

 ADF Code Corner

103. How-to edit an ADF form with data dragged

from an ADF Faces table

Abstract:

 Drag and drop appears to be a feature area in ADF

Faces that is not widely used by Oracle ADF application

developers. One reason for this might be the lack of

documented examples for specific use cases.

So here's another one: In this article I explain how to drag

and drop a row from an ADF Faces table on top of an

input form to copy data into the form.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
22-AUG-2012

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

2

Introduction
In a previous article, "How-to drag-and-drop data from an af:table to af:tree", I explained how to

update a tree with data dragged from an ADF Faces table. In this sample, I am using the same

code base but perform the drop operation onto an iput for to update or create new employees.

As in the screenshot below, the drag operation is originated from an ADF Faces table that has

single row selection enabled. The drop area is a panelFormLayout component that then invokes

the droplistener to process the data exchange. The sample can be easily changed to support

drag and drop to other layout containers holding the form input fields.

The screen shot below shows the result of the table row being dropped onto an empty form. The

employee DepartmentId and ManagerId fields are updated by the drop operation (in practice it is

up to you how many attributes exposed in form fields you update using drag and drop).

A problem that showed when updating the form for a new employee record is that the drop

operation refreshes the drop target – the panelFielLayout component – which then refreshes its

child components. This lead to many required field warnings that the sample code posted in this

article needed to suppress using JavaScript.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

3

Building the Sample

The sample itself is built based on the Oracle HR schema using ADF Business Components as the

business service. In an ADF Faces page, a panelSplitter component is used to hold the drag source

(table) and the drop target (input form).

As shown in the next image, to enable drag and drop in ADF Faces, you add the af:dragSource

component to the table and the af:dropTarget component to the panelFormLayout component. The two

behavior tags implement all the JavaScript required at runtime to perform the drag and drop operation.

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

4

The configuration of the af:dragSource is shown below: The Actions property when left empty defaults

to the Copy action (Move and Link would be the other choices). The Discriminant property defines a

key string that ensures the drag operation to be answered only by drop targets that know how to deal with

it. Using a discriminator allows you to have multiple drag-and-drop tags on a page without the application

user to accidentally drop a collection to the wrong target.

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

5

The drop target tag also requires less configuration and defaults to COPY as the default action. Explicitly

setting the Actions property value makes sense for components that support other actions like MOVE

and Link too.

The DropListener property points to a managed bean to receive the drop event. The managed bean

method then also receives access to all information, including the transferred data object, the drag source

and the drop target components, required to handle the event. The ClientDropListener property is only

useful if you want to suppress the drop event based on a client side condition evaluated in JavaScript.

The DropTarget configuration that is not shown in the screenshot is the definition of the data flavor, the

type of data transferred with the drag-and-drop operation.

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

6

In the sample the whole DropTarget tag definition added as a child to the PanelFormLayout looks as

shown below

 <af:dropTarget dropListener="#{DropHandlerBean.dropHandler}">

 <af:dataFlavor flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"

 discriminant="rowcopy"/>

</af:dropTarget>

The data type to read from the transfer object is the RowKeySet of the table row(s) dragged from the

ADF Faces table. The dataFlavor tag also defines a discriminator that matches the key string defined on

the DragSource.

On the view layer, these few configurations is all you need to do to get drag-and-drop working in ADF

Faces. The rest is all handled in Java within a managed bean (DropHandlerBean in this sample). Drag and

drop really is easy to use and I am surprised why the feature is not widely used.

DropHandlerBean code

The best way to explain code is to show it and have comments speaking for it. The use case in the sample

is that upon drag and drop (a single row can be dragged at a time) of a table row, the department Id and

the manager Id are copied as a value to the current employee record (which can be a new record).

As a rule employees should not report to themselves but someone else.

package adf.sample;

import java.util.Iterator;

import java.util.List;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import oracle.adf.model.BindingContext;

import oracle.adf.model.binding.DCIteratorBinding;

import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.adf.view.rich.component.rich.input.RichInputText;

import oracle.adf.view.rich.component.rich.layout.RichPanelFormLayout;

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

7

import oracle.adf.view.rich.datatransfer.DataFlavor;

import oracle.adf.view.rich.datatransfer.Transferable;

import oracle.adf.view.rich.dnd.DnDAction;

import oracle.adf.view.rich.event.DropEvent;

import oracle.binding.BindingContainer;

import oracle.jbo.Row;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.RowKeySet;

import org.apache.myfaces.trinidad.render.ExtendedRenderKitService;

import org.apache.myfaces.trinidad.util.Service;

/**

 * Drag and drop handler that handles the table row drop onto

 * an input form

 * @author Frank Nimphius (8/2012)

