

 ADF Code Corner

032. How-to create a tree table from a single View

Object and how to access selected rows

Abstract:

 A frequent question about ADF bound ADF Faces

views is how to show a hierarchical structure of data

based on a single recursive view object. A table structure

that is a good candidate for such a view object is the

employees table in the Oracle HR sample schema. The

employees table has a self reference defined between the

MANAGER_ID column and the EMPLOYEE_ID column to

link managers to their directs. Beside of answering the

question of how to create a tree table structure based on

such a data model, a second question we answer in this

article is how to access the selected row data in the tree

table and how to work with the underlying binding layer.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
05-MAY-2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to create a tree table from a single View Object and
how to access selected rows

 2

Introduction
The image below shows a tree table that is based on a single view object that reads data from the

employees table in the Oracle HR sample schema. The tree table is configured so that users can

select one or multiple rows to delete them by pressing the "Remove Selected Rows" command

button.

The delete operation is an example of how to access the tree table data and the underying ADF

binding layer and can be easily modified by you to perform data manipulation on the selected

rows instead.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to create a tree table from a single View Object and
how to access selected rows

 3

Creating the ADF Business Component model

There is nothing special about creating the ADF Business Components model and you start with the

"Create ADF Business Components from Table" wizard in the Oracle JDeveloper NEW Gallery. From

the available tables, choose the employees table and finish the wizard so that an entity object and a view

object are created.

The image below shows the structure of such a model project and you can see that the "EmpManager"

entity association and view link are automatically created based on the database constraint. that is found.

The changes applied to the model in this example are i) the non-default name of the view link accessor as

shown in the image below and ii) the creation of a view criteria that queries the top level row, similar to

what CONNECT BY PRIOR ... START WITH would do in SQL. The image below shows how to

change the view accessor name for the destination, the recursive child reference. This becomes handy

later when building the tree table to identify the child node rule.

You create named view criteria from the view object editor (its located in the Query category). The view

criteria in this example is called "TopRankedManager" and defines a where clause that only shows the

employee with the employee_id 100, which in the employees table happens to be Steven King, the

president. To make this view criteria usage a more realistic use case for a production environment you

may decide to filter the table rows by the job_id, in case there are more or changing presidents (retirement

is a good reason for a president to leave) in an organization. Also use a bind variable to dynamically set

the filter criteria value, which allows you to further filter the returned row set based on the context the

tree table is shown in.

ADF CODE CORNER
How-to create a tree table from a single View Object and
how to access selected rows

 4

When building the ADF Business Component model, it is good practice to change the default name of

the view object instance to a name closer related to what the view object instance is used for. I like to see

this naming change as a contract the business service developer enforces between him or her and the

application developer. The more meaningful names you can come up with the easier it will be for the

application developer to stay away from confusion. This is especially important when view object

instances are filtered by a view criteria, thus permanently return a different result set than the view object

definition has defined.

ADF CODE CORNER
How-to create a tree table from a single View Object and
how to access selected rows

 5

To filter a view object instance with a named view criteria, select the View Object instance (for example

the allEmployees instance) and press the Edit button. The opened dialog shows you all the view criteria

that are defined for the view object and you select the one to permanently apply to the view object

instance. Note that this is applied to the view object instance, not the view object definition itself.

According to my suggestion, you would then rename the instance from "allEmployees" to for example

"topRankedEmployees" for the use case in which the view object only returns records of employees in

the job role of "president". To rename a view object instance, select the view object entry on the Data

Mode side of the shuttle control and press the pencil icon next to the "View Instance" label.

Building the Tree Table

The ADF Business Component data model is displayed in the Oracle JDeveloper Data Controls panel

from where you drag the "allEmployees" View Object instance (or the "topRankedEmployees" instance

if you followed my renaming hint) as a tree table to the page. You then select the attributes you want to

see in the tree table from the list of "Available Attributes". Next you press the "green plus" icon to create

the tree level rule for the child nodes. Note that the context menu shows an entry "ChildEmployeeView",

which is the name specified earlier as the ViewLink accessor name. The attributes selected for the child

tree level are the same as the attributes chosen for the root node.

Any change in the selected attributes for the "ChildEmployeesView" are also reflected in the root node

because both are based on the same view object. When you created the "ChildEmployeeView" tree node

rule, then you see that the name "ChildEmployeeView" is shown in brackets next to "Tree Level Rules"

entry, which like for the tree root node is (EmployeesView).

ADF CODE CORNER
How-to create a tree table from a single View Object and
how to access selected rows

 6

By default, the tree table has two facets , the nodeStamp facet and the pathStamp facet. The nodeStamp

facet is the one that renders the tree table. However, to create a tree table, additional columns need to be

built as shown in the image below.

