

 ADF Code Corner

101. How-to drag-and-drop data from an af:table to

af:tree

Abstract:

 Drag and drop is a feature of the ADF Faces framework.

All developers have to do to make this work is to add a

drag source tag to the component that is the origin of a

drag operation and a drop tag to the component that is the

desitination of this operation.

This article provides a sample and explanation of how to

develop drag and drop between an AD bound ADF Faces

table and an ADF Faces tree component.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
13-JUN-2012

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER [ADF CODE CORNER:]

 2

Introduction
The Oracle JDeveloper 11g R1 (11.1.1.6) sample application you can download from a link at the

end of this article shows a table of employees to the left and a tree component to the right.

You can drag one or multiple rows from the table and drop it onto the tree component. If the drop

is to a node that is not a department, an information alert is shown

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER [ADF CODE CORNER:]

 3

If the drop is on a department node then the employee accounts within the drop are updated with

the department ID of the drop target.

The tree is refreshed and the department node with the new employee nodes expanded.

Note that the sample does not commit the data changes to preserve the state of your HR schema

data.

The sample code has a couple of useful code examples, like

 Handling a drop event for a data collection

 Determine the node type of the drop

 Avoiding conflicts due to programmatic changes of the tree row state

ADF CODE CORNER [ADF CODE CORNER:]

 4

 Expanding specific tree node path

Implementing drag and drop

The implementation of drag and drop between an ADF Faces table and a tree is not complicated at all, as

you can tell from the page source shown below:

<af:table value="#{bindings.EmployeesView1.collectionModel}"

 var="row" rows="#{bindings.EmployeesView1.rangeSize}" ...">

 <af:dragSource actions="MOVE" discriminant="rowmove"

 defaultAction="MOVE"/>

 <af:column ...>

 ...

</af:column>

The af:dragSource tag is an immediate child of the af:table component. The discriminant property

allows you to associate a specific drag event with this drop target so that users cannot make mistakes in

pages that support drag and drop on multiple components. The action MOVE provides an additional

discriminator in that the drag only occurs on drop targets that also support the MOVE action. Other

action types are COPY and LINK.

The drop component in this sample is the ADF Faces tree component. The configuration is shown below

<af:tree value="#{bindings.LocationsView11.treeModel}" var="node"

 selectionListener="#{bindings.LocationsView11.treeModel.makeCurrent}"

 rowSelection="single" id="t2">

 <f:facet name="nodeStamp">

 <af:outputText value="#{node}" id="ot11"/>

 </f:facet>

 <af:collectionDropTarget dropListener="#{DropHandlerBean.dropHandler}"

 actions="MOVE" modelName="rowmove"/>

</af:tree>

As mentioned, the implementation of drag and drop in ADF Faces is not difficult. The drop target is

defined by the af:collectionDropTarget dropListener, which is an immediate child of the af:tree

component. The modelname property matches the discriminant property value of the drag source. If

the action wasn't MOVE but COPY or LINK then no drop would be allowed. Note that you can define

multiple actions, for example actions="COPY MOVE"

The drop handler code

If the implementation of drag and drop on the page is so simple, then there must be power within the

managed bean method that handles the drop event. The beauty of drag and drop in ADF Faces is that it

ADF CODE CORNER [ADF CODE CORNER:]

 5

takes the burden of cross-browser drag-and-drop JavaScript development from the application developer

and instead delegates the event handling to Java in a managed bean.

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import javax.faces.component.ContextCallback;

import javax.faces.component.UIComponent;

import javax.faces.component.UIViewRoot;

import javax.faces.context.FacesContext;

import oracle.adf.model.bean.DCDataRow;

import oracle.adf.view.rich.component.rich.RichPopup;

import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.adf.view.rich.component.rich.data.RichTree;

import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.adf.view.rich.datatransfer.DataFlavor;

import oracle.adf.view.rich.datatransfer.Transferable;

import oracle.adf.view.rich.dnd.DnDAction;

import oracle.adf.view.rich.event.DropEvent;

import oracle.jbo.Row;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.event.PollEvent;

import org.apache.myfaces.trinidad.event.SelectionEvent;

import org.apache.myfaces.trinidad.model.CollectionModel;

import org.apache.myfaces.trinidad.model.RowKeySet;

import org.apache.myfaces.trinidad.model.RowKeySetImpl;

public class DropHandlerBean {

 //Variable holding the component looked up on a page. See

 //"findComponentOnPage" method in this class that allows

 //you to get a handle to any component in a view by the

 //component ID using an optimized search explained in ADF

 //Code Corner sample #58

 //http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-

 //optimizedadffacescomponentsearch-175858.pdf

 private UIComponent lookupComponent = null;

 public DropHandlerBean() {}

 public DnDAction dropHandler(DropEvent dropEvent) {

 //get handle to drag component

http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-optimizedadffacescomponentsearch-175858.pdf
http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-optimizedadffacescomponentsearch-175858.pdf

ADF CODE CORNER [ADF CODE CORNER:]

 6

 RichTable table = (RichTable) dropEvent.getDragComponent();

 //get handle to drop component

 RichTree tree = (RichTree) dropEvent.getDropComponent();

 //memorize current row key to restore the original selection state

 //of the tree to avoid issues with context menus or similar. Note

 //that this step is important and should never be omitted when you

 //programmatically change the row key for trees, tables and tree

 //tables

 Object currentRowKey = tree.getRowKey();

 //the drop site tells us about the node that received the drop

 //event. In this use case we only allow the department node to

 //handle the drop. For others we show a user information in a

 //popup

 List dropRowKey = (List) dropEvent.getDropSite();

 //if no dropsite then drop area was not a data area

 if(dropRowKey == null){

 return DnDAction.NONE;

 }

 //make row current so we can access it. This line of code is

 //the reason why we needed to keep track of the original tree

 //selection state. Here we programmatically change the row

 //currency without telling the underlying ADF binding layer.

