

 ADF Code Corner

010. How-to create a character input counter for text

fields

Abstract:

 Text input areas that allow users to enter free text have a

limitation in the maximum length, which usually is

determined by the size of the underlying database

column. Even for experienced users that know about the

input size limitation, it is not convenient to count the

number of characters while typing to avoid hitting the

server side field validation error. Ideally there is a visual

indication for the user that tells him about the number of

characters left to finish his free text.

This how-to explains how JavaScript can be used in

combination with the ADF Faces Rich Client client

framework to meet this requirement.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
15-SEP-2008

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER How-to create a character input counter for text fields

 2

Introduction
JavaScript should be seen as a programming technique of the last resort in ADF Faces RC.

Ideally you find everything you need within ADF Faces and JavaServer Faces native APIs and

avoid JavaScript altogether. The reason that makes JavaScript a second best choice is that it is

directly added to a page (assuming its not a reusable code that resides in a library), which then

increases the download size and time. In addition, JavaScript has a different semantic than Java

and - by the time of writing - is not as good to debug and trace in Oracle JDeveloper then Java.

However, there are usecases where it is better to go for a JavaScript solution than for a server

side implementation. One of the usecases is the realization of a character input counter. Of

course this could be implemented using ADF Faces RC native APIs, but this then would be more

expensive at runtime. Before you blindly adopt JavaScript in your ADF Faces RC web application

development, think twice. JavaScript that directly accesses the client side document object model

should not be used at all and instead you should take the time to familiarize yourself with the

client side JavaScript APIs exposed by ADF Faces RC.

This how-to document, beside of giving you a starter code for input character counting and

visualization, gives you some hints of how to work with the client side JavaScript framework if

ADF Faces RC.

Sample Code explained

The example provided for download in this how-to contains a text field surrounded by a panelBox

component. In its header the panelBox component has an output text field to show the current counter

value plus a visual indication of green, orange and red.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER How-to create a character input counter for text fields

 3

The page source looks as follows:

<af:form>

 <af:panelBox text="PanelBox1" clientComponent="true">

 <f:facet name="toolbar">

 <af:outputText id="out1" clientComponent="true" value="400"/>

 </f:facet>

 <af:inputText label="Input" rows="7" columns="50"

 clientComponent="true"

 maximumLength="400">

 <af:clientListener method="charChecker" type="keyPress"/>

 </af:inputText>

 </af:panelBox>

</af:form>

For client side components to be accessed with JavaScript, you need to ensure a client component is

created. This is done by setting the "clientComponent" property to true. To code the solution generic, the

maximumLength property of the input text field is set to the maximum number of characters. Using ADF

you may want to use an Expression Language to get this value from the underlying Business Service like

ADF Business Components.

The JavaScript function that checks the typed input character is triggered by an af:clientListener

component that listens for the keyPress event and that is assigned to the af:inputText field.

<af:document>

...

<af:resource tpe="javascript">

 function charChecker(evt){

 textfield = evt.getCurrentTarget();

 textfield_current_content = textfield.getSubmittedValue();

 textfield_current_content_length =

 textfield_current_content.length;

 vGREEN = textfield.getMaximumLength();

 vORANGE = vGREEN/2;

 vRED = vORANGE/4;

 vBACKGROUND_COLOR ='white';

 vCOLOR ='black';

 counter = AdfPage.PAGE.findComponentByAbsoluteId("out1");

 counter_value = counter.getValue();

 if (vGREEN - textfield_current_content_length <= vGREEN &&

 vGREEN - textfield_current_content_length > 0){

 if(vGREEN - textfield_current_content_length <= vRED){

ADF CODE CORNER How-to create a character input counter for text fields

 4

 vBACKGROUND_COLOR ='red';

 vCOLOR='white';

 }

 else{

 if(vGREEN - textfield_current_content_length <= vORANGE){

 vBACKGROUND_COLOR ='orange';

 vCOLOR='black';

 }

 else{

 vBACKGROUND_COLOR ='green';

 vCOLOR='white';

 }

 }

 counter.setInlineStyleProperty(

 "background-color",vBACKGROUND_COLOR);

 counter.setInlineStyleProperty("color",vCOLOR);

 counter_value = vGREEN - textfield_current_content_length-1;

 }

 else{

 if (evt.getKeyCode()!= AdfKeyStroke.BACKSPACE_KEY

 && evt.getKeyCode()!= AdfKeyStroke.TAB_KEY

 && evt.getKeyCode()!= AdfKeyStroke.DELETE_KEY

 && evt.getKeyCode()!= AdfKeyStroke.ARROWLEFT_KEY

 && evt.getKeyCode()!= AdfKeyStroke.ARROWUP_KEY

 && evt.getKeyCode()!= AdfKeyStroke.ARROWRIGHT_KEY

 && evt.getKeyCode()!= AdfKeyStroke.ARROWDOWN_KEY)

 {

 evt.cancel();

 }

 }

 counter.setValue(counter_value);

 }

 </af:resource>

…

</af:document>

The JavaScript function charChecker takes a single argument, which is the keyboard event that is

passed to it from the ADF Faces RC client framework. Note that this event is not the native browser

event but a wrapped event from the ADF Faces framework. The target of the event is the actual text field

receiving the character input. Once you gain access to the text field you also get information about the

allowed maximum length and the current field value.

Instead of using the native document.getElementById() call to access a component on the page, you use

AdfPage.PAGE.findComponent() instead. The reason why getElementById() is not the best option to use

is because it doesn't access the component but the generated HTML output, which means that developers

need to have a clear idea of how exactly this output looks like.

The following if/else statement determine the color of the counter background to be green, orange or

red. If the maximum length is reached then no more keyboard input is allowed. To handle this, all input

keys other than delete and arrow keys are suppressed by canceling the event.

ADF CODE CORNER How-to create a character input counter for text fields

 5

Sample Download

Download the Oracle JDeveloper 11 sample workspace from ADF Code Corner:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

 Note that this sample has been build with a pre-production build of Oracle JDeveloper 11.

RELATED DOCOMENTATION

 Oracle Fusion Developer Guide – McGraw Hill Oracle Press, Frank Nimphius, Lynn Munsinger

http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

