

 ADF Code Corner

044. How-to restrict the list of values retrieved by a

model driven LOV

Abstract:

 A new feature of the Oracle ADF Business Components

business layer in Oracle JDeveloper 11g is model driven

List of Values (LOV). Using model driven LOV, the list

resource is configured on the View Object attribute for

which the list of values should be shown. Usecases may

demand that the list of values should be filtered by the

current user responsibility. For example, the sales

manager for North America should not see customers

from other regions when using a LOV in a new sales

forecast. Others may want to use this as a security

precaution in that the filter should not unveil any

information that is not supposed to be seen by the

authenticated user. In both cases the user is member of a

role that is either a security role or a business role.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
07-Feb-2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to restrict the list of values retrieved by a model
driven LOV

 2

Introduction
This how-to does not explain how to create model driven LOV in ADF Business Components and

other web resources exist that describe this. We start from the assumption that a model driven

LOV definition is created for the "DepartmentId" attribute of the Employees View Object and that

the list source points of the Departments View Object. Also we assume that the LOV UI setting is

defined so an input text with LOV is used.

Bind variables

One option to implement this usecase is to create a bind variable on the Departments View Object and

use it in the where clause of the query. As shown in the image below, the bind variable deptId is defined in

the VO and added to the query where clause.

The displays hint of the deptId variable is set so "hide", which is important as otherwise, the variable

shows as a search field in the LOV.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to restrict the list of values retrieved by a model
driven LOV

 3

The ADF Faces RC input form is created by dragging the Employees View object to the JSF page,

choosing Forms | ADF Form from the popup menu after releasing the drag operation. The

DepartmentId attribute automatically is rendered as a LOV component that shows its value in a text field.

This is the beauty of model driven list of values, which I think is a cool feature added in this release. At

least, it demos well ;-)

The page code for the list of value component is shown below

<af:inputListOfValues id="departmentIdId"

 popupTitle="Search and Select:

 #{bindings.DepartmentId.hints.label}"

 value="#{bindings.DepartmentId.inputValue}"

 label="#{bindings.DepartmentId.hints.label}"

 model="#{bindings.DepartmentId.listOfValuesModel}"

 required="#{bindings.DepartmentId.hints.mandatory}"

 columns="#{bindings.DepartmentId.hints.displayWidth}"

 shortDesc="#{bindings.DepartmentId.hints.tooltip}"

 launchPopupListener="#{LovTestBean.onLovLaunch}">

 <f:validator binding="#{bindings.DepartmentId.validator}"/>

 <af:convertNumber groupingUsed="false"

 pattern="#{bindings.DepartmentId.format}"/>

</af:inputListOfValues>

Well spotted ! The af:inputListOfValues component has a launchPopupListener defined, and its this

listener that sets the query filter for us. The managed bean code is shown below and sets a - in this

example - hard coded value to the bind variable defined in the View object

 public void onLovLaunch(LaunchPopupEvent launchPopupEvent) {

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 FacesCtrlLOVBinding lov =

 (FacesCtrlLOVBinding)bindings.get("DepartmentId");

 lov.getListIterBinding().getViewObject()

 .setNamedWhereClauseParam("deptId","60");

 }

Using this listener, restricts all values shown in the LOV to those that at least have a department id of 60,

which in the case of the Department View Object is one entry, but you get the idea.

Note that "DepartmentId" in the code line (FacesCtrlLOVBinding)bindings.get(

"DepartmentId"); references the attribute binding of the input list of value component in the

pageDef file.

Using appending a where clause

When a bind variable cannot be used, or if the where clause needs to be complex then appending the

where clause from the launchPopupListener is an option to use. So modifying the managed bean to

the code sample shown below will list all entries for the departments 30,40,50 and 60 if the LOV is

queried for all records.

public void onLovLaunch(LaunchPopupEvent launchPopupEvent) {

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

ADF CODE CORNER
How-to restrict the list of values retrieved by a model
driven LOV

 4

 FacesCtrlLOVBinding lov =

 (FacesCtrlLOVBinding)bindings.get("DepartmentId");

 String wcl = "department_id in (30,40,50,60)";

 lov.getListIterBinding().getViewObject().setWhereClause(wcl);

}

Using named ViewCriterias

Now that I showed you all that works, let me show you what I like the best and think probably is best

practices too.

