

 ADF Code Corner

106. Drag-and-drop reordering of table rows

Abstract:

 A requirement drequently posted on the JDeveloper and

ADF forum on OTN is to reorder rows exposed in an ADF

table.

Though you cannot change the order in which existing

data is stored in database tables, you can use drag and

drop within a table to change the order of displayed rows.

A use case for this requirement is to easily compare two

rows in a table.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
18-MAR-2013

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Drag and drop reordering of table rows

 2

Introduction
As shown in the images below, applying the code in this article will allow you to re-arrange rows

within a table using drag and drop.The dragged row is put into the place of the row it is dropped

onto. Its simply a change in the indexing of the iterator.

Selecting a row and dragging it to a new location as shown in the images above and below …

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER Drag and drop reordering of table rows

 3

.. will then show it in its new position within the table. For this to display correctly, the table needs

to be partially refreshed, causing a little flicker.

Note that reordering the rows in the table will only have an effect to the DCIteratorBinding (more

precise, its an effect to the RowSetIterator it decorates) in the Pagedef file. The same data in the

database doesn't change and performing a re-query of the iterator data will produce the previous

row order unless you dynamically change the query order according to the drag and drop of rows

(which is not in the scope of this article)

Implementation

The image below shows the JDeveloper 11.1.2.3 workspace of the sample (Note though that this solution

also works with 11g R1 applications).

The row reordering for a table is built out of the af:dragSource tag that enables rows to be dragged

within a table, the af:collectionDropTarget tag that takes the drop event and code in a managed

bean that performs the change in the iterator index.

ADF CODE CORNER Drag and drop reordering of table rows

 4

The image below shows the configuration of the dragSource tag, which consists of an Action, MOVE,

and a Discimimant, "rowmove". The Discriminant is used to help the drag source and drop target to

find together, which not only is required but also useful if you wanted to have multiple drag and drop

implementations on a single view.

The collectionDropTarget tag is configured as shown in the image below. For the drop component, the

Action is set to MOVE as well (at least one action needs to be chosen that matches the action defined on

the drag source) and the ModelName is set to rowmove. It is kind of unfortunate that the discriminator

property naming is not consistent in ADF Faces, but at least they work as designed ;-)

ADF CODE CORNER Drag and drop reordering of table rows

 5

The DropListener property references a managed bean in backing bean or request scope. The bean

doesn't hold any state and therefore doesn't need to survive a single request.

The signature for the managed bean method is as follows …

public DnDAction methodName(DropEvent eventName)

… and is created automatically when using the arrow-down -> Edit option to built the method.

Below is the listing of the commented source code of the managed bean that handles the drop for you to

study and modify so it serves your use case.

DepartmentsDropBean Managed Bean

import java.util.Iterator;

import java.util.List;

import oracle.adf.model.binding.DCIteratorBinding;

import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.adf.view.rich.datatransfer.DataFlavor;

import oracle.adf.view.rich.datatransfer.Transferable;

import oracle.adf.view.rich.dnd.DnDAction;

import oracle.adf.view.rich.event.DropEvent;

import oracle.jbo.Row;

import oracle.jbo.RowSetIterator;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.CollectionModel;

import org.apache.myfaces.trinidad.model.RowKeySet;

public class DepartmentsDropBean {

 public DepartmentsDropBean() {}

 /**

 * The dragged row takes the position of the row it is droped on.

 * Note that drag and drop is on the table component and to

ADF CODE CORNER Drag and drop reordering of table rows

 6

 * synchronize the underlying ADF model I needed to accept a

 * "flicker" of the table after the drop

 *

 * @param dropEvent Event passed in from ADF Faces at the end of the

 * drag and drop operation

 * @return Copy.MOVE

 */

 public DnDAction onDepartmentsRowDrop(DropEvent dropEvent) {

 //get the table instance. This information is later used

 //to determine the tree binding and the iterator binding

 RichTable table = (RichTable)dropEvent.getDragComponent();

 List dropRowKey = (List)dropEvent.getDropSite();

 //if no dropsite then drop area was not a data area

 if (dropRowKey == null) {

 return DnDAction.NONE;

 }

 //The transferable is the payload that contains the dragged row's

 //row key that we use to access the dragged row handle in the ADF

 //iterator binding

 Transferable t = dropEvent.getTransferable();

 //get the row key set of the dragged row. The "rowmove" string is the

 //discriminant defined on the drag source and the collectionDrop

 //target.

 DataFlavor<RowKeySet> df = DataFlavor.getDataFlavor

 (RowKeySet.class, "rowmove");

 RowKeySet rks = t.getData(df);

 Iterator iter = rks.iterator();

 //for this use case the re-order of rows is one-by-one, which means

 //that the rowKeySet should only contain a single entry. If it

 //contains more then still we only look at a singe (first) row key

 //entry

 List draggedRowKey = (List) iter.next();

 //get access to the oracle.jbo.Row instance representing this table

 //row

 JUCtrlHierNodeBinding draggeRowNode =

 (JUCtrlHierNodeBinding) table.getRowData(draggedRowKey);

 Row dragRow = draggeRowNode.getRow();

JUCtrlHierNodeBinding dropRowObject =

 (JUCtrlHierNodeBinding) table.getRowData(dropRowKey);

Row dropRow = dropRowObject.getRow();

ADF CODE CORNER Drag and drop reordering of table rows

 7

 //get the table's ADF JUCtrlHierBinding

 CollectionModel collectionModel =

 (CollectionModel) table.getValue();

 JUCtrlHierBinding treeBinding =

 (JUCtrlHierBinding)collectionModel.getWrappedData();

 //get access to the ADF iterator binding used by the table and the

 //underlying RowSetIterator. The RowSetIterator allows us to remove

 //and re-instert the dragged row

 DCIteratorBinding departmentsIterator =

 treeBinding.getDCIteratorBinding();

 RowSetIterator rsi = departmentsIterator.getRowSetIterator();

 int indexOfDropRow= rsi.getRangeIndexOf(dropRow);

 //remove dragged row from collection so it can be added back

 dragRow.removeAndRetain();

 rsi.insertRowAtRangeIndex(indexOfDropRow, dragRow);

 //make row current in ADF iterator.

 departmentsIterator.setCurrentRowIndexInRange(indexOfDropRow);

 //ppr the table

 AdfFacesContext adfctx = AdfFacesContext.getCurrentInstance();

 //note that the refresh of the table didn't work when refreshing the

 //table so I needed to refresh the container component

 //(af:panelStretchLayout).

 adfctx.addPartialTarget(table.getParent());

 return DnDAction.MOVE;

 }

}

Download

The sample application for this article can be downloaded as sample #106 from the ADF Code Corner

website

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

You need to configure the database connection of the model project to point to the unlocked HR schema

of a local database. Then run the "ReorderCollection.jsf" to play with this.

RELATED DOCOMENTATION

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Drag and drop reordering of table rows

 8

