-organized tables.
Hash clusters can be partitioned using range partitioning only9.

COMPOSITE (TWO-LEVEL) PARTITIONING

Combinations of two data distribution methods are used to define a composite partitioned table. First,
the table is partitioned by data distribution method one and then each partition is further subdivided
into subpartitions using the second data distribution method. For example, a range-list composite
partitioned table is first range-partitioned, and then each individual range-partition is further sub-
partitioned using the list partitioning technique. Partitions of a composite partitioned table are metadata
and do not represent the actual data storage: the subpartitions of a partition of a composite partitioned
table or index are the physical segments in the database that store the data of a given partition.

Available composite partitioning techniques are range-hash, range-list, range-range, list-range, list-list,
list-hash, as well as hash-hash, hash-range, and hash-list. Composite partitioning is only supported for
heap tables managed by the database.

Global partitioned indexes can be partitioned using range or hash partitioning. Composite partitioning
is not supported for global partitioned indexes.

Partitioning Extensions
Oracle provides partitioning extensions that enhance the usage of the basic partitioning strategies.
Partitioning extensions enhance the manageability of partitioned objects and provide more flexibility in
defining the partitioning key of a table or even groups of tables that are logically connected through
parent-child relationships. Partitioning extensions are only supported for heap tables managed by the
database.

9 Clusters are schema objects that consist of multiple tables stored within its data structure. With Hash Clusters the database stores
together rows that have the same hash value. Clusters are used predominantly in OLTP environments to minimize IO.

13 WHITE PAPER / Oracle Partitioning

INTERVAL PARTITIONING

Interval partitioning extends the capabilities of the range method by defining equi-partitioned ranges
for any future partitions using an interval definition as part of the table metadata. An interval partitioned
table can automatically grow up to the maximum total number of 1048575 partitions without any user
intervention, even when the partitioned table is initially created with one partition only. Rather than
creating future individual range partitions explicitly, Oracle will create any new partition automatically
as-needed whenever data for such a partition is inserted for the very first time. Interval partitioning
greatly improves the manageability of a partitioned table. For example, an interval partitioned table
could be defined so that Oracle creates a new partition for every day in a calendar year; a partition is
then automatically created for 'September 19th, 2031' as soon as the first record for this day is inserted
into the database.

Interval partitioning is an extension to range partitioning. Any range partitioned table can be evolved
into an interval partitioned table by specifying an interval definition for future partitions. The only
requirement for this to happen is that the last partition of the range partitioned table has a discrete
upper bound and not MAXVALUE prior to being changed. Having an open-ended infinite upper bound
is contradictory to the creation of future partitions based on an interval definition.

The available techniques for an interval partitioned table are interval, interval-list, interval-hash, and
interval-range. Oracle also supports the combination of the partitioning extensions interval partitioning
and reference partitioning. Interval as subpartitioning strategy for any top-level partitioning method (*-
Interval) is currently not supported.

AUTO LIST PARTITIONING

Similar to interval partitioning, auto list partitioning enables the automatic creation of new list partitions
as soon as a new partition key value is inserted into an auto list partitioned table. Every distinct value
will be stored in its individual partition if the value is not already included as partition key value of an
existing partition.

Auto list partitioning is an extension to list partitioning, and any existing list partitioned table can be
evolved into an auto list partitioned table. The only requirement for this to happen is that the list
partitioned table must not have a DEFAULT partition defined prior to being changed. Having this
catch-it-all partition is contradictory to the automatic creation of new partitions for any new partition key
value.

Auto list partitioning is available as partition extension. It is currently not supported as subpartitioning
strategy and not supported in combination with reference partitioning today.

REFERENCE PARTITIONING

Reference partitioning allows partitioning a table by leveraging an existing parent-child relationship.
The primary key-foreign key relationship is used to inherit the partitioning strategy of the parent table
to its child table without the necessity to store the parent's partitioning key columns in the child table.
The partitioning strategy of a parent and child table becomes identical. For every partition in the parent
table there is exactly one partition in the child table, and the child partitioning strategy is solely defined
through the primary key-foreign key relationship. All child records of a given primary key value are
stored in the “same” partition of the child table than the parent record. Without reference partitioning
you have to duplicate all partitioning key columns from the parent table to the child table if you want to
take advantage of the same partitioning strategy. Reference partitioning allows you to naturally
leverage the parent-child relationship of the logical data model without duplication of the partitioning

14 WHITE PAPER / Oracle Partitioning

key columns, thus reducing the manual overhead for de-normalization and saving space. Reference
partitioning also transparently inherits all partition maintenance operations that change the logical
shape of a table from the parent table to the child table. Partition-wise joins are automatically enabled
when joining the equi-partitions of the parent and child table, improving the performance for this
operation. For example, a parent table Sales orders is range partitioned on the order date column; its
child table Order Items does not contain the order date column but can be partitioned by reference to
the Sales orders table. If the orders table is partitioned by month, all order items for orders in 'March
2018' will then be stored in a single partition in the Order Items table, equi-partitioned to the parent
table Orders. If a partition 'April 2018' is added to the Sales orders table – either explicitly or through
Interval Partitioning - Oracle will transparently add the equivalent partition to the Order Items table.

