

 ADF Code Corner

38. How-to build an editable tree with the POJO

Data Control

Abstract:

 Editable tree nodes is a use case that frequently shows

up in questions asked on internal and external Oracle

JDeveloper forums. If you use ADF Business

Components as a business service, then, because of its

tight integration with ADF and its active data model, there

isn't much for you to do other than making the tree nodes

editable. However, if using a data control that

accesses non-ADF BC business services, like POJO or

Web Services, the call to persist the data changes

performed through the ADF binding layer is an extra step

to consider. This blog article discusses a POJO based

ADF model and one of the strategies that exist to make

editable trees to work in this environment. For most part of

this article, using a POJO model is not different from using

ADF Business Components.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
28-JUN-2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to build an editable tree using the POJO Data
Control

 2

Introduction
Trees and tables both use the ADF tree binding to update the business service model.

However, only for tables there is an option in the ADF Data Controls panel context menu to

declaratively create an editable UI. However, only because it isn't in the context menus for drag

and drop, doesn't mean it can't be done in ADF. In this blog article I explain how to create an

editable tree component that also customizes the node UI to the exposed information. The

example, that you can download at the end of this article uses a POJO bean that represents the

Oracle HR database sample schema with hard coded strings. While the model can be updated,

there is no mean of permanently persisting the information (because of the hard coded values in

the bean) and therefore I simulated persistence by printing the saved entity ID to the JDeveloper

message window. Doing it this way doesn't require you to perform any infrastructure

configurations, but just to run the demo.

POJO and Web Services models

From an ADF perspective, POJO and Web Services are closely related and, in addition, Web Services

could also be accessed from a Java proxy client that can be access from the POJO DataControl.

 In fact both data controls, the POJO Data Control and the Web Service Data Control, internally use the

same adapter Data Control framework as a basis. In general, POJOs makes a lot of sense to have and

use Oracle ADF projects whenever the system or service you need to access does not expose method

signatures needed by ADF, for example to implement pagination or batch updates. But also when using

the Web Service Data Control instead of a Web Service proxy, if the service allows you to post data

updates, it will expose a method to do so, which you can - of course - use with an editable tree.

Building the editable ADF Faces tree component

Building trees in ADF starts with what Oracle ADF is really good at: drag and drop. Having created a

data control definition from the entry Java Bean (session facade, in geek terms), the Data Controls panel

shows a list of methods, colllections and attributes exposed by the POJO model.

To build this, you select the POJO bean - Session Facade in the sample - and choose "Create Data

Control" from the context menu. Personally I think that "Create Data Control" is a misleading term

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to build an editable tree using the POJO Data
Control

 3

because it doesn't really describe what is happening. Using the menu option you basically don't create a

data control but configure it. The JavaBean Data Control exists within the ADF framework and all that is

needed to make it work for a custom POJO model is to describe the POJO entities and facade methods

in metadata so their functionality and attributes show in the Data Controls panel. I am not going into

POJO Data Control building detail here, but as you can see, all JavaBeans have metadata descriptions

generated. You can use these metadata files to also specify UI hints, validation rules and default values.

Just double click on them to see what they have in store for you to use.

Shown in the image above, one of the collections in the POJO model of the sample you can download at

the end of this article is "allLocations", which is created from a method "getAllLocations" in my session

facade.

ADF CODE CORNER
How-to build an editable tree using the POJO Data
Control

 4

Hint: If there is something to know about building POJO models for ADF then surely this is not to use

"findAllLocations" as a method name to query collection data, but "getAllLocations" so the collection

properly displays in the Data Controls panel. The "allLocations". collection has details objects, which are

the departments and employees collection.

The hierarchy in the object model allows us to build a tree from it. So dragging the "allLocations" from

the Data Controls panel onto the page and choosing "tree" as the component to build, produces the

following dialog:

Pressing the green plus icon is how you create tree rules for the top level and the child nodes, which

basically means to select the attributes to displayed for each tree node at runtime. Implicitly the dialog

creates an ADF tree binding in the page's associated PageDef.xml file. An af:tree component is added to

the page and updated with a reference to the ADF tree binding.

<af:tree value="#{bindings.allLocations.treeModel}" var="node"

The "node" variable is a temporary value holder that is filled with the content of each node to render

while the tree builds or when it is getting refreshed. This variable is emptry when the tree finished

ADF CODE CORNER
How-to build an editable tree using the POJO Data
Control

 5

rendering. By default, the following markup is generated for the tree to render its nodes in read-only

mode

<f:facet name="nodeStamp">

 <af:outputText value="#{node}" id="ot1"/>

</f:facet>

To change the tree from read-only nodes to editable nodes, there is more needed than just changing

af:outputText to af:inputText, especially if a node is supposed to display more than a single attribute, like

when showing a firstName and lastName pair. Also, you may not want or need the whole tree to be

editable and therefore may want to render node levels differently. This is where the af:switcher

component in ADF Faces comes in handy.

