

 ADF Code Corner

026. How-to access the selected row data in an ADF

bound ADF Faces TreeTable or Tree

Abstract:

 The ADF Faces af:treeTable component displays

hierarchical data in a combined tree and table structure. In

this, the leading column is displayed as a tree, while

subsequent columns, which could represent different

hierarchy levels, are displayed in a table format. If you use

ADF to bind the af:treeTable to business data, then a tree

binding definition in the PageDef file is used by the ADF

binding layer to provides the CollectionModel instance that

is required by the af:treeTable as a component model.

The question answered in this blog is how developers use

Java in a managed bean to determine the hierarchical

data that represents the af:treeTable row that a user

selected.

TreeTables and trees share the same bindings, which is

why the code examples shown in this article can be used

with both, ADF Faces tree and treeTable components.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
09-NOV-2009

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to access the selected row data in an ADF bound
ADF Faces TreeTable or Tree

 2

Introduction
In ADF, ADF Faces table, tree and tree table components are bound to the tree binding in the

ADF binding layer. At runtime, the binding definition file, build as the page's PageDef file,

becomes the content of the binding container. The binding container does not operate on XML

metadata, but Java objects, which are instances of the FacesCtrl* bindings if using ADF Faces as

the user interface. All FacesCtrl* classes extend the generic binding classes, which for the tree

binding are JUCtrlHierBinding and JUCtrlHierNodeBinding. So for developers to know what the

selected data node is when the user selects a row in a tree table, these two classes are important

to know about at least to know they exist. In the following we provide you example code that

gives you access to the selected treeTable data.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to access the selected row data in an ADF bound
ADF Faces TreeTable or Tree

 3

Note: The screenshot above is taken using Oracle JDeveloper 11g R1 Patch Set 1, which by the time of

writing is not yet publicly available. However, the code examples contained in this article work with any

release of Oracle JDeveloper 11g.

There is a minor difference between working with ADF Business Components and working with POJOs

as the business service, which is why we keep the use cases separated. In both cases, you start by creating

the treeTable by dragging a Collection from the DataControls palette to the JSF page to then create the

tree table. Note that by default, the tree table is created with a single column that is populated by the

nodePath facet. To make a tree table out of the initial design, you need to create af:column instances

within the af:treeTable and add components that render the cell value into them, as shown in the image

below

The tree table above contains one column definition in the nodeStamp facet, which is the name of the city

we are looking at. The other four columns represent the departments and associated employees . The

visual display at runtime is shown in the image on top.

ADF CODE CORNER
How-to access the selected row data in an ADF bound
ADF Faces TreeTable or Tree

 4

When you configure the cell render component of the af:column component with a data reference, note

that you reference a treeTable variable and not the "bindings" object. by default the tree table variable is

defined as "node". The variable name, which you can change in the Property Inspector, also shows in the

Oracle JDeveloper 11g Expression Builder under the JSP Objects node. This provides you with an error

free configuration of the EL required to display tree table data. The attributes that are displayed beneath

the "node" entry in the Expression Builder represent all the attributes that you selected for access in the

tree binding dialog (Since this is an advanced topic we cover here, our assumption is that you know how

to create tree rules that build the tree structure in the ADF tree binding dialog)

ADF CODE CORNER
How-to access the selected row data in an ADF bound
ADF Faces TreeTable or Tree

 5

Once you built the treeTable, select the component's "binding" property in the PropertyInspector and

create a managed bean reference for it. This allows your managed bean to access the instance of the

af:treeTable component at runtime. Note that another way to access the treeTable component at runtime

is to search for it in JavaServer Faces UIViewRoot. This latter option allows you to write more generic

code and does not require to create a page dependency to a managed bean. If the client logic you execute

on the selected treeTable row value is initiated by an event raised by the treeTable, then the handle to the

treeTable component instance can be obtained from the event object by calling getSource() on it.