When rendering the tree table, the node variable is used to iterate over the individual rows. The node

variable is EL accessible and provides access to the attributes like FirstName, LastName etc. Only those

attributes that were selected when defining the ADF tree binding can be accessed at runtime.

Note: The pathStamp facet is used to navigate within a tree table, for example to select a tree branch and

temporarily make it the top level node. If the current root node is not the top level node in a tree, then

the path stamp can be used from the context menu to reset the original tree view. A full discussion of

using the path stamp is beyond the scope of this paper

Shown in the image above, the columns are created outside of the nodeStamp and pathStamp facets. They

contain a component to print the cell content - an af:outputText in the example above- referencing the

node variable.

ADF CODE CORNER
How-to create a tree table from a single View Object and
how to access selected rows

 7

Your backstage access to the ADF binding

As in many articles published on ADF Code Corner, we encourage you to not hard code names of

PageDef entries in your managed beans, unless absolutely required. As you can see in the Java

method referenced from the "Remove Selected Rows" button shown in the image on top of this article,

the ADF binding layer can be accessed from the ADF Faces component model so that the component

and the knowledge about the component becomes a generic "backstage access" to the ADF binding layer.

All you need to know about the managed bean access to the binding layer and the tree table row data is

added as code comments below.

import java.util.Iterator;

import java.util.List;

import javax.faces.event.ActionEvent;

import oracle.adf.view.rich.component.rich.data.RichTreeTable;

import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.jbo.Row;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.RowKeySet;

public class AllEmployeesBean {

 private RichTreeTable treeTable1;

public AllEmployeesBean() {

}

public void onPrintSelection(ActionEvent actionEvent) {

 //get treeTable component instance from this bean. This instance is

 // created when configuring a component EL binding to the managed

 //bean using the "binding" property of the tree table component

 RichTreeTable treeTable = this.getTreeTable1();

 //get all selected row keys

 RowKeySet rks = treeTable.getSelectedRowKeys();

 Iterator keys = rks.iterator();

 //if the treeTable is configured to support single selection or

 //multiple selection doesn't matter as the routine below works with

 //all cases

 while(keys.hasNext()){

 //the treeTable path is defined as a List of keys

 List key = (List) keys.next();

 //set the treeTable current row to the row defined by the key

 treeTable.setRowKey(key);

 //Using ADF, a treeTable row is represented by the

 //JUCtrlHierNodeBinding class, which is an ADF Faces binding

 //object that wraps the row of the ADF model

 JUCtrlHierNodeBinding node =

 (JUCtrlHierNodeBinding) treeTable.getRowData();

 //The row in the model, when using ADF BC, is of type

 //oracle.jbo.Row

 Row rw = node.getRow();

ADF CODE CORNER
How-to create a tree table from a single View Object and
how to access selected rows

 8

 //Lets read and print from the row ...

 System.out.println("Selected: "+rw.getAttribute("FirstName")+"

 "+rw.getAttribute("LastName"));

 // ... before deleting it

 rw.remove();

 //Note: With the handle to the JUCtrlHierNodeBinding, you could

 //access the binding layer, for example the JUCtrlHierBinding

 //object of the tree binding definition or DCIteratorBinding of

 //the iterator binding. Its your backstage access to the runtime

 //object representing the PageDef file

 }

 //ppr the tree

 AdfFacesContext.getCurrentInstance().addPartialTarget(treeTable);

 //Ahhh, yes - if you don't commit the data removal then the data

 //is not permanently deleted but just from the ADF collection

 //displayed in the treeTable. To commit the change, drag and drop the

 //Commit operation from the data control as a button and press it

 //after deleting the rows, or call the action from here - as

 //mentioned you have your backstage access.

 }

 public void setTreeTable1(RichTreeTable treeTable1) {

 this.treeTable1 = treeTable1;

 }

 public RichTreeTable getTreeTable1() {

 return treeTable1;

 }

}

Download Sample

You can download the sample workspace from ADF Code Corner:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

The sample is written with JDeveloper 11g R1 PS2 but is supposed to work with any previous release of

JDeveloper 11g. Before running the sample, change the database connection used by the ADF Business

Component model to point to a database of yours that has the HR schema enabled.

RELATED DOCOMENTATION

 Tree Table tag -

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_treeTable.html

 PanelCollection tag -

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_panelCollectio

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_treeTable.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_panelCollection.html

ADF CODE CORNER
How-to create a tree table from a single View Object and
how to access selected rows

 9

n.html

 Oracle Fusion Developer Guide – McGraw Hill Oracle Press, Frank Nimphius, Lynn Munsinger

http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

