ADF Code Corner

050. How-to create and synchronize edit forms for
tree node entries

ORACLE’

CODE CORNER

s

twitter.com/adfcodecorner

Abstract:

A tree displays hierarchical data structures and often is
used as a mean of navigation within data. A common use
case is to display an input form in response to the tree
node or ree leaf selection by the user.

In this blog article | look at what it takes to synchronize an
input form with a tree selection and how to switch between
input forms created for different level in a tree. A generic
selection listener introduced in an earlier blog posting is
used to handle the user selection and display the form.

Frank Nimphius, Oracle Corporation

twitter.com/fnimphiu

29-MAR-2010

How-to create and synchronize edit forms for tree node
ADF CODE CORNER ggus«{

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle | Developer: bttp:/ / forums.oracle.com/ forums/ fornm.jspa2forumID=83

Introduction

The image below shows the runtime view of the example discussed in this article. Upon selection
of a tree node or leaf, an input form is dynamically displayed to allow users to edit data
associated with the tree selection.

Though not shown in the example, information can also be created and deleted using this
approach. In ADF, by default, the tree binding selection is handed by a method in an internal ADF
binding class, which is referenced by EL from the SelectionListener property. The EL looks similar
to shown next: #{bindings.<tree binding name>.makeCurrent.

Developers who need to add pre- or post processing information to the listener execution, as
required in this example, can use the existing EL string in a Java EL MethodExpression, or write
a custom listener completely in Java, which is approach taken in this article. The approach of
using the default EL expression in a Java MethodExpression is explained in chapter 9 of the
Fusion Developer Guide book Lynn Munsinger and | wrote for McGraw Hill. So if you are
interested in this option, you can have a look there.

= 1000 Roma & *Employeeld | 115
= 1100 Yenice | FirstN ﬁlexan dor
B> 1200 Tokyo pren
I> 1300 Hiroshima * Lasthame |Khoo
[> 1400 Southlske * Email | AKHOO
> 1500 South San Francisco
. PhoneMumber | 515.127.4562
B 1600 South Brunswick —
V1700 Seattle * HireDate [5/18/1995)
> 10 Administration * JobId [PU_CLERK (5]

W 30 Purchasing 5al. 3100
alary
11] CommissionPct

116 Shek$aida Managerld | 114

117 Sigal Tobias PR — |
¢ DepartmentId [Purchasing i~

118 Guy Himuro

119 Karen Colmenares Submit

= 90 Executive

> 100 Finance

> 110 Accounting

> 120 Treasury

> 130 Corporate Tax

L 140 Control And Credit
B 150 Shareholder Services

Al

http://forums.oracle.com/forums/forum.jspa?forumID=83

How-to create and synchronize edit forms for tree node
ADF CODE CORNER [E3sliste]

The Data Controls panel

The Data Controls panel is the starting point for the tree development. It exposes three collections that
may come from ADF Business Components (used in this example) or any other DC implementation,
including Web Services and POJO.

The alll_ocations collection is the one to start with in this example and contains collection the
details, dependentDepartments and dependentEmployees. Note that the two other stand alone collections
allDepartments and alEEmployees are important for building the synchronized input forms.

El@ AppModuleDataControl
Er]' allDepartments
E-]EI alEmployees
CJE] allLocations
(5@ City
---- & CountryId
----- LocationId
----- &3 PostalCode
--{548) StateProvince
----- &3 StreetAddress
E—JE] dependentDepartments
<<<<< DepartmentId
E DepartmentMName
---- LocationId
{E Managerld
EE} dependentEmployees
-3 Operations
@23 Named Criteria
{27 Operations

-3 Named Criteria
P Recently Opened Files

Building the input forms

In this example, I am using a PanelSplitter layout component to separate the tree from the input form.
For this use case, it is most convenient to start with building the input forms before dragging the
alll_ocations collection to become the tree. In the Operations panel of the ADF Faces Component
Palette, you find the Switcher (af:switcher) component, which you drag and drop onto the right hand
side of the PanelSplitter.