ADF Business Components use case

The source code below assumes that the user pressed a command button to perform action on the

selected af:treeTable node. However, as you see, the actionEvent object of the command button action

listener implementation is not used, which means that the same code can be used elsewhere.

import java.util.Iterator;

import java.util.List;

import javax.faces.event.ActionEvent;

import oracle.adf.view.rich.component.rich.data.RichTreeTable;

import oracle.adfdt.model.objects.TreeTable;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.CollectionModel;

import org.apache.myfaces.trinidad.model.RowKeySet;

public class TreeTableHandlerBean {

 private RichTreeTable treeTable1;

 public TreeTableHandlerBean() {}

//user action handling

public void onRowCreateAction(ActionEvent actionEvent) {

 RichTreeTable treeTable = this.getTreeTable1();

 //get selected row keys. This could be a single entry or

 //multiple entries dependent on whether the tree table is

 //configured for multi row selection or single row selection

 RowKeySet rks = treeTable.getSelectedRowKeys();

 Iterator rksIterator = rks.iterator();

 //assuming single select use case. Otherwise, this is where you

 //need to add iteration over the entries in the multi select use case

 if (rksIterator.hasNext()){

 //a key is a list object that containe the node path information

 //for the selected node

 List key = (List)rksIterator.next();

 //determine the selected node. Note that the tree table binding is

 //an instance of JUCtrlHierBinding

 JUCtrlHierBinding treeTableBinding = null;

 //We can get the binding information without using EL in our Java,

 //which you always should try to do. Using EL in Java is good to

 //use, but only second best as a solution

 treeTableBinding = (JUCtrlHierBinding)

 ((CollectionModel)treeTable.getValue()).getWrappedData();

ADF CODE CORNER
How-to access the selected row data in an ADF bound
ADF Faces TreeTable or Tree

 6

 //the row data is represented by the JUCtrlHierNodeBinding class at

 //runtime. We get the node value from the tree binding at runtime

 JUCtrlHierNodeBinding nodeBinding =

 treeTableBinding.findNodeByKeyPath(key);

 //the JUCtrlHierNodeBinding object allows you to access the row data,

 //so if all you want is to get the selected row data, then you are

 //done already. However, in many cases you need to further

 //distinguish the node, which is what we can do using the

 //HierTypeBinding

 String nodeStuctureDefname =

 nodeBinding.getHierTypeBinding().getStructureDefName();

 //determine the selected node by the ViewObject name and package

 String departmentsDef = "adf.sample.model.DepartmentsView";

 String employeesDef = "adf.sample.model.EmployeesView";

 String locationsDef = "adf.sample.model.LocationsView";

 if (nodeStuctureDefname.equalsIgnoreCase(locationsDef)){

 //work with location node data

 }

 else if (nodeStuctureDefname.equalsIgnoreCase(departmentsDef)){

 //work with departments node data

 }

 else if (nodeStuctureDefname.equalsIgnoreCase(employeesDef)){

 //work with location node data

 }

 else{

 //what the heck did the user click on? Ask him ;-)

 }

 }

 }

 ... access to the treeTable instance ...

}

Note: If the child node is a read only View Object, make sure the View Object has a primary key defined.

If the View Object queries multiple tables then the key need to be set for more than one attribute. Open

the VO, select an attribute and check the "key" checkbox. If you don't do this, a NPE is thrown

Pojo use case

The code you use for the POJO use case is slightly different in the way the row data is accessed. Also,

since we are working with POJOs, we determine the node level by checking the node object instance

against the POJO objects. The sample code below actually determines the selected node / row value in an

ADF Faces tree. The source code though is the same as when working with an af:treeTable component

since the underying ADF bindingstructure is identical. This also is a great example of how learning a

single API allows to you program against different business services and UI components.

import java.util.List;

import javax.faces.event.ActionEvent;

import oracle.adf.model.bean.DCDataRow;

ADF CODE CORNER
How-to access the selected row data in an ADF bound
ADF Faces TreeTable or Tree

