

 ADF Code Corner

050. How-to create and synchronize edit forms for

tree node entries

Abstract:

 A tree displays hierarchical data structures and often is

used as a mean of navigation within data. A common use

case is to display an input form in response to the tree

node or ree leaf selection by the user.

In this blog article I look at what it takes to synchronize an

input form with a tree selection and how to switch between

input forms created for different level in a tree. A generic

selection listener introduced in an earlier blog posting is

used to handle the user selection and display the form.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
29-MAR-2010

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

2

Introduction
The image below shows the runtime view of the example discussed in this article. Upon selection

of a tree node or leaf, an input form is dynamically displayed to allow users to edit data

associated with the tree selection.

Though not shown in the example, information can also be created and deleted using this

approach. In ADF, by default, the tree binding selection is handed by a method in an internal ADF

binding class, which is referenced by EL from the SelectionListener property. The EL looks similar

to shown next: #{bindings.<tree binding name>.makeCurrent.

Developers who need to add pre- or post processing information to the listener execution, as

required in this example, can use the existing EL string in a Java EL MethodExpression, or write

a custom listener completely in Java, which is approach taken in this article. The approach of

using the default EL expression in a Java MethodExpression is explained in chapter 9 of the

Fusion Developer Guide book Lynn Munsinger and I wrote for McGraw Hill. So if you are

interested in this option, you can have a look there.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

3

The Data Controls panel

The Data Controls panel is the starting point for the tree development. It exposes three collections that

may come from ADF Business Components (used in this example) or any other DC implementation,

including Web Services and POJO.

The allLocations collection is the one to start with in this example and contains collection the

details, dependentDepartments and dependentEmployees. Note that the two other stand alone collections

allDepartments and alEmployees are important for building the synchronized input forms.

Building the input forms

In this example, I am using a PanelSplitter layout component to separate the tree from the input form.

For this use case, it is most convenient to start with building the input forms before dragging the

allLocations collection to become the tree. In the Operations panel of the ADF Faces Component

Palette, you find the Switcher (af:switcher) component, which you drag and drop onto the right hand

side of the PanelSplitter.

To quote the tag docs: "The switcher component dynamically decides which facet component should be rendered. It has

two properties. The switcher will render the facet matching "facetName"; however, if no such facet exists (or "facetName" is

null), and "defaultFacet" has been set, then that facet will be used instead. (It's possible to achieve this same functionality by

using a panelGroup and binding the "rendered" property of each child, but this component can be simpler. Ordinary children

of the switcher component are not rendered at all.)

The switcher is a purely logical server-side component. It does not generate any content itself and has no client-side

representation (no client component). Hence switching which facet of the switcher renders requires a server round-trip."

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_switcher.html

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

4

The af:switcher component does not support partial page refresh itself, I made sure the af:switcher tag is

surrounded by af:panelGroupLayout component with the layout property set to "scroll". This way,

refreshing the PanelGroupLayout implicitly refreshes the switcher.

The af:switcher component, shown in the image below (1), works like a switch statement in Java and

allows you to change the UI based on an outer condition, which in this blog example is an attribute in the

viewScope. Using the viewScope also means that ADF Task Flow (ADF Controller) must be configured

for the project, which is the case when starting your development with the Fusion template in JDeveloper.

The af:switcher component has three custom facets that you create with a right mouse click onto the

af:switcher node in the JDeveloper Structure Window. This opens a context dialog for you to create a

new facet. The name of the facet in this example is the absolute name - package and class name - of the

collection to display. In this example I use ADF Business Components with the View Objects located in

the adf.sample.poc.model.view package. For each View Object, I created one facet. If your collection is based

on POJO entities, then the name of the facet is the package and class name of the POJO entities

represented in the tree.

If you have a look at the Property Inspector for the af:switcher (2), you see two property settings:

FacetName and DefaultFacet. The FacetName property determines the current facet to display and looks up

an attribute in the viewScope. This attribute will be filled in the custom tree selection listener of this article

with the information - package name and class name - of the selected node. The DefaultFacet property

determines the node to display if the attribute is missing or the value in it does not resolve to a facet

defined for the af:switcher component. The visual editor (3) shows the input form dragged into the

DepartmentsView facet. To build the input forms you drag the "allLocations" collection entry into the

"LocationsView" facet, the "allDepartments" collection into the "DepartmentsView" and the "allEmployees"

collection into the "EmployeesView" facet.

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973/af_ppr.htm#BGBEGIDF
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_panelGroupLayout.html
http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/taskflows.htm#BABDJEDD

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

5

Note that it is important that the input form is build with collections that are not dependent on the the

allLocations collection (except for the allLocations form itself).

