

ADF Code Corner

049. How-to skin ADF Faces component label

Abstract:

ADF Faces components use default labels, tool tips

and validation messages that are not customizable

through the component properties.

To customize the default labels, developers need to

implement a custom skin, which for this use case

does not have to define a custom look and feel. To

change the default messages, like the initial

"Loading..." message shown with the splash screen,

you need to know about the message keys used by

the components. The keys, as well as skinning

guides, are available online at

otn.oracle.com/products/jdev, but for the special

usecase of changing the default messages, this how-

to is all you need.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
21-SEP-2008

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE
CORNER

HOW-TO SKIN ADF FACES COMPONENT
LABELS

2

Introduction
The first experience users get with a new web application is the user interface. No matter

how good the application's codeline quality is, how many Java EE design patterns and

object oriented principles developers were able to built in, if the user interface doesn't

pass the first impression, users wont like the application as a whole. While this statement

greatly expresses the primary responsibility of skinning in ADF Faces RC, there is a

second functionality in skinning: customizing the default component labels.

Configuring Custom Skins

To apply a custom skin to an ADF Faces RC application, you

 create a styles sheet file (CSS) containing ADF Faces RC component selectors

 create a file trinidad-skins.xml located in the WEB-INF directory of the view layer

 change the configuration in trinidad-config.xml to points to the new skin

The trinidad-skins.xml file is a registry file of all custom skins available to an application. The file

doesn't exist by default as it is not needed when using the Oracle look and feel.

To create this file, choose New from the project's context menu and create a new XML

document in the view layer WEB-INF directory.

In the current release of JDeveloper 11g there exists no a dialog to help creating this document,

which is why a copy and paste approach from an existing trinidad-skins.xml file is best practice to

do.

The following code example shows a custom skin entry in the trinidad-skins.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>

<skins xmlns="http://myfaces.apache.org/trinidad/skin">

 <skin>

 <id>coffee_sample.desktop</id>

 <family>coffee_sample</family>

 <render-kit-id>

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE
CORNER

HOW-TO SKIN ADF FACES COMPONENT
LABELS

3

 org.apache.myfaces.trinidad.desktop

 </render-kit-id>

 <style-sheet-name>

 skins/coffee_sample.css

 </style-sheet-name>

 <bundle-name>

 fnimphiu.sample.skin.StringBundleOverride

 </bundle-name>

 <extends>blafplus-rich.desktop</extends>

 </skin>

</skins>

The custom skin is defined by the style sheet referenced through the style-sheet-name element.

The CSS file must be located relative to the view layer project's public_html directory. In the

above example, the file is in the public_html\skins directory.

If only the message bundle should be changed then the CSS file is empty, otherwise it contains

the ADF FAces RC component selectors with the custom style definitions. The skinning

framework doesn't work with the file directly but accesses it through its id and family element.

The id element is used when referencing existing skins that the custom skin is supposed to

extend. For the usecase to only customize some or all default messages, the look and feel should

be kept to the default.

The extends element in trinidad-skins.xml thus references blafplus-rich.desktop, the id

element value of the Oracle default skin.

The family name is used to configure the custom skin so it gets applied to the running

application. This can be done as a static configuration or dynamically using Expression Language.

The bundle-name element is key to the usecase explained in this how-to. The bundle-name

element points to a custom Java class that extends ListBundle to provide the custom labels.

The custom skin is configured in the trinidad-config.xml file as

<?xml version="1.0" encoding="windows-1252"?>

<trinidad-config

xmlns="http://myfaces.apache.org/trinidad/config">

 <skin-family>cofee_sample</skin-family>

</trinidad-config>

Lets assume we run an online coffee shop that wants to have their tag line "Got time? Get goffee"

shown with the splash screen while the ADF Faces RC application loads. The splash screen is a

functionality of the af|document component, which has the following message keys defined:

af_document.LABEL_SKIP_LINK_TEXT
Text written out as part of link in screenreader mode to skip to

the content on the page.

af_document.LABEL_SPLASH_SCREEN The label for the splash screen that is displayed the first time a

ADF CODE
CORNER

HOW-TO SKIN ADF FACES COMPONENT
LABELS

4

page is shown.

af_document.MSG_FAILED_CONNECTION
The error text brought up in an alert box when a connection to

the server fails.

The message key highlighted in bold is the key to reference in the custom messagebundle,

fnimphiu.sample.skin.StringBundleOverride used above. The String bundle used with this example

looks as follows

package fnimphiu.sample.skin;

import java.util.ListResourceBundle;

public class StringBundleOverride extends ListResourceBundle{

 public StringBundleOverride() {

 }

 @Override

 public Object[][] getContents() {

 return _CONTENTS;

 }

 private static final Object[][] _CONTENTS =

 {

 {"af_document.LABEL_SPLASH_SCREEN", "Got time? Get coffee!"}

 };

}

As you can see, only a single component key is defined in the resource bundle, in opposite to all

the 200. The other strings are taken from the default definition. This brings up the splash screen

as

ADF CODE
CORNER

HOW-TO SKIN ADF FACES COMPONENT
LABELS

5

Extending an already extended string bundle

To implement inheritance and to extend an existing custom string bundle, you use code similar

to the one shown below

package com.oracle.adcs;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Set;

public class PartialOverrideBundle extends SingleStringBundle {

 public PartialOverrideBundle(){

 super();

 }

 @Override

 public Object[][] getContents() {

 return getCustomKeys();

 }

 private Object[][] getCustomKeys(){

 Object[][] messages = super.getContents();

 // my overrides

 HashMap hm = new HashMap();

 for (int i = 0; i < messages.length;i++){

 hm.put(messages[i][0],messages[i][1]);

 }

 // add custom strings

 hm.put("af_document.MSG_FAILED_CONNECTION",

 "Crash Boom Bang");

 //renew

 messages = new Object[hm.size()][2];

 Set keySet = hm.keySet();

 Iterator keyIter = keySet.iterator();

 for (int i = 0; i < hm.size(); i++) {

ADF CODE
CORNER

HOW-TO SKIN ADF FACES COMPONENT
LABELS

6

 String keyStr = (String) keyIter.next();

 messages[i] = new Object[]{keyStr,hm.get(keyStr)};

 }

 return messages;

 }

}

The above code keeps the custom Splash screen message, but adds "Crash Boom Bang" as the

message shown for a failed server connection during the initial loading time. Of course, this

message too could have gone into the first example, but keep in mind that this is a simplified

example and the extended message bundle may not be available in source code

