ADF Code Corner

032. How-to create a tree table from a single View
Object and how to access selected rows

ORACLE

CODE CORNER

e

twitter.com/adfcodecorner

Author:

Abstract:

A frequent question about ADF bound ADF Faces
views is how to show a hierarchical structure of data
based on a single recursive view object. A table structure
that is a good candidate for such a view object is the
employees table in the Oracle HR sample schema. The
employees table has a self reference defined between the
MANAGER_ID column and the EMPLOYEE_ID column to
link managers to their directs. Beside of answering the
question of how to create a tree table structure based on
such a data model, a second question we answer in this
article is how to access the selected row data in the tree
table and how to work with the underlying binding layer.

Frank Nimphius, Oracle Corporation

twitter.com/fnimphiu

05-MAY-2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

How-to create a tree table from a single View Object and
DI G(@IDIBNGOINNIBIE how to access selected rows

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle | Developer: bttp:/ / forums.oracle.com/ forums/ fornm.jspa2forumID=83

Introduction

The image below shows a tree table that is based on a single view object that reads data from the
employees table in the Oracle HR sample schema. The tree table is configured so that users can
select one or multiple rows to delete them by pressing the "Remove Selected Rows" command
button.

The delete operation is an example of how to access the tree table data and the underying ADF
binding layer and can be easily modified by you to perform data manipulation on the selected
rows instead.

View ~ Remove Selected Rows | i Detach N e]
g |Employee Details |
[Department [Emp!oyeeld !Firstname |Lastname |
7 King 90 100 Steven King
W Kochhar 90 101 Neena Kochhar
%/ Greenberg 100 108 Nancy Greenberg
> Faviet 100 109 Daniel Faviet
- Chen 100 110 John Chen
> Sciarra 100 111 Ismael Sdarra
> Urman 100 112 Jose Manuel Urman
= Popp 100 113 Luis Popp
> Whalen 10 200 Jennifer Whalen
L= Mavris 40 203 Susan Mavris
> Baer 70 204 Hermann Baer
> Higgins 110 205 Shelley Higgins
> De Haan 90 102 Lex De Haan
= Raphaely 30 114 Den Raphaely
L= Weiss 50 120 Matthew Weiss
> Fripp 50 121 Adam Fripp
= Kaufling 50 122 Payam Kaufling
= Vollman 50 123 Shanta Vollman
> Mourgos 50 124 Kevin Mourgos
[Russell 80 145 John Russell
> Partners 80 146 Karen Partners
> Errazuriz 80 147 Alberto Errazuriz
> Cambrault 80 148 Gerald Cambrault
- Zlotkey 80 143 Eleni Zlotkey

> Hartstein 20 201 Michael Hartstein

http://forums.oracle.com/forums/forum.jspa?forumID=83

How-to create a tree table from a single View Object and
ANDJSNO@IDISNGOIINIANE how to access selected rows

Creating the ADF Business Component model

There is nothing special about creating the ADF Business Components model and you start with the
"Create ADF Business Components from Table" wizard in the Oracle JDeveloper NEW Gallery. From
the available tables, choose the employees table and finish the wizard so that an entity object and a view

object are created.

The image below shows the structure of such a model project and you can see that the "EmpManager"
entity association and view link are automatically created based on the database constraint. that is found.

The changes applied to the model in this example are i) the non-default name of the view link accessor as
shown in the image below and ii) the creation of a view criteria that queries the top level row, similar to
what CONNECT BY PRIOR ... START WITH would do in SQL. The image below shows how to
change the view accessor name for the destination, the recursive child reference. This becomes handy
later when building the tree table to identify the child node rule.