<af:tree value="#{bindings.allLocations.treeModel}" var="node"

 rowSelection="single" id="t1"

 selectionListener="#{bindings.allLocations.treeModel.makeCurrent}"

 binding="#{InputTreeBean.tree1}">

 <f:facet name="nodeStamp">

 <af:switcher

 facetName="#{node.hierTypeBinding.structureDefName}"

 defaultFacet="oracle.pojo.entities.Locations">

 <f:facet name="oracle.pojo.entities.Locations">

 <af:inputText value="#{node.city}" id="it1"

 label="#{bindings.city.hints.label}"

 autoSubmit="false"/>

 </f:facet>

 <f:facet name="oracle.pojo.entities.Departments">

 <af:inputText value="#{node.departmentName}"

 id="it2"

 label="#{bindings.departmentName.hints.label}"

 autoSubmit="false"/>

 </f:facet>

 <f:facet name="oracle.pojo.entities.Employees">

 <af:panelFormLayout id="plm1">

 <af:inputText value="#{node.firstName}" id="it3"

 simple="false"

 label="#{bindings.firstName.hints.label}"

 autoSubmit="false"/>

 <af:inputText value="#{node.lastname}" id="it4"

 simple="false"

 label="#{bindings.lastname.hints.label}"

 autoSubmit="false"/>

 </af:panelFormLayout>

 </f:facet>

 </af:switcher>

 </f:facet>

</af:tree>

In the example above, the tree nodes are distinguished by the node entity package and class name.

Knowing the entity that renders a specific node level requires some knowledge about the POJO model

and its entity hierarchy, but it is an easy to use approach. The af:switcher uses facets you create to render

markup based on a ceratin condition, like a specific node level. Each facet has a name, which is the

ADF CODE CORNER
How-to build an editable tree using the POJO Data
Control

 6

condition that need to be met by the value referenced by he af:switcher "facetName" property. The

facetName property in the example above references #{node.hierTypeBinding.structureDefName},

which returns the absolute name of the entity that is rendered by a node.

Hint: If you use ADF Business Components, then this value is the absolute name (package and object

name) of the View Object that renders the node (e.g. adf.sample.model.EmployeesView). The View

Object name is the name of the View Object definition, not the name of the instance exposed on teh

Application Module data model.

Each facet in the code above is named after an entity rendered in the tree nodes. The "node" variable

represents a row in the collection and thus can be extended to address a specific attribute of the row

object. For example, the Employees entity has a property "firstName", which is accessible using

 #{node.firstName} when the node renders. Trying to use this EL on any other (non employees) node,

whill return an empty value. At runtime, the tree created by this metadata looks as shown below.

Hint: When you download the workspace with the demo project, you will notice that the PageDef file

contains attribute bindings for each of the input fields. These attribute bindings and their associated

iterators are not used for the tree update. I added them to define the labels for the nodes so I could define

them in the data control metadata for each attribute and method. This way labels and tooltips could be

defined consistently in a single location - the Data Control - and translated. Labels that are defined on a

Data Control are read from a properties file, which you can use to create internationalized version of your

Data Control configuration. This is why the attribute bindings are added to the PageDef file. To add

them, you select the "bindings" node in the PageDef file and use the right mouse button to choose

Generic Bindings | Attribute values from the context menu

Pressing the Submit button does update the ADF tree binding in the PageDef file with the changed node

data. In the POJO case, the update is passed to the POJO model (in the demo, it updates the

LocationsList, EmployeesList and DepartmentsList). As mentioned earlier, the update is to the model, not

ADF CODE CORNER
How-to build an editable tree using the POJO Data
Control

 7

yet persisted to the database. Only if you use ADF Business Components, the next step - to explicitly

persist the changed entity individually - is not required. For all other Data Controls, you need to explicitly

persist the changed entity objects. Especially when using Web Services, the service so far would not know

of a value update by the tree binding. Depending on the model you use, a specific method is provided that

allows you to persist objects. In the example provided with this article, the method is doCommit(Object

o) on the session facade, which just prints the persisted entity ID (e.g. department Id, employee Id or

localtions Id).

