

 ADF Code Corner

020. Expanding an af:tree node by clicking onto the

node label

Abstract:

 Tree nodes in ADF Faces RC are expanded at runtime

by clicking onto the plus icon next to the folder name. For

improved usability you may want to allow users to click

onto the folder name as well to expand the a node; same

for closing a folder node. This functionality, which is not

provided by default, can be added using the ADF Faces

RC client framework using a little bit of JavaScript.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
24-APR-2008

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Expanding an af:tree node by clicking onto the node label

 2

Introduction
ADF Faces RC components have a client and server side component set. Usually the client side

is referred to as the client framework because it not only contains the component object but also

a set of APIs to work with the ADF Faces RC framework. This how-to explains how to use the

client side framework to expand a tree node in ADF Faces RC by the application user clicking

onto the tree label.

Code Sample

Starting from an ADF Tree that you built with Oracle ADF Faces, the following changes are needed on

the page to get this example to work

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER Expanding an af:tree node by clicking onto the node label

 3

1. The af:tree component needs to have a child component af:clientListener to respond to moue clicks

 <af:tree id="tree1"

 value="#{bindings.DepartmentsView11.treeModel}" var="node"

 selectionListener="

 #{bindings.DepartmentsView11.treeModel.makeCurrent}"

 rowSelection="single">

 <f:facet name="nodeStamp">

 <af:outputText value="#{node}"/>

 </f:facet>

 <af:clientListener method="expandNode" type="selection"/>

 </af:tree>

The clientListener configures the tree so it calls a local javaScript function "expandNode" when a node in

the tree gets selected

2. The JavaScript code that gets added to the page uses the Adf event to determine the event source,

which is the handle to the tree

</af:document>

 <f:facet name="metaContainer">

 <af:group>

 <![CDATA[

 <script>

 function expandNode(event){

 var _tree = event.getSource();

 rwKeySet = event.getAddedSet();

 var firstRowKey;

 for(rowKey in rwKeySet){

 firstRowKey = rowKey;

 // we are interested in the first hit,

 //so break out here

 break;

 }

 if (_tree.isPathExpanded(firstRowKey)){

 _tree.setDisclosedRowKey(firstRowKey,false);

 }

 else{

 _tree.setDisclosedRowKey(firstRowKey,true);

 }

 }

 </script>]]>

 </af:group>

 </f:facet>

 </af:document>

Update 06/2010: Use the af:resource tag to add javaScrit instead of CDATA and metaContainer

The three elements highlighted in bold are important to mention: First of all, for better performance, all

JavaScript code added to a page should be in the metaContainer of the af:document element. Second,

ADF CODE CORNER Expanding an af:tree node by clicking onto the node label

 4

because the metaContainer cannot have JavaScript directly added, you must have a af:group element as

the child of the metaContainer facet.

The expandNode() method has a single input argument, which is the event that is passed into it by the

framework. the event source, as mentioned earlier, is the tree, of type AdfRichTree. The event also

contains a set of added row keys, which in the case of the tree are the index of the three node.

To determine whether to expand or close the selected node, the isPathExpanded method is called. The

isPathExpanded() method is inherited by the AdfRichTree component and comes from its AdfUITree

parent class. Not that this information is important, but it gives you an idea of how the ADF Faces client

framework is organized in objects and subclasses.

Known Issues

There is one issues with this sample that I am aware of and that I will follow up with. To close a

previously expanded node by clicking on the same node label, users first have to click on another node.

ADF CODE CORNER Expanding an af:tree node by clicking onto the node label

 5

Update 06/2010: If you need the tree node to close upon a second mouse click, use the code shown

below

<af:resource type="javascript">

 function expandDiscloseNode(event){

 var _tree = event.getSource();

 rwKeySet = _tree.getSelectedRowKeys();

 var firstRowKey;

 for(rowKey in rwKeySet){

 firstRowKey = rowKey;

 // we are interested in the first hit, so break out here

 break;

 }

 if (_tree.isPathExpanded(firstRowKey)){

 _tree.setDisclosedRowKey(firstRowKey,false);

 }

 else{

 _tree.setDisclosedRowKey(firstRowKey,true);

 }

 }

 </af:resource>

The page source needs to be changed as shown below.

<tree ...>

...

 <af:clientListener method="expandDiscloseNode"

 type="click"/>

 </af:tree>

What you should be aware of !

Make sure that all JavaScript you add to a page is properly formatted. If you add invalid code, e.g. trying

to guess API names or not closing a function properly, then this shows at runtime, not at compile and not

at design time. The way it shows is that you see the famous splash screen of death, which is the rotating

image you see when starting your web application. Except for that this time the splash doesn't stop

spinning. If you see this, go back and check your JavaScript. There exist plans in a next version of

JDeveloper 11 to handle this issue more gracefully.

RELATED DOCOMENTATION