 */

public class DropHandlerBean {

 public DropHandlerBean() {

 }

 //method referenced from the af:dropTarget

 public DnDAction dropHandler(DropEvent dropEvent) {

 //access the drag source, the table to read the rowKey

 //representing the row

 RichTable table = (RichTable)dropEvent.getDragComponent();

 Transferable t = dropEvent.getTransferable();

 DataFlavor<RowKeySet> df =

 DataFlavor.getDataFlavor(RowKeySet.class,"rowcopy");

 RowKeySet rks = t.getData(df);

 Iterator iter = rks.iterator();

 //sample is set up for single row drag and drop

 if (iter.hasNext()) {

 //get next selected row key

 List key = (List)iter.next();

 table.setRowKey(key);

 //get handle to drop component

 RichPanelFormLayout panelFormLayout =

 (RichPanelFormLayout) dropEvent.getDropComponent();

 //JUCtrlHierNodeBinding is the object in ADF that represents

 //a row in a table or a node in a tree. The object wraps the

 ///actual table row object, which in the case of ADF BC is

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

8

 //oracle.jbo.Row

 JUCtrlHierNodeBinding rowBinding =

 (JUCtrlHierNodeBinding)table.getRowData();

 //the row that is actually dragged from the ADF Faces table

 Row departmentDropRow = rowBinding.getRow();

 //update current row in form if the table row is not null

 if(departmentDropRow != null){

 //to evaluate and update the manager Id field, we need to create

 //and store a handle to it. The bean is in request (or backing

 //bean scop, so no overhead)

 UIComponent managerId = null;

 //search all panelFormLayout component children for the

 //DepartmentId field "it8" and ManagerId field "it2". This

 //is where you can extend the sample in your implementation to

 //update more than 2 fields

 for(UIComponent uiComp : panelFormLayout.getChildren()){

 if(uiComp.getId()=="it8"){

 ((RichInputText)uiComp).resetValue();

 ((RichInputText)uiComp).setValue(

 departmentDropRow.getAttribute("DepartmentId"));

 }

 else if(uiComp.getId()=="it2"){

 //save component handle for later (see below)

 managerId = uiComp;

 }

 }

 //access current binding container

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 //get current employee row

 DCIteratorBinding employeeIterator =

 (DCIteratorBinding) bindings.get("EmployeesView1Iterator");

 Row currentEmployee = employeeIterator.getCurrentRow();

 //managers should not manage themselves

 oracle.jbo.domain.Number employeeId = (oracle.jbo.domain.Number)

 currentEmployee.getAttribute("EmployeeId");

 oracle.jbo.domain.Number deptManagerId =

 (oracle.jbo.domain.Number)departmentDropRow.

 getAttribute("ManagerId");

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

9

 if(employeeId == null ||

 (employeeId.intValue() != deptManagerId.intValue())){

 ((RichInputText)managerId).resetValue();

 ((RichInputText)managerId).setValue(

 departmentDropRow.getAttribute("ManagerId"));

 }

 }

 //at the end of the drag and drop operation, the drop target,

 //the panelFormLayout in this case, is refreshed. If the form

 //you edit with drag and drop contains required fields, then

 //these would be flagged as an error.

 //To avoid this in this sample, JavaScript is used to clear

 //all error messages on the client that occur in response to

 //the drag and drop operation

 FacesContext fctx = FacesContext.getCurrentInstance();

 ExtendedRenderKitService erks =

 Service.getRenderKitService(fctx,

 ExtendedRenderKitService.class);

 erks.addScript(fctx,"AdfPage.PAGE.clearAllMessages();");

 //success ! So acknowledge the COPY for the drop target

 //to refresh

 return DnDAction.COPY;

 }

 //no drag and drop happened

 return DnDAction.NONE;

 }

 }

The code lines highlighted in bold and red are those you want to pay attention to. This is the trick that

allows drag and drop to happen of form fields that – after the drop operation – have required fields with

no value entry. This is to avoid required field values to show.

Summary and Download

This article explained how to implement drag and drop between an ADF Faces table and an input form.

The sample code is for JDeveloper 11g R1 (11.1.1.6) but also works with newer releases of Oracle

JDeveloper.

To run the sample, configure the database connection of the application to access the HR schema in a

local Oracle database installation.

The workspace for this sample can be downloaded as sample #103 from the ADF Code Corner website

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to edit an ADF form with data dragged from an ADF
Faces table

10

RELATED DOCOMENTATION

 "How-to drag-and-drop data from an af:table to af:tree"

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/101-drag-drop-table-tree-

1661895.pdf

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/101-drag-drop-table-tree-1661895.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/101-drag-drop-table-tree-1661895.pdf