But how do you determine which entity needs to be persisted? Well this is a good question and one with

no easy answer. ADF does not provide information about the changed entity objects or the object state

from the iterators or tree binding. A common practice thus is to just take the entities that are cached in

the POJO model that you built the Data Control from and pass them to the persistence layer in the hope

that - like when using EJB - this layer knows how to tell that entities have been changed and the database

needs to be updated (if at all using a database). In this case you may not even need to pass data from the

binding layer to the POJO model, but just invoke a method to flush the cached model entities to the

persisting layer. Another option - used in this sample - is to iterate the tree in a managed bean to get all

entities exposed in the tree and pass them to the peristence method.

The sample provided with this article uses a modified version of the latter approach. In a managed bean, it

traverses the ADF Faces tree to get to the entities that need to be persisted. Because I created the POJO

model myself (demos are cheaters), the entities have a boolean property "entityStateChanged", which is

set to true whenever the ADF framework or any other accessor calls a setter method on one of its

properties. This also may be an option for you to use if you have the chance to wrap the business service

model entities in your POJO layer the data control is created from.

If, for example, the department name is updated, then for this entity, implicitly, the change flag is set to

true. The "doCommit" method that is called to persist the change, sets the flag back. This way I

implemented a simple mechanism to distinguish changed objects from others. The managed bean code

"onCommitChange" that is associated with the actionListener property of the "submit" button is shown

in the managed bean code below.

Note The code below is not needed if you use ADF Business Components as the business service. In this

case, all you need to do is to invoke the "commit" operation to some point in time

public class InputTreeBean {

 private RichTree tree1;

 public InputTreeBean() {

 }

 public void onCommitChange(ActionEvent actionEvent) {

 //just in case, avoid double invocation

 if (actionEvent.getPhaseId() == PhaseId.INVOKE_APPLICATION) {

 RichTree tree = this.getTree1();

 CollectionModel model = (CollectionModel)tree.getValue();

 JUCtrlHierBinding adfTreeBinding =

 (JUCtrlHierBinding)model.getWrappedData();

 JUCtrlHierNodeBinding root =

 adfTreeBinding.getRootNodeBinding();

 recursiveAdfTreeTraversal(root);

ADF CODE CORNER
How-to build an editable tree using the POJO Data
Control

 8

 }

 }

 //traverse the tree and check the tree node entities for updates

 private void recursiveAdfTreeTraversal(JUCtrlHierNodeBinding node){

 if (node.getRow() != null){

 //use the generic DCDataRow object instead of oracle.jbo.Row

 DCDataRow row = (DCDataRow) node.getRow();

 updatePojoModel(row.getDataProvider(),

 node.getDCIteratorBinding().getBindingContainer());

 }

 //hasChildren() always returns true, so a null check is used

 //instead to determine if a node has children

 if(node.getChildren() != null){

 for(JUCtrlHierNodeBinding childNode :

 (ArrayList<JUCtrlHierNodeBinding>) node.getChildren()){

 recursiveAdfTreeTraversal(childNode);

 }

 }

 return;

 }

 private void updatePojoModel(Object entity,

 DCBindingContainer bindings){

 boolean update = false;

 //check the internal flag defined on the entities to see if they

 //are changed by ADF

 update = entity instanceof Departments ?

 ((Departments)entity).isEntityStateChanged() : update

 update = entity instanceof Employees ?

 ((Employees)entity).isEntityStateChanged() : update;

 update = entity instanceof Locations ?

 ((Locations)entity).isEntityStateChanged() : update;

 //if an entity has been changed, get the doCommit from the method

 //binding and persist the change

 if (update == true) {

 OperationBinding pojoUpdateBinding =

 bindings.getOperationBinding("doCommit");

 pojoUpdateBinding.getParamsMap().put("o", entity);

 pojoUpdateBinding.execute();

 }

 }

 public void setTree1(RichTree tree1) {

 this.tree1 = tree1;

 }

 public RichTree getTree1() {

 return tree1;

 }

}

ADF CODE CORNER
How-to build an editable tree using the POJO Data
Control

 9

Hint: The private method "recursiveAdfTreeTraversal" is recursively called for all child nodes found for a

given node. With a bit of code changes, this method can be used e.g. to search a tree for specific search

attribute values.

Hint (inportant): The allLocations iterator RangeSize by default is set to 10. Make sure this value is set

to -1 as otherwise not all tree nodes are updated by ADF.

 <accessorIterator MasterBinding="SessionFacadeIterator" Binds="allLocations"

 RangeSize="-1" DataControl="SessionFacade"

 BeanClass="oracle.pojo.entities.Locations"

 id="allLocationsIterator"/>

Download the Sample

The Oracle JDeveloper 11.1.1.3 workspace can be downloaded from ADF Code Corner:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

RELATED DOCOMENTATION

file:///D:/Frank%20Nimphius/Document%20Factory/code-corner-to-migrate/pojoeditabletree/PojoEditableTree.zip
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