Note: The collection names in my example are different from their ViewObject names. This change in

the naming is instance specific and defined for the View Object instances when building the data model in

the ADF Business Component Application Module.

Building the tree

Now its time to build the tree. For this, drop the "allLocations" (1) collection (The LocationsView) onto

the left hand side of the tree, selecting the tree option from the ADF context menu.For each of the tree

node levels, press the green plus icon to create a node rule (3). For the DepartmentsView and

EmployeesView node there is an extra step (4) required. The "Target Data Source" option synchronizes

the iterator of the input form with the selected tree node. For this, it uses EL to reference the iterators.

Because the top level tree node - Locations - is automatically synchronized when selecting a location in

the tree, the "Target Data Source" only needs to be configured for the Departments and Employees View.

The value of the Target Data Source is a EL as shown below: ${bindings.<iterator name>}. The "$" in

the EL syntax indicates that the EL string is immediately resolved when the tree is rendered.

Note: Trees use internal accessors to display dependent node information. Because of this internal access,

by default, no iterator is created in ADF for child tree nodes. This is also why I said earlier that starting

with creating the input forms is more convenient for this use case because it created the iterators to

reference from the Target Data Source feature.

The image below shows the EL editor that opens when clicking the "EL Picker" button.

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

6

Preparing the af:panelGroupLayout for partial refresh

I mentioned earlier, that the af:panelGroupLayout surrounds the af:switcher tag so a partial refresh

can change the displayed input form according to the selected tree item. For this you create a managed

bean in request scope, which then you reference from the af:panelGroupLayout "Binding" property. Note

that the component "Binding" property has nothing in common with ADF. It can be used to build an EL

reference to a setter and getter method in a managed bean, given developers a chance to pass a handle to

the UI component into the managed bean. To create the managed bean, you i) create a POJO class

(JavaBean) and ii) register it in the overview tab of the adfc-config.xml file (or the taskflow meta data

configuration that the page is part of)

Building the Custom Selection Listener

 The custom Selection Listener is a public method in the same managed bean that hold the component

binding to the af:panelGroupLayout component. Below is the complete code of the managed bean,

including the af:panelGroupLayout component binding reference. Since the listener code is generic, its

only the part highlighted in bold that is specific to this use case.

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.ValueExpression;

import javax.faces.context.FacesContext;

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

7

import oracle.adf.model.BindingContext;

import oracle.adf.model.binding.DCBindingContainer;

import oracle.adf.model.binding.DCIteratorBinding;

import oracle.adf.model.binding.DCIteratorBindingDef;

import oracle.adf.view.rich.component.rich.data.RichTree;

import oracle.adf.view.rich.component.rich.layout.RichPanelGroupLayout;

import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.jbo.Key;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import oracle.jbo.uicli.binding.JUCtrlHierTypeBinding;

import oracle.jbo.uicli.binding.JUIteratorBinding;

import org.apache.myfaces.trinidad.event.SelectionEvent;

import org.apache.myfaces.trinidad.model.CollectionModel;

import org.apache.myfaces.trinidad.model.RowKeySet;

public class TreeHelperBean {

 private RichPanelGroupLayout pgSwitcher;

 public TreeHelperBean() {

 }

/**

* Custom managed bean method that takes a SelectEvent input argument

* to generically set the current row corresponding to the selected row

* in the tree. Note that this method is a way to replace the

* "makeCurrent" EL expression (#{bindings.<tree binding>.

* treeModel.makeCurrent}that Oracle JDeveloper adds to the tree

* component SelectionListener property when dragging a collection from

* the Data Controls panel. Using this custom selection listener allows

* developers to add pre- and post processing instructions. For

* example, you may want to enforce PPR on a specific item after a new

* tree node has been selected. This methods performs the following

* steps

*

* i. get access to the tree component

* ii. get access to the ADF tree binding

* iii. set the current row on the ADF binding

* iv. get the information about target iterators to synchronize

* v. synchronize target iterator

*

* @param selectionEvent object passed in by ADF Faces when configuring

* this method to become the selection listener

*

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

8

* @author Frank Nimphius

*/

 public void onTreeSelect(SelectionEvent selectionEvent) {

 //get the tree information from the event object

 RichTree tree1 = (RichTree) selectionEvent.getSource();

 //in a single selection case (a setting om the tree component)

 //the added set only has a single entry. If there are more then

 //using this method may not be desirable.

