ADF Code Corner

103. How-to edit an ADF form with data dragged
from an ADF Faces table

ORACLE
CQDE CORNER

twitter.com/adfcodecorner

Abstract:

Drag and drop appears to be a feature area in ADF
Faces that is not widely used by Oracle ADF application
developers. One reason for this might be the lack of
documented examples for specific use cases.

So here's another one: In this article | explain how to drag
and drop a row from an ADF Faces table on top of an
input form to copy data into the form.

Frank Nimphius, Oracle Corporation

twitter.com/fnimphiu

22-AUG-2012

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

How-to edit an ADF form with data dragged from an ADF
ADF CODE CORNER [spIdeEg=1alE

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle | Developer: bttp:/ / forums.oracle.com/ forums/ fornm.jspa2forumID=83

Introduction

In a previous article, "How-to drag-and-drop data from an af:table to af:tree", | explained how to
update a tree with data dragged from an ADF Faces table. In this sample, | am using the same
code base but perform the drop operation onto an iput for to update or create new employees.

As in the screenshot below, the drag operation is originated from an ADF Faces table that has
single row selection enabled. The drop area is a panelFormLayout component that then invokes
the droplistener to process the data exchange. The sample can be easily changed to support
drag and drop to other layout containers holding the form input fields.

Departmentld |DeparimentName |Manager1d |L0cah’0n1d | Departmentld

10 Administration 200 1700 * Employesrd

20 Marketing 201 1800 !

30 Purchasing 114 1700 FirstName

40 Human Resources 203 2400 # | zstMame

50 Shippings 121 1500 e

&0 m 103 1400 s

70 Public Relations 204 2700 PhoneMumber

30 Sales 145 2500 * HireDate |‘_§"G
a0 Executive 100 1700

100 Finance 108 1700 * Jobld

110 Accounting 205 1700 Salary 70 %
120 Treasury 200 1700 CommissionPct

130 Corporate Tax 201 1700

140 Contral And Credit 1700 ManagerId

150 Shareholder Services 1700 First | Previous | Mext | Last

160 Benefits 1700 3 3

170 Manufacturing 1700 Submit | Create | Commit |

1an Mametrrbine 17N

The screen shot below shows the result of the table row being dropped onto an empty form. The
employee Departmentld and Managerld fields are updated by the drop operation (in practice it is
up to you how many attributes exposed in form fields you update using drag and drop).

A problem that showed when updating the form for a new employee record is that the drop
operation refreshes the drop target — the panelFielLayout component — which then refreshes its
child components. This lead to many required field warnings that the sample code posted in this
article needed to suppress using JavaScript.

http://forums.oracle.com/forums/forum.jspa?forumID=83

How-to edit an ADF form with data dragged from an ADF
DI G@IDISNG@INNIARE IFaces table

Departmentld |Departmentiiame [Managerld |Locationd Departmentld | 70

10 Administration 200 1700 * Employestd

20 Marketing 201 1800

30 Purchasing 114 1700 FirstName

40 Human Resources 203 2400 * | zstiame

50 Shippings 121 1500 .)

) m 103 1400 A

70 Public Relations 204 2700 PhoneMumber

80 Sales 145 2500 * HireDate %
90 Executive 100 1700

100 Finance 108 1700 * Jobld

110 Accounting 205 1700 Salary %
120 Treasury 200 1700 CommissionPct

130 Corporate Tax 201 1700

140 Control And Credit 1700 Managerld | 204

150 Shareholder Services 1700 First | Previous | Mext | Last
160 Benefits 1700 . .

70 Manufacturing 1700 Submit | Create | Commit |
180 Construction 1700

190 Contracting 1700

200 Operations 1700

210 IT Support 1700

o B]

Building the Sample

The sample itself is built based on the Oracle HR schema using ADF Business Components as the
business service. In an ADF Faces page, a panelSplitter component is used to hold the drag source

(table) and the drop target (input form).