 7

import oracle.adf.view.rich.component.rich.data.RichTree

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

//my custom POJO entities

import oracle.pojo.entities.Departments;

import oracle.pojo.entities.Employees;

import oracle.pojo.entities.Locations;

//trinidad classes

import org.apache.myfaces.trinidad.model.CollectionModel;

import org.apache.myfaces.trinidad.model.RowKeySet;

public class TreeBean {

 //this example uses a tree. However, the data access is the same as

 //for tree tables using an ADF tree binding

 private RichTree locationTree;

 public TreeBean() {

 }

 //method executed when the user presses the command button in our

 //example

 public void onRowCreateAction(ActionEvent actionEvent) {

 //get access to the Tree Collection Model. The tree component

 //instance is accessed through its binding property reference

 //to this managed bean

 CollectionModel treeModel = null;

 //access the tree component from a JSF component binding, a search on

 //the UIViewRoot, or if the method is invoked from a tree event, from

 //the getSource() call

 treeModel = (CollectionModel) this.getTree().getValue();

 //The CollectionModel is of type FacesModel, which is an inner class.

 //To get to the ADF tree binding, we can call wrappedData on the

 //Collection Model

 JUCtrlHierBinding treeBinding =

 (JUCtrlHierBinding) treeModel.getWrappedData();

 //get the selected tree nodes

 RowKeySet rks = locationTree.getSelectedRowKeys();

 //If there is a tree node selected ...

 if(!rks.isEmpty()){

 //get first selected node as we assume this code to execute in a

 //single row selection use case. Iterate over the whole iterator if

 //you are in a multi node selection case

 List firstSet = (List)rks.iterator().next();

 //get the ADF node binding. If you want to access sub nodes, make

 //sure that you set the primary key attribute for the entity

 //representing this node.

ADF CODE CORNER
How-to access the selected row data in an ADF bound
ADF Faces TreeTable or Tree

 8

 //If you don't do this, the next line throws an NPE

 JUCtrlHierNodeBinding node =

 treeBinding.findNodeByKeyPath(firstSet);

 //The Row is of type DCDataRow, a binding class not often used,

 //especially if you are used to the Fusion development environment

 DCDataRow rw = (DCDataRow) node.getRow();

 //The data provider is the object - the entity - that is used to

 //render the node.

 Object entity = rw.getDataProvider();

 //determine the object so you can type cast it if needed.

 if (entity instanceof Locations){

 //do some location work here

 return;

 }

 if (entity instanceof Departments){

 //do some department work here

 return;

 }

 if (entity instanceof Employees){

 //do some employee work here

 return;

 }

 }

 }

... access to the tree instance ...

}

In this example, note the use of the DCDataRow class to access the entity that represents the selected

node/row. Note that the DCDataRow object is another ADF binding class. Also note how similar the

code shown above is compared to the ADF Business Components example where we used the

af:treeTable component.

Disclaimer

The content of this blog article is an advanced topic and is not representative for working with ADF. If

you are a beginner with ADF, don't be too impressed with the content - or shocked because you don't

understand it in detail. As a beginner your initial look should be at the developer guides published in the

documentation section on OTN and www.oracle.com, as well as the Oracle by Example tutorials. Sooner

or later you will come back to this example, fully understanding what it does and enjoying the power that

ADF provides beyond drag and drop development.

This blog example explains how to access the selected tree node or tree table node data from Java, which

a use business use case may require you to do. There also is a strategy to get the same information

declaratively using Expression Language. For example, using ADF Business Components, you create

iterators for the View Objects that have data representations in the tree structure. The tree binding can be

configured to make sure that the selected node always synchronizes the iterator. Creating attribute

bindings for the iterators and reference them from ADF Faces input components, allow to easily and

ADF CODE CORNER
How-to access the selected row data in an ADF bound
ADF Faces TreeTable or Tree

 9

declaratively building input forms for the selected tree nodes. After all, ADF is there to simplify Java EE

development using declarative development gestures. However, if the use case demands it that you need

to access the selected hierarchical structure value in Java, then no you know.

RELATED DOCOMENTATION