TreeTableFromSingleVO v x
b Pects QR Y-E- General
-{0] Model Relationship Attributes
=-{_7] Application Sources
=@ adf.sample.model Query These are the attributes or associations that define the relationship between the
tﬁ AppModule
@ @ Employees Cardinality: 1to *
E] EmployeesView
] E:E. EmpManagerFkAssoc Source Destination
- &) EmpManagerFiink adf.sample. model. EmpManagerFkAssoc adf.sample.mo
%5 Model.jpx
z 7’ N
@ ViewController iz View Link Properties &
Source Accessor Destination Accessor -
bty
View Object: EmployeesView View Object: EmployeesView
Generate Accessor Generate Accessor
[]In View Object: Employees... In View Object: Employees...
["] In Entity: Employees ["] In Entity: Employees

Accessor Name:
|ChildEmponeesView]

Application Resources
Data Controls o Y7
Recently Opened Files

= EmpManagerFkLink.xml - Structure)
}
=8
i3 Data
-8l Source End:
2’9' Destination End:

| T
.27 ViewLinkDefEnd Help oK] [Cancel

| “-[17) Properties |

You create named view criteria from the view object editor (its located in the Query category). The view
criteria in this example is called "TopRankedManager" and defines a where clause that only shows the
employee with the employee_id 100, which in the employees table happens to be Steven King, the
president. To make this view criteria usage a more realistic use case for a production environment you
may decide to filter the table rows by the job_id, in case there are more or changing presidents (retirement
is a good reason for a president to leave) in an organization. Also use a bind variable to dynamically set
the filter criteria value, which allows you to further filter the returned row set based on the context the
tree table is shown in.

How-to create a tree table from a single View Object and
RADIENGOIDIENGOINNBIE how to access selected rows

| j = vy 9% |
| . Projects QY-E General
7 Entity Objects Query
-[2] Application Sources Atthans
=1 adf.sample.model AR Data for this view object will be retrieved from the datasource using the following SQ
[‘ﬁ AppModule Query
- (28} Employees Java SELECT Employees.Hiis; Edit View Criteria
- 2] Employeesview View Accessors Esployees
#-Ff3 EmpManagerFkAssoc List U Hints zminyees 3 Criteria Name:
2 ﬁ] EmpManagerFkLink Emlzy:: 3
+-§3 Model.jpx P e¥822- 1| (criteria Definition
ViewControll Employees.
iewController By
Eoployeas] View Criteria:
Empldyees E¥ropRankedManager
Employees. & () Group
_FEpioueer ‘...5m Employeeld = 100
FROM EMPLOYEES Emp
[Bind Variables
| b Application Resources Named bind variables can
| b Data Controls WY
I» Recently Opened Files
[Add 1tem | [Add Group | [Add Griteria
[View Criteria

When building the ADF Business Component model, it is good practice to change the default name of
the view object instance to a name closer related to what the view object instance is used for. I like to see
this naming change as a contract the business service developer enforces between him or her and the
application developer. The more meaningful names you can come up with the easier it will be for the
application developer to stay away from confusion. This is especially important when view object
instances are filtered by a view criteria, thus permanently return a different result set than the view object
definition has defined.

General

Data Model Data Model Components

Java Select a view object from the tree of available view objects, select the instance or application module to be its parent in the
» data model tree, and dick '>' to create a named instance of the view object in the data model.

EJB Session Bean

Service Interface

Configurations [=] View Object Instances

The data model contains a list of view object and view link instances, displaying master-detail relationships.

Available View Objects: Data Model:

F% adf.sample.model.Model AppModule

[=}-[{{ adf.sample.model = fﬁ] alEmployees

& 2l Enployecsyien Y cooringionaoer
L) EmployeesView via EmpManagerFkLink
¥y
(= Rename reportingManagers ﬂ
Rename To: |

[Preview

.
—
View Instance: reportingManagers /

View Link Instance: EmpManagerFkLink1 /

View Definition: adf.sample.model.Emplovees...
View Link Definition: adf.sample.model.EmpManaq... 4

How-to create a tree table from a single View Object and
ANDJSNO@IDISNGOIINIANE how to access selected rows

To filter a view object instance with a named view criteria, select the View Object instance (for example
the allEmployees instance) and press the Edit button. The opened dialog shows you all the view criteria
that are defined for the view object and you select the one to permanently apply to the view object
instance. Note that this is applied to the view object instance, not the view object definition itself.
According to my suggestion, you would then rename the instance from "allEmployees" to for example
"topRankedEmployees" for the use case in which the view object only returns records of employees in
the job role of "president”. To rename a view object instance, select the view object entry on the Data

Mode side of the shuttle control and press the pencil icon next to the "View Instance" label.
Building the Tree Table

The ADF Business Component data model is displayed in the Oracle JDeveloper Data Controls panel
from where you drag the "allEmployees" View Object instance (or the "topRankedEmployees" instance
if you followed my renaming hint) as a tree table to the page. You then select the attributes you want to
see in the tree table from the list of "Available Attributes". Next you press the "green plus" icon to create
the tree level rule for the child nodes. Note that the context menu shows an entry "ChildEmployee View",
which is the name specified earlier as the ViewLink accessor name. The attributes selected for the child
tree level are the same as the attributes chosen for the root node.