To quote the tag docs: "The switcher component dynamically decides which facet component should be rendered. It has

two properties. The switcher will render the facet matching "facetName"; however, if no such facet exists (or "facetName'"" is
null), and "defanitFacet” has been set, then that facet will be used instead. (It's possible to achieve this same functionality by
using a panelGroup and binding the "rendered"’ property of each child, but this component can be simpler. Ordinary children

of the switcher component are not rendered at all.)

The switcher is a purely logical server-side component. 1t does not generate any content itself and has no client-side

representation (no client component). Hence switching which facet of the switcher renders requires a server round-trip."

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_switcher.html

How-to create and synchronize edit forms for tree node
ADF CODE CORNER ggus«{

The af:switcher component does not support partial page refresh itself, I made sure the af:switcher tag is

surrounded by af:panelGroupLayout component with the layout property set to "scroll". This way,
refreshing the PanelGroupLayout implicitly refreshes the switcher.

The af:switcher component, shown in the image below (1), works like a switch statement in Java and
allows you to change the Ul based on an outer condition, which in this blog example is an attribute in the
viewScope. Using the viewScope also means that ADF Task Flow (ADF Controller) must be configured
for the project, which is the case when starting your development with the Fusion template in JDeveloper.

The af:switcher component has three custom facets that you create with a right mouse click onto the
afiswitcher node in the JDeveloper Structure Window. This opens a context dialog for you to create a
new facet. The name of the facet in this example is the absolute name - package and class name - of the
collection to display. In this example I use ADF Business Components with the View Objects located in
the adf.sample.poc.model.view package. For each View Object, I created one facet. If your collection is based
on POJO entities, then the name of the facet is the package and class name of the POJO entities
represented in the tree.

If you have a look at the Property Inspector for the af:iswitcher (2), you see two property settings:
FacetName and DefanltFacet. The FacetName property determines the current facet to display and looks up
an attribute in the viewScope. This attribute will be filled in the custom tree selection listener of this article
with the information - package name and class name - of the selected node. The DefanltFacet property
determines the node to display if the attribute is missing or the value in it does not resolve to a facet
defined for the afiswitcher component. The visual editor (3) shows the input form dragged into the
DepartmentsView facet. To build the input forms you drag the "a//Locations’ collection entry into the
"LocationsV'ien'"" facet, the "allDepartments" collection into the "DepartmentsView" and the "al[Employees”
collection into the "Ensployeeslien"" facet.

= — =
E SynchTreeWithEditForm Vl - }m v ShDW'[FuII Screen Sizev][None 'IDeFauIL 'lNone V]E b f B/ u o
b Projects SR V-E- | I :| """""""""""""""""""""""""""""""""""")
b Application Resources. | #node} Departmentid {#(eparmentic inputValue) '
) Data Controls @V Ll #noder Depar [putvalue) |
b Recently Opened Files | #node} 3]
< { Managerid
‘*=Treesamplepage.jspx - Structure | ol | Locatorid [#. Locationidinputvalue) |
» Submit,
[23 Warnings (10) i
4D jspiroot
L @ jspidirective.page
- (28] Fiview
&[5 af:document
% af:messages
= af:form
= m af:panelSplitter { '
== Panel Splitter facets -—_—————— I ;
== first _
& Eaf'tree g AE#d1 v) af:form#f1 v » af:panelsplitter#ps1 v » f:facet v > af:panelgrouplayout#pall v > af:switcher#sl - +
e ; indi o | History | < >
&-&3 second Desian ISuuvce |B|nd|ngs vaev(ew History —)
-5 af:panelGroupLayout - scroll 1 Running; It 1 ®suitcher - Property Inspector] I
PN Y
8 | | Find
- EH Fibcet PR samplepoc modelviews LocatonsView H,2 7 (@ e
: Facet: C
LB E F:facet - adf.sample.poc.model. views, DepartmentsYiew ommon old: |sl]v
=3 af:panelFormLayout Customization
g2 aftinputText - #{bindings.DepartmentId.hints.label} 2 Rendered: [<default> (true) '_] M
-2 aftinputText - #{bindings.Departmenthame. hints.lab BFacetName: #{viewScope selectedTreehiode} o
-3 afiinputText - #{bindings.ManagerId. hints.label} By T 0 el Caaey
° : =
-g2 afiinputText - #{bindings.Locationld. hints.label} SoRREAcRk fa sample.poc.model views LocationsView PR
1 (=Y Panel Form Layout facets Binding: | ‘ v
N Ea F:facet - adf.sample.poc.model. views, Employeesview AttributeChangeListener: |]v
(=4 Panel Group Layout facets
[#--=4 Document facets
< | & >
Source lDesign [