FormDragAndDrop Jspx X

@ - show-[1024x7s8 ~|[@] | | " BHLBIUECTEEE-
lgg;r-}DEDamﬂEﬂﬂd- :Zfébérhnenﬂﬂame. |§§éf}managerld' |§§;f}mmt :| #{...Departmentld...label} |#{ Departmentid inputvalue}
#{,..DepartmentId} z{ﬁr.}Deparmenﬁ'Jam #{,. Managerld} #[..locat #L..Employeeld...ibel} | #(.. Employeeld inpuf/alue}
wr 1w Ham £ 1 Yy cat .label} |#{. FirstName.inputvalue}

+label}y |#. LastName.inputValue}
il..Jabel} |#{. Emailinputvalue}
#{...PhoneNumber...label} |#{ PhoneNumber inputValue}
#{...HireDate.. .label} |#{ HireDate input\alue} EEB
#{...JobId.. label} (#{ _lobi inputvalue}
#{...5alary...label} | #{...5alary.inputValue}
#{...CommissionPct...label} |#{ CommissionPctinputvalus}

#{...Managerld...label}

b

...Managerld.inputValue}
First Previous Mext Last

Submit Create Commit

As shown in the next image, to enable drag and drop in ADF Faces, you add the af:dragSource
component to the table and the af:dropTarget component to the panelFormlayout component. The two
behavior tags implement all the JavaScript required at runtime to perform the drag and drop operation.

How-to edit an ADF form with data dragged from an ADF
ADF CODE CORNER [spIdeEg=1alE

"= FormDragAndDrop.jspx - Structure * =)

[g
= |28 af:form
E}lIl afipanelsplitter - horizontal
==Y Panel Splitter facets
== first
= af:table - t1

-B aficolumn - #bindings.Departmeantsview 1.hin
-B aficolumn - #/bindings.DepartmentsView 1. hin
-B aficolumn - #{bindings.Departmentsview 1.hin
-B af:column - £bindings.Departmentsview L.hin
-/l Table facets
)= second

E}E afipanelGroupLayout - scroll

E} af:panelFormLayout

Ii:I afinputText - #{hindings.Departmentid.h
Ii:I afiinputText - #{bindings.Employeeld.hin
Ii:I afiinputText - #{bindings.FirstName. hints
Ii:I afiinputText - #{bindings.Lastiame. hints
Ii:I afinputText - #{hindings.Email. hints.labe
Ii:I afiinputText - #{bindings.PhoneMumber .k
afiinputDate - #4{bindings.HireDate. hints.
Ii:I afiinputText - #{hindings. JobId.hints. labs
Ii:I afinputText - #{hindings.5alary. hints.lab
Ii:I afiinputText - #{bindings. CommissionPct.
Ii:I afiinputText - #{bindings.ManagerId.hint
-
[} '=4 Panel Form Layout facets
[=i Panel Group Layout facets
E}ﬂ Document facets

The configuration of the af:dragSource is shown below: The Actions property when left empty defaults
to the Copy action (Move and Link would be the other choices). The Discriminant property defines a
key string that ensures the drag operation to be answered only by drop targets that know how to deal with
it. Using a discriminator allows you to have multiple drag-and-drop tags on a page without the application
user to accidentally drop a collection to the wrong target.

How-to edit an ADF form with data dragged from an ADF
RYDING@IDIDNGOIRNNIBING Faces table

% Drag Source - Property Inspector * |

oA E S | g8 ¢

Actions: | [v] w
DefaultAction: | [v] w
o Discriminant: |r|::u.|':.u::c::|:|1,-I | v
DragDropEndListener: | |~

The drop target tag also requires less configuration and defaults to COPY as the default action. Explicitly
setting the Actions property value makes sense for components that support other actions like MOVE
and Link too.