 //If we don't set the row selection back to the original value

 //we would risk the binding layer (model) and the client tree

 //state to go out of synch

 tree.setRowKey(dropRowKey);

 JUCtrlHierNodeBinding dropNode =

 (JUCtrlHierNodeBinding) tree.getRowData();

 String dropNodeVO =

 dropNode.getHierTypeBinding().getStructureDefName();

 //The ADF Binding layer tells us about the structure definition

 //name of a node. If you select a node in the binding editor then

 //a string like shown below is displayed for each node. Using this

 //information you can tell what type the node is of. In our case

 //if the type is department, the drop is allowed

 if (dropNodeVO.equalsIgnoreCase

 ("adf.sample.model.vo.DepartmentsView")) {

 Row treeRow = dropNode.getRow();

 Transferable t = dropEvent.getTransferable();

 DataFlavor<RowKeySet> df =

 DataFlavor.getDataFlavor(RowKeySet.class, "rowmove");

 RowKeySet rks = t.getData(df);

 Iterator iter = rks.iterator();

ADF CODE CORNER [ADF CODE CORNER:]

 7

 //we allow multi-row drag and drop so that multiple employees

 //can be relocated at the same time

 while (iter.hasNext()) {

 //get next selected row key

 List key = (List)iter.next();

 table.setRowKey(key);

 //the table model represents its row by the ADF binding class,

 //which is JUCtrlHierNodeBinding

 JUCtrlHierNodeBinding rowBinding =

 (JUCtrlHierNodeBinding)table.getRowData();

 //DCDataRow is the generic row class representation in in ADF.

 //It is the super class of oracle.jbo.Row, which you use with

 //ADF BC services

 Row tableRow = (Row)rowBinding.getRow();

 //to relocate employees, just change the department ID

 tableRow.setAttribute("DepartmentId",

 treeRow.getAttribute("DepartmentId"));

 }

 //set current row key back

 tree.setRowKey(currentRowKey);

 //Show the employees in their new department by expanding the

 //target department node. For this we need to

 // 1. get access to the ADF tree binding

 // 2. iteratively get all parent nodes

 // 3. get the child nodes (employees) of the drop node

 //1. get access to the ADF tree binding. We get this from the

 //tree instance we obtained from the dropEvent target

 CollectionModel treeModel = (CollectionModel) tree.getValue();

 JUCtrlHierBinding treeBinding =

 (JUCtrlHierBinding) treeModel.getWrappedData();

 //create a new row key set

 RowKeySetImpl rksImpl = new RowKeySetImpl();

 rksImpl.add(dropRowKey);

 //2. Get all parent nodes node path information to add to the

 //row key set to disclose the node

ADF CODE CORNER [ADF CODE CORNER:]

 8

 JUCtrlHierNodeBinding treeDropNode =

 treeBinding.findNodeByKeyPath(dropRowKey);

 JUCtrlHierNodeBinding rootNode =

 treeBinding.getRootNodeBinding();

 JUCtrlHierNodeBinding dropNodeParent = treeDropNode.getParent();

 //walk up the tree to expand all parent nodes

 while(dropNodeParent != null && dropNodeParent != rootNode){

 rksImpl.add(dropNodeParent.getKeyPath());

 dropNodeParent = dropNodeParent.getParent();

 }

 //3. get all employee nodes in a tree to disclose them too

 ArrayList<JUCtrlHierNodeBinding> childList =

 (ArrayList<JUCtrlHierNodeBinding>) treeDropNode.getChildren();

 for(JUCtrlHierNodeBinding nb : childList){

 rksImpl.add(nb.getKeyPath());

 }

 //ready to disclose

 tree.setDisclosedRowKeys(rksImpl);

 AdfFacesContext.getCurrentInstance()

 .addPartialTarget(tree.getParent());

 AdfFacesContext.getCurrentInstance().addPartialTarget(table);

 return DnDAction.MOVE;

 }

 //set current row key back

 tree.setRowKey(currentRowKey);

 //notify the user about failed drop

 RichPopup userInfo = (RichPopup) findComponentOnPage("p2");

 RichPopup.PopupHints hints = new RichPopup.PopupHints();

 userInfo.show(hints);

 return DnDAction.NONE;

 }

 private UIComponent findComponentOnPage(String id){

 String comp = id;

 //see ADF Code Corner sample #58 to read about the code

 //used in the search below

 FacesContext fctx = FacesContext.getCurrentInstance();

 UIViewRoot root = fctx.getViewRoot();

 root.invokeOnComponent(fctx,comp,

 new ContextCallback(){

 public void invokeContextCallback(FacesContext facesContext,

ADF CODE CORNER [ADF CODE CORNER:]

 9

 UIComponent uiComponent) {

 lookupComponent = uiComponent;

 }

 });

 return lookupComponent;

 }

}

Download

You can download the Oracle JDeveloper 11.1.1.6 sample application from ADF Code Corner where it is

sample # 101

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

You need to configure the database connection to point to the HR schema in your local database.

RELATED DOCOMENTATION

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