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973/af_ppr.htm#BGBEGIDF
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_panelGroupLayout.html
http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/taskflows.htm#BABDJEDD

How-to create and synchronize edit forms for tree node
ADF CODE CORNER [E3sliste]

Note that it is important that the input form is build with collections that are not dependent on the the
alllocations collection (except for the a/llocations form itself).

Note: The collection names in my example are different from their ViewObject names. This change in
the naming is instance specific and defined for the View Object instances when building the data model in
the ADF Business Component Application Module.

Building the tree

Now its time to build the tree. For this, drop the "a/lLocations” (1) collection (The LocationsView) onto
the left hand side of the tree, selecting the tree option from the ADF context menu.For each of the tree
node levels, press the green plus icon to create a node rule (3). For the DepartmentsView and
EmployeesView node there is an extra step (4) required. The "Target Data Source" option synchronizes
the iterator of the input form with the selected tree node. For this, it uses EL to reference the iterators.
Because the top level tree node - Locations - is automatically synchronized when selecting a location in
the tree, the "Target Data Source" only needs to be configured for the Departments and Employees View.
The value of the Target Data Source is a EL as shown below: ${bindings.<iterator name>}. The "$" in
the EL syntax indicates that the EL string is immediately resolved when the tree is rendered.

Note: Trees use internal accessors to display dependent node information. Because of this internal access,
by default, no iterator is created in ADF for child tree nodes. This is also why I said eatlier that starting
with creating the input forms is more convenient for this use case because it created the iterators to

reference from the Target Data Source feature.

SynchTreewithEditForm vI - (Bindings and Executables |f
b Projects [AR EModel Edit Tree Binding
b Application Resources
f Select the data source for the root tree node, and decide which attributes you want to display in
b Data Controls | o &
= Gﬂ ? Bindings ‘* / x the tree, To add additional tree level rules For child collections, select the parent tree level rule
b Recently Opened Files andclick the Add icon. If no child collections are available for the selected node, the Add icon is
[it (&) Department1d disabled
= (&) Departmentiame
+ = TreeSamplePagePageDef .xml - Structure & [Managerld Root Data Source: AppModuleDataControl. allLocations 'J] [Add....]
(&) Locationd —~
5 ,5 Tree Level Rules: lf' x
&) Employeeld
=3 TreeSampIePagePageDef . " e .
G —— (& Firstame =@ adf.sample.poc.model. views.LocationsView(<Departmentsyiew =)
(& Lastiame = #= adf.sample.poc.model,
-3 executables o |
&- 53 bindings g Email [adf.sample.poc.model. views.Employeesview
- 9 (& PhoneNumber
& @Departmentld [HireDate
=3 @Departmentmame (&g 20b1d
(@) Managerld & salary
[Locationld (&) CommissionPct [%
@ Employeeld (&) Managerld1
@v-@ FirstName E’:;: DepartmentId1 3
(3 Lasthame (&) LocationId1
(3 Email (&) streetaddress
(@ PhoneNumber (& PostalCode
H @J bld (&) stateProvince ; i i)
{ 9 X Available Attributes: Display Attributes:
(3 Salary (& countryld
& T . I, allLocations — Locationld [> ‘ DepartmentId
-y CommissionPl Managerld DepartmentName
@»‘@ ManagerId1 - .
: @ DepartmentIdl m Bindings | Preview [@_ [’@]
G @ LocationId1 [EJRunning: IntegratedweblogicServer
& @ StreetAddress (i 3 ﬁ) B
& @ PostalCode [z Target Data Source
- City 1
-39 StateProvince EL Expression: |5{bindings.aIIDepartmentsIterator} [[EL Picker]
@[Countryld
© s 4 =23

The image below shows the EL editor that opens when clicking the "EL Picker" button.