@Dmp Target - Property Inspector X

Il N (@@)@

Actions: | [‘v‘] >
o Droplistener *; |#{DrupHar1d|erE|ean.dranandIer} | o
ClientDropListener: | |v

The DropListener property points to a managed bean to receive the drop event. The managed bean
method then also receives access to all information, including the transferred data object, the drag source
and the drop target components, required to handle the event. The ClientDropListener property is only
useful if you want to suppress the drop event based on a client side condition evaluated in JavaScript.

The DropTarget configuration that is not shown in the screenshot is the definition of the data flavor, the
type of data transferred with the drag-and-drop operation.

How-to edit an ADF form with data dragged from an ADF
ADF CODE CORNER [spIdeEg=1alE

In the sample the whole DropTarget tag definition added as a child to the PanelFormLayout looks as

shown below

<afidropTatget dropListener="# {DropHandletBean.dropHandler} ">
<afidataFlavor flavorClass="org.apache.myfaces.trinidad.model. RowKeySet"
discriminant="rowcopy" />
</afidropTarget>

The data type to read from the transfer object is the RowKeySet of the table row(s) dragged from the
ADF Faces table. The dataFlavor tag also defines a discriminator that matches the key string defined on
the DragSource.

On the view layer, these few configurations is all you need to do to get drag-and-drop working in ADF
Faces. The rest is all handled in Java within a managed bean (DropHandlerBean in this sample). Drag and
drop really is easy to use and I am surprised why the feature is not widely used.

EI ViewController
E]l:l Application Sources
EI@ adf.sample
g
[=--[ifjl adf sample. view
- @-[3 META-INF
EII:I Web Content
D images
-7 WEB-INF
l—:l Page Flows

------- FormDragAndDrop, jspx

DropHandlerBean code

The best way to explain code is to show it and have comments speaking for it. The use case in the sample
is that upon drag and drop (a single row can be dragged at a time) of a table row, the department Id and

the manager Id are copied as a value to the current employee record (which can be a new record).
As a rule employees should not report to themselves but someone else.

package adf.sample;

import Jjava.util.Iterator;

import java.util.List;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import oracle.adf.model.BindingContext;

import oracle.adf.model.binding.DCIteratorBinding;

import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.adf.view.rich.component.rich.input.RichInputText;

import oracle.adf.view.rich.component.rich.layout.RichPanelFormLayout;

How-to edit an ADF form with data dragged from an ADF
ADF CODE CORNER [spIdeEg=1alE

import oracle.adf.view.rich.datatransfer.DataFlavor;

import oracle.adf.view.rich.datatransfer.Transferable;

import oracle.adf.view.rich.dnd.DnDAction;

import oracle.adf.view.rich.event.DropEvent;

import oracle.binding.BindingContainer;

import oracle.jbo.Row;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.RowKeySet;

import org.apache.myfaces.trinidad.render.ExtendedRenderKitService;
import org.apache.myfaces.trinidad.util.Service;

/**
* Drag and drop handler that handles the table row drop onto
* an input form

* Qauthor Frank Nimphius (8/2012)
*/

public class DropHandlerBean {
public DropHandlerBean () {
}

//method referenced from the af:dropTarget

public DnDAction dropHandler (DropEvent dropEvent) {
//access the drag source, the table to read the rowKey
//representing the row
RichTable table = (RichTable)dropEvent.getDragComponent () ;
Transferable t = dropEvent.getTransferable();

DataFlavor<RowKeySet> df =

DataFlavor.getDataFlavor (RowKeySet.class, "rowcopy") ;
RowKeySet rks = t.getData (df);
Iterator iter = rks.iterator():;

//sample is set up for single row drag and drop
if (iter.hasNext()) {
//get next selected row key
List key = (List)iter.next();
table.setRowKey (key) ;

//get handle to drop component
RichPanelFormLayout panelFormLayout =
(RichPanelFormLayout) dropEvent.getDropComponent () ;

//JUCtrlHierNodeBinding is the object in ADF that represents
//a row in a table or a node in a tree. The object wraps the
///actual table row object, which in the case of ADF BC is