Any change in the selected attributes for the "ChildEmployeesView" are also reflected in the root node
because both are based on the same view object. When you created the "ChildEmployeeView" tree node
rule, then you see that the name "ChildEmployeeView" is shown in brackets next to "Tree Level Rules"
entry, which like for the tree root node is (EmployeesView).

TreeTableFromSinglevO 7 Tt
it Iree Binding
7 Projects & @ —
e} Mode! Select the data source for the root tree node, and decide which attributes you want to display in
=] ViewController the tree. To add additional tree level rules for child collections, select the parent tree level rule
-2 Application Sources anddick the Add icon. If no child collections are available for the selected node, the Add icon is
disabled.
=--{Z1] Web Content s
) wes-INF Root Data Source: [E AppModuleDataControl '] [Add...]
Page Flows 2
’ 3 < Vet Tree Level Rules: % i 4
B adf.sample.model.EmployeesView B ChildEmployeesView
b Application Resources
 Data Controls
EREJalEmployees l
-8 CommissionPct
&3 Departmentld
@@ Email
- Employeeld
i@ FirstName
@3 HireDate
i@ Jobld
@ LastName Accessor: v [] Enable Filtering:
e ﬂy?ﬁema;u:gd Available Attributes: Display Attributes:
CommissionPct Employeeld
= [Email & | [FirstName &
= alEmployeesPageDef.xml - Structure HireDate » LastName = '
4 Jobld .- Departmentld @
4 o
= D'] alEmployeesPageDef I::::eg:rldbe A ¢
iumber "
+--[Z7] parameters salary <
] executables
=[] bindings e
FR - lEmployees [# Target Data Source

Help OK] Cancel |

How-to create a tree table from a single View Object and
ANDJSNO@IDISNGOIINIANE how to access selected rows

By default, the tree table has two facets , the nodeStamp facet and the pathStamp facet. The nodeStamp
facet is the one that renders the tree table. However, to create a tree table, additional columns need to be

built as shown in the image below.

When rendering the tree table, the node variable is used to iterate over the individual rows. The node
variable is EL accessible and provides access to the attributes like FirstName, LastName etc. Only those
attributes that were selected when defining the ADF tree binding can be accessed at runtime.

Note: The pathStamp facet is used to navigate within a tree table, for example to select a tree branch and
temporarily make it the top level node. If the current root node is not the top level node in a tree, then
the path stamp can be used from the context menu to reset the original tree view. A full discussion of
using the path stamp is beyond the scope of this paper

‘= allEmployees.jspx - Structure |)|

4
&[22 Warnings (5)
8- @ jspiroot
...... [@ jsp:directive.page

E} ﬁ sview
E f:document

: R@ af:messages
E} af:form
= E] af:panelCollection - pc1
E f:facet - menus
- fifacet - toolbar
[f:facet - statusbar
E} af:treeTable - tt1
E}Bﬂ f:facet - nodeStamp
C B E af:column - Hierarchy
A af:outputText - #{node.LastName}
C} Bﬂ f:facet - pathStamp
Lo A af:outputText - #{node}
B E aficolumn - Employee Details
&8 af:column - Department
P A af:outputText - #{node.Departmentld}
E} g af:column - Employeeld
- A afioutputText - #{node.Employeeld}
=B aficolumn - Firstname
- LA afioutputText - #{node.FirstName}
=B aficolumn - Lastname
S A afioutputText - #{node.LastName}

Shown in the image above, the columns are created outside of the nodeStamp and pathStamp facets. They
contain a component to print the cell content - an af:outputText in the example above- referencing the

node variable.