How-to create and synchronize edit forms for tree node
ADF CODE CORNER [Sslist=]

Edit Tree Binding
Select the data source for the root tree node, and decide which attributes you want to display in
the tree. To add additional tree level rules for child collections, select the parent tree level rule
andclick the Add icon. If no child collections are available for the selected node, the Add iconis
disabled.
Root Data Source: AppModuleDataControl.aIIanations '_] & Variables
Tres LevelRules: Select values from variables and operators to create an expression or directly type the expression here:
=@ adf.sample.poc.model. views, LocationsView(<DepartmentsView >
el (=) Expression: 'ﬂ @ é
= 2= adl ple.poc.moc rkmen Emplo
[adf.sample.poc.model.views.Employeesiew $1bindings. alDepartmentslterator}
Variables: [Common VJ Operands:
(@) [=
T ~ |l
[Streetaddress N
- aII[‘nepartmentsIEeratcnr <
- @-[F alEmployeestteritor = 1
Accessor: [: Folder Label: : [] Enal P [allLocations <=
F . . @-{F allLocationsIterator _—
Available Attributes: Display Attributes: ¥ i 5 -
@[] variables 1=
LocationId Departmentld (2] data .
Managerld Departmenthame B a securityContext 1
I=="N n L | d o
"
Description
[=] Target Data Source Help J I oK I [Cancel J
=
EL Expression: I${bindings.aIIDepartmentsIterator} [[EL Picker]
Iz

Preparing the af:panelGroupLayout for partial refresh

1 mentioned earlier, that the af:panelGroupLayout surrounds the af:switcher tag so a partial refresh
can change the displayed input form according to the selected tree item. For this you create a managed
bean in request scope, which then you reference from the afipanelGroupLayout "Binding" propetty. Note
that the component "Binding" property has nothing in common with ADF. It can be used to build an EL
reference to a setter and getter method in a managed bean, given developers a chance to pass a handle to
the UI component into the managed bean. To create the managed bean, you i) create a POJO class
(JavaBean) and ii) register it in the overview tab of the adfc-config.xml file (or the taskflow meta data
configuration that the page is part of)

Building the Custom Selection Listener

o The custom Selection Listener is a public method in the same managed bean that hold the component
binding to the af:panelGroupLayout component. Below is the complete code of the managed bean,
including the af:panelGroupLayout component binding reference. Since the listener code is generic, its
only the part highlighted in bold that is specific to this use case.

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import javax.el.ELContext;

import javax.el.ExpressionFactory;
import javax.el.ValueExpression;

import javax.faces.context.FacesContext;

How-to create and synchronize edit forms for tree node
ADF CODE CORNER 3t

import oracle.adf.model.BindingContext;

import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCIteratorBinding;

import oracle.adf.model.binding.DCIteratorBindingDef;
import oracle.adf.view.rich.component.rich.data.RichTree;
import oracle.adf.view.rich.component.rich.layout.RichPanelGroupLayout;
import oracle.adf.view.rich.context.AdfFacesContext;
import oracle.jbo.Key;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;
import oracle.jbo.uicli.binding.JUCtrlHierTypeBinding;
import oracle.jbo.uicli.binding.JUIteratorBinding;

import org.apache.myfaces.trinidad.event.SelectionEvent;
import org.apache.myfaces.trinidad.model.CollectionModel;

import org.apache.myfaces.trinidad.model.RowKeySet;

public class TreeHelperBean {
private RichPanelGroupLayout pgSwitcher;

public TreeHelperBean () {
}

/‘k‘k

* Custom managed bean method that takes a SelectEvent input argument

* to generically set the current row corresponding to the selected row
* in the tree. Note that this method is a way to replace the

* "makeCurrent" EL expression (#{bindings.<tree binding>.