View Criterias are one-time where clauses added to a query. In JDeveloper 11g, you can define named

view criterias that so that all developers that need to append a where clause can use a consistent

definition, making it easier to enforce best practices and audit application business rules. ViewCriteria can

be created with or without bind variables, where the bind variables used can be defined as "optional" - or

not required - which means that the View object could be used without populating the bind variable,

solving the limitation that exist when hard coding the variable usage into the View object query where

clause.

ADF CODE CORNER
How-to restrict the list of values retrieved by a model
driven LOV

 5

Lets create the same two samples using View Criteria on the Departments View object First, query for

departments between 30 and 60.

The launchPopupListener code for this is shown below:

public void onLovLaunch(LaunchPopupEvent launchPopupEvent) {

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 FacesCtrlLOVBinding lov =

 (FacesCtrlLOVBinding)bindings.get("DepartmentId");

 ViewCriteriaManager vcm =

 lov.getListIterBinding().getViewObject().getViewCriteriaManager();

 ViewCriteria vc = vcm.getViewCriteria("DepartmentsBetween30And60");

 lov.getListIterBinding().getViewObject().applyViewCriteria(vc);

}

Instead of using the where clause on the View object, the listener queries the ViewCriteriaManager for the

"DepartmentsBetween30and60" ViewCriteria to apply it to the VO.

However, more likely you need to filter the LOV dialog more dynamic than this. For this you can use the

code shown below, which dynamically creates a view criteria and applies it to the LOV query. Using the

code sample below, you can filter the LOV using all queryable attributes of the View Object you use for

populating the LOV search popup.

In the sample below, the LOV is pre-filtered by the DepartmentId, which I set to 60 (however, the

example is flexible)

ADF CODE CORNER
How-to restrict the list of values retrieved by a model
driven LOV

 6

public void onPopupLaunch(LaunchPopupEvent launchPopupEvent) {

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 FacesCtrlLOVBinding lov =

 (FacesCtrlLOVBinding)bindings.get("DepartmentId");

 ViewCriteriaManager vcm =

 lov.getListIterBinding().getViewObject().getViewCriteriaManager();

 //make sure the view criteria is cleared

 vcm.removeViewCriteria(vcm.DFLT_VIEW_CRITERIA_NAME);

 //create a new view criteria

 ViewCriteria vc =

 new ViewCriteria(lov.getListIterBinding().getViewObject());

 //use the default view criteria name

 //"__DefaultViewCriteria__"

 vc.setName(vcm.DFLT_VIEW_CRITERIA_NAME);

 //create a view criteria row for all queryable attributes

 ViewCriteriaRow vcr = new ViewCriteriaRow(vc);

 //for this sample I set the query filter to DepartmentId 60.

 //You may determine it at runtime by reading it from a managed bean

 //or binding layer

 vcr.setAttribute("DepartmentId", 60);

 vc.addRow(vcr);

 lov.getListIterBinding().getViewObject().applyViewCriteria(vc);

}

If you want to use a named view criteria defined at design time instead of a dynamically created one, you

can define a named view criteria with all queryable attributes (no bind variables, just the attributes you

want to query when filtering the LOV view object) in the View Object editor and apply it at runtime by its

name.

For example, if the named view criteria you design at runtime is named "myQueryAbleVC" then the code

above needs to be slightly changed as shown below

public void onPopupLaunch(LaunchPopupEvent launchPopupEvent) {

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 FacesCtrlLOVBinding lov =

 (FacesCtrlLOVBinding)bindings.get("DepartmentId");

 ViewCriteriaManager vcm =

 lov.getListIterBinding().getViewObject().getViewCriteriaManager();

 //make sure the view criteria is cleared

 vcm.removeViewCriteria(vcm.DFLT_VIEW_CRITERIA_NAME);

 //create a new view criteria

 ViewCriteria vc = vcm.getViewCriteria("myQueryAbleVC");

 ViewCriteriaRow vcr = new ViewCriteriaRow(vc);

 vcr.setAttribute("DepartmentId", 60);

 vc.addRow(vcr);

 lov.getListIterBinding().getViewObject().applyViewCriteria(vc);

}