How-to edit an ADF form with data dragged from an ADF
ADF CODE CORNER [spIdeEg=1alE

//oracle.jbo.Row
JUCtrlHierNodeBinding rowBinding =
(JUCtrlHierNodeBinding) table.getRowData () ;

//the row that is actually dragged from the ADF Faces table
Row departmentDropRow = rowBinding.getRow() ;

//update current row in form if the table row is not null
if (departmentDropRow != null) {
//to evaluate and update the manager Id field, we need to create
//and store a handle to it. The bean is in request (or backing
//bean scop, so no overhead)
UIComponent managerId = null;

//search all panelFormLayout component children for the
//DepartmentId field "it8" and ManagerId field "it2". This
//1is where you can extend the sample in your implementation to
//update more than 2 fields
for (UIComponent uiComp : panelFormLayout.getChildren ()) {
if (uiComp.getId()=="1t8") {
((RichInputText)uiComp) .resetValue () ;
((RichInputText)uiComp) .setValue (
departmentDropRow.getAttribute ("DepartmentId")) ;

}
else if (uiComp.getId()=="it2") {
//save component handle for later (see below)

managerId = uiComp;

//access current binding container
BindingContext bctx = BindingContext.getCurrent();
BindingContainer bindings = bctx.getCurrentBindingsEntry () ;
//get current employee row
DCIteratorBinding employeelterator =
(DCIteratorBinding) bindings.get ("EmployeesViewlIterator");
Row currentEmployee = employeelterator.getCurrentRow () ;
//managers should not manage themselves
oracle.jbo.domain.Number employeeId = (oracle.jbo.domain.Number)
currentEmployee.getAttribute ("EmployeeId") ;

oracle.jbo.domain.Number deptManagerId =
(oracle.jbo.domain.Number)departmentDropRow.
getAttribute ("ManagerId") ;

How-to edit an ADF form with data dragged from an ADF
ADF CODE CORNER [RSEISERZ1IE

if (employeeId == null ||
(employeeId.intValue () != deptManagerId.intValue())) {
((RichInputText)managerId) .resetValue () ;
((RichInputText)managerId) .setValue (
departmentDropRow.getAttribute ("ManagerId")) ;

//at the end of the drag and drop operation, the drop target,
//the panelFormLayout in this case, is refreshed. If the form
//you edit with drag and drop contains required fields, then
//these would be flagged as an error.

//To avoid this in this sample, JavaScript is used to clear
//all error messages on the client that occur in response to
//the drag and drop operation

FacesContext fctx = FacesContext.getCurrentInstance() ;
ExtendedRenderKitService erks =
Service.getRenderKitService (fctx,
ExtendedRenderKitService.class) ;
erks.addScript (fctx, "AdfPage.PAGE.clearAllMessages () ;") ;
//success ! So acknowledge the COPY for the drop target
//to refresh
return DnDAction.COPY;
}

//no drag and drop happened
return DnDAction.NONE;
}
}

The code lines highlighted in bold and red are those you want to pay attention to. This is the trick that
allows drag and drop to happen of form fields that — after the drop operation — have required fields with
no value entry. This is to avoid required field values to show.

Summary and Download

This article explained how to implement drag and drop between an ADF Faces table and an input form.
The sample code is for JDeveloper 11g R1 (11.1.1.6) but also works with newer releases of Oracle
JDeveloper.

To run the sample, configure the database connection of the application to access the HR schema in a
local Oracle database installation.

The workspace for this sample can be downloaded as sample #103 from the ADF Code Corner website

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

How-to edit an ADF form with data dragged from an ADF
ADF CODE CORNER [RSEISERZ1IE

RELATED DOCOMENTATION

O | "How-to drag-and-drop data from an afitable to afitree"

http://www.oracle.com/technetwork/developer-tools /adf/learnmore/101-drag-drop-table-tree-
1661895.pdf

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/101-drag-drop-table-tree-1661895.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/101-drag-drop-table-tree-1661895.pdf