How-to create a tree table from a single View Object and
ANDJSNO@IDISNGOIINIANE how to access selected rows

Your backstage access to the ADF binding

As in many articles published on ADF Code Corner, we encourage you to not hard code names of
PageDef entries in your managed beans, unless absolutely required. As you can see in the Java

method referenced from the "Remove Selected Rows" button shown in the image on top of this atticle,
the ADF binding layer can be accessed from the ADF Faces component model so that the component
and the knowledge about the component becomes a generic "backstage access" to the ADF binding layer.
All you need to know about the managed bean access to the binding layer and the tree table row data is
added as code comments below.

import java.util.Iterator;
import java.util.List;

import javax.faces.event.ActionEvent;

import oracle.adf.view.rich.component.rich.data.RichTreeTable;
import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.jbo.Row;
import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.RowKeySet;

public class AllEmployeesBean ({
private RichTreeTable treeTablel;

public AllEmployeesBean () {
}

public void onPrintSelection (ActionEvent actionEvent) {
//get treeTable component instance from this bean. This instance is
// created when configuring a component EL binding to the managed
//bean using the "binding" property of the tree table component
RichTreeTable treeTable = this.getTreeTablel();
//get all selected row keys
RowKeySet rks = treeTable.getSelectedRowKeys () ;
Iterator keys = rks.iterator();
//1if the treeTable is configured to support single selection or
//multiple selection doesn't matter as the routine below works with
//all cases
while (keys.hasNext ()) {
//the treeTable path is defined as a List of keys
List key = (List) keys.next();
//set the treeTable current row to the row defined by the key
treeTable.setRowKey (key) ;
//Using ADF, a treeTable row is represented by the
//JUCtrlHierNodeBinding class, which is an ADF Faces binding
//object that wraps the row of the ADF model
JUCtrlHierNodeBinding node =
(JUCtrlHierNodeBinding) treeTable.getRowData();
//The row in the model, when using ADF BC, is of type
//oracle.jbo.Row
Row rw = node.getRow () ;

How-to create a tree table from a single View Object and
ANDJSNO@IDISNGOIINIANE how to access selected rows

//Lets read and print from the row

System.out.println("Selected: "+rw.getAttribute ("FirstName")+"
"t+rw.getAttribute ("LastName")) ;

// ... before deleting it

rw.remove () ;

//Note: With the handle to the JUCtrlHierNodeBinding, you could
//access the binding layer, for example the JUCtrlHierBinding
//object of the tree binding definition or DCIteratorBinding of
//the iterator binding. Its your backstage access to the runtime
//object representing the PageDef file

}

//ppr the tree
AdfFacesContext.getCurrentInstance () .addPartialTarget (treeTable);

//Ahhh, yes - if you don't commit the data removal then the data

//1s not permanently deleted but just from the ADF collection
//displayed in the treeTable. To commit the change, drag and drop the
//Commit operation from the data control as a button and press it
//after deleting the rows, or call the action from here - as
//mentioned you have your backstage access.

}

public void setTreeTablel (RichTreeTable treeTablel) {
this.treeTablel = treeTablel;

}

public RichTreeTable getTreeTablel () {
return treeTablel;

}
}

Download Sample

You can download the sample workspace from ADF Code Corner:
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

The sample is written with JDeveloper 11g R1 PS2 but is supposed to work with any previous release of
JDeveloper 11g. Before running the sample, change the database connection used by the ADF Business
Component model to point to a database of yours that has the HR schema enabled.

RELATED DOCOMENTATION

O | Tree Table tag -
http://download.oracle.com/docs/cd/E15523 01/apirefs.1111/¢12419/tagdoc/af treeTable.html

O | PanelCollection tag -
http://download.oracle.com/docs/cd/E15523 01/apirefs.1111/¢12419/tagdoc/af panelCollectio

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_treeTable.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_panelCollection.html

How-to create a tree table from a single View Object and
ANDJSNO@IDISNGOIINIANE how to access selected rows

n.html

0 | Oracle Fusion Developer Guide — McGraw Hill Oracle Press, Frank Nimphius, Lynn Munsinger
: roduct.php?cat=112&isbn=0071622543

http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