* treeModel .makeCurrent}that Oracle JDeveloper adds to the tree

* component SelectionListener property when dragging a collection from
* the Data Controls panel. Using this custom selection listener allows
* developers to add pre- and post processing instructions. For

* example, you may want to enforce PPR on a specific item after a new

* tree node has been selected. This methods performs the following

* steps

*

* 1. get access to the tree component

* ii. get access to the ADF tree binding

* iii. set the current row on the ADF binding
* iv. get the information about target iterators to synchronize

* V. synchronize target iterator

* (@param selectionEvent object passed in by ADF Faces when configuring
* this method to become the selection listener

How-to create and synchronize edit forms for tree node
ADF CODE CORNER 3t

* @Qauthor Frank Nimphius
*/
public void onTreeSelect (SelectionEvent selectionkEvent) {
//get the tree information from the event object
RichTree treel = (RichTree) selectionEvent.getSource();
//in a single selection case (a setting om the tree component)
//the added set only has a single entry. If there are more then
//using this method may not be desirable.
//Implicitly we turn the multi select in a single select later,
//ignoring all set entries than the first
RowKeySet rks2 = selectionEvent.getAddedSet ()
Iterator rkslIterator = rks2.iterator();

//support single row selection case

if (rksIterator.hasNext()) {

//get the tree node key, which is a List of path entries describing

//the location of the node in the tree including its parents nodes

List key = (List)rksIterator.next();

//get the ADF tree Dbinding to work with

JUCtrlHierBinding treeBinding = null;

//The Trinidad CollectionModel is used to provide data to trees and

//tables. In theADF binding case, it contains the tree binding as

// wrapped data

treeBinding = (JUCtrlHierBinding)

((CollectionModel) treel.getValue ()) .getWrappedDatal() ;

//find the node identified by the node path from the ADF binding

//layer. Note that we don't need to know about the name of the

// tree binding in the PageDef file because all information is

//provided

JUCtrlHierNodeBinding nodeBinding =
treeBinding.findNodeByKeyPath (key) ;

//the current row is set on the iterator binding. Because all

//bindings have an internal reference to their iterator usage, the

//iterator can be queried from the ADF binding object

DCIteratorBinding treelteratorBinding = null;

_treelteratorBinding = treeBinding.getDCIteratorBinding();

Key rowKey = nodeBinding.getRowKey () ;

JUIteratorBinding iterator = nodeBinding.getIteratorBinding() ;

iterator.setCurrentRowWithKey (rowKey.toStringFormat (true)) ;

//get selected node type information

JUCtrlHierTypeBinding typeBinding =

nodeBinding.getHierTypeBinding () ;

// The tree node rule may have a target iterator defined. Target
// iterators are

How-to create and synchronize edit forms for tree node
ADF CODE CORNER 3t

// configured using the Target Data Source entry in the tree node
// edit dialog and allow developers to declaratively synchronize an
// independent iterator binding with the node selection in the
// tree.
String targetlIteratorSpelString =

typeBinding.getTargetIterator();

// chances are that the target iterator option is not configured.
// We avoid NPE by checking this condition

if (targetIteratorSpelString != null &&
'targetIteratorSpelString.isEmpty()) {

//resolve SPEL string for target iterator
DCIteratorBinding targetIterator =

resolveTargetIterWithSpel (targetIteratorSpelString);
//synchronize the row in the traget iterator
targetIterator.setCurrentRowWithKey (rowKey.toStringFormat (true)) ;

/* CUSTOM POST PROCESSING */

//get the information about the object represented by the clicked
//node. This is the absolute package and VO name in the ADF BC
//case. Using POJO, this is the package and class name of the
//entity object