 //Implicitly we turn the multi select in a single select later,

 //ignoring all set entries than the first

 RowKeySet rks2 = selectionEvent.getAddedSet();

 Iterator rksIterator = rks2.iterator();

 //support single row selection case

 if (rksIterator.hasNext()){

 //get the tree node key, which is a List of path entries describing

 //the location of the node in the tree including its parents nodes

 List key = (List)rksIterator.next();

 //get the ADF tree binding to work with

 JUCtrlHierBinding treeBinding = null;

 //The Trinidad CollectionModel is used to provide data to trees and

 //tables. In theADF binding case, it contains the tree binding as

 // wrapped data

 treeBinding = (JUCtrlHierBinding)

 ((CollectionModel)tree1.getValue()).getWrappedData();

 //find the node identified by the node path from the ADF binding

 //layer. Note that we don't need to know about the name of the

 // tree binding in the PageDef file because all information is

 //provided

 JUCtrlHierNodeBinding nodeBinding =

 treeBinding.findNodeByKeyPath(key);

 //the current row is set on the iterator binding. Because all

 //bindings have an internal reference to their iterator usage, the

 //iterator can be queried from the ADF binding object

 DCIteratorBinding _treeIteratorBinding = null;

 _treeIteratorBinding = treeBinding.getDCIteratorBinding();

 Key rowKey = nodeBinding.getRowKey();

 JUIteratorBinding iterator = nodeBinding.getIteratorBinding();

 iterator.setCurrentRowWithKey(rowKey.toStringFormat(true));

 //get selected node type information

 JUCtrlHierTypeBinding typeBinding =

 nodeBinding.getHierTypeBinding();

 // The tree node rule may have a target iterator defined. Target

 // iterators are

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

9

 // configured using the Target Data Source entry in the tree node

 // edit dialog and allow developers to declaratively synchronize an

 // independent iterator binding with the node selection in the

 // tree.

 String targetIteratorSpelString =

 typeBinding.getTargetIterator();

 // chances are that the target iterator option is not configured.

 // We avoid NPE by checking this condition

 if (targetIteratorSpelString != null &&

 !targetIteratorSpelString.isEmpty()) {

 //resolve SPEL string for target iterator

 DCIteratorBinding targetIterator =

 resolveTargetIterWithSpel(targetIteratorSpelString);

 //synchronize the row in the traget iterator

 targetIterator.setCurrentRowWithKey(rowKey.toStringFormat(true));

 }

 /* CUSTOM POST PROCESSING */

 //get the information about the object represented by the clicked

 //node. This is the absolute package and VO name in the ADF BC

 //case. Using POJO, this is the package and class name of the

 //entity object

 String nodeStuctureDefname = typeBinding.getStructureDefName();

 //store it in view scope for the input field switcher to pick up in

 //this example

 Map viewScope =

 AdfFacesContext.getCurrentInstance().getViewScope();

 viewScope.put("selectedTreeNode", nodeStuctureDefname);

 //PPR - refreshes the af:panelGroupLayout that switches the input

 //form

 AdfFacesContext adffacesctx = AdfFacesContext.getCurrentInstance();

 adffacesctx.addPartialTarget(this.getPgSwitcher());

 }

 }

/**

 * Helper method to resolve EL expression into DCIteratorBinding

 * instance

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

10

 * @param spelExpr the SPEL expression starting with ${...}

 * @return DCIteratorBinding instance

 */

 private DCIteratorBinding resolveTargetIterWithSpel(

 String spelExpr){

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 ExpressionFactory elFactory =

 fctx.getApplication().getExpressionFactory();

 ValueExpression valueExpr =

 elFactory.createValueExpression(elctx, spelExpr,Object.class);

 DCIteratorBinding dciter =

 (DCIteratorBinding) valueExpr.getValue(elctx);

 return dciter;

 }

 public void setPgSwitcher(RichPanelGroupLayout pgSwitcher) {

 this.pgSwitcher = pgSwitcher;

 }

 public RichPanelGroupLayout getPgSwitcher() {

 return pgSwitcher;

 }

}

Note: Using the default selection listener reference created by ADF (#{bindings.<tree

name>.makeCurrent()} in a MethodExpression definitively shortens the amount of code to write.

However, he advantage of the pure Java solution in this article is that it is save in that refactoring on the

binding layer, like re-naming of the tree binding, does not break functionality.

Configuring the custom Selection Listener

The last thing to do is to reference the managed bean selection listener method from the SelectionListener

property of the tree component as shown below

ADF CODE CORNER
How-to create and synchronize edit forms for tree node
entries

11

Download Example

You can download a JDeveloper 11g R1 PS1 workspace with the example discussed in this article from

ADF Code Corner;

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Make sure you configure the ADF Business Components data connection to the HR schema of your

database. Then run the JSPX page in the ViewLayer project to see it in action.

RELATED DOCOMENTATION

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