Oracle supports the combination of reference partitioning with both virtual column-based partitioning
and interval partitioning. Auto list partitioning is not supported together with reference partitioning.

VIRTUAL COLUMN-BASED PARTITIONING

Virtual columns allow the partitioning key to be defined by an expression, using one or more existing
columns of a table, and storing the expression as metadata only. Partitioning using virtual columns
enables a more comprehensive match of the business requirements; business attributes not explicitly
defined as columns in a table can be used to define the partitioning strategy of an object. It is not
uncommon to see columns being overloaded with information; for example, a 10-digit account id can
include account branch information as the leading three digits. With the extension of virtual column-
based partitioning, the Accounts table containing a column account id can be extended with a virtual
(derived) column account branch that is derived from the first three digits of the account id column that
becomes the partitioning key for this table.

Oracle supports virtual column-based partitioning with all other partitioning extensions.

Partition Advisor
SQL Access Advisor generates partitioning recommendations, in addition to recommendations for
indexes, materialized views and materialized view logs. Recommendations generated by the SQL
Access Advisor will show the anticipated performance gains that will result if the recommendations
were implemented. The generated script with the recommendations can either be executed manually,
as complete script or individual recommendations, or being submitted into a queue within Oracle
Enterprise Manager.

The Partition Advisor is integrated into the SQL Access Advisor.

15 WHITE PAPER / Oracle Partitioning

PARTITIONING FUNCTIONALITY AT A GLANCE

The following table shows all available basic partitioning methods:

Basic Partitioning methods

Partitioning Strategy Data Distribution Sample Business Case

Range Partitioning Consecutive ranges of
values.

Orders table range partitioned by
order_date

List Partitioning Unordered lists of
values.

Orders table list partitioned by country

Hash Partitioning Internal hash algorithm Orders table hash partitioned by
customer_id

Composite Partitioning

• Range-
[Range | List |
Hash]

• List-
[Range | List |
Hash]

• Hash-
[Range | List |
Hash]

Combination of two of
the above-mentioned
basic techniques of
Range, List, and Hash

Orders table is range partitioned by
order_date and sub-partitioned by hash
on customer_id

Orders table is list partitioned by
country and sub-partitioned by range on
order_date

Orders table is hash partitioned by
country and sub-partitioned by hash on
customer_id

16 WHITE PAPER / Oracle Partitioning

The basic partitioning methods can be used in conjunction with the following partitioning extensions.

Partitioning Extensions

Partitioning
Extension

Description Sample Business Case

Interval Partitioning

• Interval-
[Range | List
| Hash]

Extension to Range Partitioning.
Defined by an interval, providing
equi-width ranges. With the
exception of the first partition all
partitions are automatically
created on-demand when
matching data arrives.

Orders table partitioned by
order_date with a predefined
daily interval, starting with '01-
Jan-2013'

Auto List Partitioning Extension to List Partitioning.
Defined through keyword
AUTOMATIC, partitions are
created automatically when a
partition key value is inserted
without having a matching
partition. Only one ‘starter
partition’ has to be created initially

Orders table list partitioned by
country, with only a
‘GERMANY’ partition being
pre-created.

Reference Partitioning Partitioning for a child table is
inherited from the parent table
through a primary key – foreign
key relationship. The partitioning
keys are not stored in actual
columns in the child table.

(Parent) Orders table range
partitioned by order_date and
inherits the partitioning
technique to (child) order lines
table. Column order_date is
only present in the parent
orders table

Virtual column based
Partitioning

Defined by any partition
techniques where the partitioning
key is based on a virtual column.
Virtual columns are not stored on
disk and only exist as metadata.

Orders table has a virtual
column that derives the sales
region based on the first three
digits of the customer account
number. The orders table is
then list partitioned by sales
region.

17 WHITE PAPER / Oracle Partitioning

CONCLUSION

Since its first introduction in Oracle 8.0 in 1997, Oracle continually enhances the functionality of Oracle
Partitioning with every release, by either adding new partitioning techniques, enhancing the scalability,
or extending the manageability and maintenance capabilities. The newest release of Oracle Database
is no different.

Oracle Partitioning is for everybody. Partitioning can greatly enhance the manageability, performance,
and availability of almost any database application. Since partitioning is transparent to the application,
it can be easily implemented for any kind of application because no costly and time-consuming
application changes are required.

ORACLE CORPORATION

Worldwide Headquarters
500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries
TELE + 1.650.506.7000 + 1.800.ORACLE1
FAX + 1.650.506.7200
oracle.com

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com/oracle facebook.com/oracle twitter.com/oracle

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are
subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed
orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0219

White Paper Oracle Partitioning
February 2019February 2019
Author: [OPTIONAL]
Contributing Authors: [OPTIONAL]