String nodeStuctureDefname = typeBinding.getStructureDefName () ;

//store it in view scope for the input field switcher to pick up in
//this example
Map viewScope =
AdfFacesContext.getCurrentInstance () .getViewScope () ;
viewScope.put ("selectedTreeNode", nodeStuctureDefname) ;

//PPR - refreshes the af:panelGrouplLayout that switches the input
//form
AdfFacesContext adffacesctx = AdfFacesContext.getCurrentInstance() ;
adffacesctx.addPartialTarget (this.getPgSwitcher()) ;
}
}

/**
* Helper method to resolve EL expression into DCIteratorBinding

* instance

How-to create and synchronize edit forms for tree node
ADF CODE CORNER 3t

* @param spelExpr the SPEL expression starting with ${...}

* @return DCIteratorBinding instance

*/

private DCIteratorBinding resolveTargetIterWithSpel (

String spelExpr) {
FacesContext fctx = FacesContext.getCurrentInstance();
ELContext elctx = fctx.getELContext ()
ExpressionFactory elFactory =
fctx.getApplication () .getExpressionFactory () ;

ValueExpression valueExpr =
elFactory.createValueExpression(elctx, spelExpr,Object.class);
DCIteratorBinding dciter =
(DCIteratorBinding) valueExpr.getValue (elctx);

return dciter;

public void setPgSwitcher (RichPanelGrouplLayout pgSwitcher) {
this.pgSwitcher = pgSwitcher;

public RichPanelGroupLayout getPgSwitcher () {
return pgSwitcher;

}

}

Note: Using the default selection listener reference created by ADF (# {bindings.<tree

name>.makeCurrent()} in a MethodExpression definitively shortens the amount of code to write.

However, he advantage of the pure Java solution in this article is that it is save in that refactoring on the

binding layer, like re-naming of the tree binding, does not break functionality.
Configuring the custom Selection Listener

The last thing to do is to reference the managed bean selection listener method from the SelectionListener

property of the tree component as shown below

How-to create and synchronize edit forms for tree node
ADF CODE CORNER [gSstéet

SynchTreeWithEditForm

&

b Projects

3 AppiiéationResources
b Data Controls

b Recently Opened Files

BlRY-E-|

@7

-, 5
@Warnings ('lrfrl)
9 jspiroot

[9 jsp:directive.page
8 Fiview
EE af:document
g af:messages
af:form
Em af:panelSplitter

(==Y Panel Splitter facets

- = First

E}@ second

:“;TreeSamplePage.jspx - Structure :

Find

95 af :panelGroupLayout - scroll
=@ afiswitcher

@Ea f:facet - adf.sample.p
L?E f:facet - adf.sample.p
E af:panelFormLay:

(‘=4 Document facets

Ea---E f:facet - adf.sample.p
(=4 Panel Group Layout Facet

GG aftinputText
IBQ:! afinputText
g2 aftinputText
E}@ af:inputText
(=4 Panel Form L

o RowSelection: | single v %
ContentDelivery: [<c!§fa_ylt__>’_(_la;y) vj v
FetchSize: |25 | v
Immediate: [<default» (false) -
PartialTriggers: | I v
RefreshCondition: | | v

@ RangeSize: |25 | v
RenderHint: [<default>i(immediate) = v

o SelectionListener: |#{TreeHeIperBean.onTreeSeIect} | v |
FocusListener: | | v
RowDisclosureListener: I Iv
Contextual Events

Published Events * 7/ x‘
Mame |Custom Payload jiNode Mame
= Advanced
g

< [ﬂﬂ

Download Example

You can download a JDeveloper 11g R1 PS1 workspace with the example discussed in this article from

ADF Code Corner;
http:

www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Make sute you configure the ADF Business Components data connection to the HR schema of your
database. Then run the JSPX page in the ViewLayer project to see it in action.

RELATED DOCOMENTATION

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

