

 ADF Code Corner

67. How-to create a query form in a popup dialog

Abstract:

 In this article I explain how to create a search form that

opens in an af:popup dialog. Defining the search criteria

and executing the query closes the dialog and refreshes

the table. The solution uses the af:query component for

building the searchform, which is a simple and straight

forward approach that many may not be aware of.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
11-JAN-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER [ADF CODE CORNER:]

2

Introduction
This ADF Code Corner article is in response to a question posted to the Oracle JDeveloper forum

on OTN. The requirement was to povide a toolbar option to launch a search form that users use

to filter the table content. The form had to be in a popup.

The screenshot below shows the final example. The af:query component is configured to not

show the query mode change button or the saved query option.

Pressing the search button executes the filtered query and closes the popup dialog. Note that the

popup dialog contains an af:dialog component to create a modal popup that doesn't close when

clicking outside of the popup area.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER [ADF CODE CORNER:]

3

How-to build this Solution

Starting from an ADF Faces page that contains an ADF bound table, contained in an af:panelCollection

that has an af:commandToolbarButton component defined in its toolbar facet, and an af:popup

component:

In the Data Control panel, expand the Named Criteria node of the Collection (EmployeesView1 in the

sample) and drag the All Queriable Attributes into the af:dialog component contained in the af:popup.

ADF CODE CORNER [ADF CODE CORNER:]

4

In the opened menu, choose ADF Query Panel.

By default, the af:query component is surrounded by a panel header. Remove the panel header by

moving the af:query component on top the af:panelGroupLayout component, selecting the panel

header and pressing delete.

Select the af:query component and open the Property Inspector (ctrl+shift+I). Set the SaveQueryMode

property to hidden and the ModeChangeVisible property to false. This simplifies the search dialog in

ADF CODE CORNER [ADF CODE CORNER:]

5

that the options for saving and selecting saved queries do not become available. Also, the Basic mode

button is hidden.

When the user hits the Search button to query the collection, we want to close the af:popup dialog and

partially refresh the af:table component. The hook point for doing this is the QueryListener property of

the af:query component. The QueryListener property points to the ADF binding layer by default. Copy

the EL value of the property into the clipboard and press the arrow icon to the right of the property field.

In the opened context menu, select the Edit option to create or select a managed bean. Define a method

name for the QuickListener handler you create in the managed bean.

To launch the af:popup dialog containing the af:query component, drag and drop the Show popup

Behavior entry from the component palette onto the tool bar button in the af:panelCollection.

ADF CODE CORNER [ADF CODE CORNER:]

6

Select the af:showPopupBehavior component in the Structure window and open the Property

Inspector. In the Property Inspector, press the arrow icon next to the PopupId field. Press the Edit

option in the opened context menu to search for the af:popup component on the page. This adds the

popup id as a value to the PopupIdfield. Leave the other properties empty so the popup opens in the

center of the page.

Select the af:table component and navigate to the Binding property using the Property Inspector. Press

the arrow icon on the right and select Edit from the context menu.

ADF CODE CORNER [ADF CODE CORNER:]

7

Select the managed bean you created for the query listener. This creates a component binding to the

managed bean, which is used to refresh the table after the user query.

Select the af:popup component and navigate to the Binding property using the Property Inspector.

Press the arrow icon on the right and select Edit from the context menu. Select the managed bean you

created for the query listener. This creates a component binding to the managed bean, which is used to

close the dialog at the end of the query.

The managed bean code

Of course, the magic is in the managed bean that executes the QueryListener. But though this is the trick

that makes it all working, the implementing code is quite simple

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.MethodExpression;

import javax.faces.application.Application;

import javax.faces.context.FacesContext;

import oracle.adf.view.rich.component.rich.RichPopup;

import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.adf.view.rich.event.QueryEvent;

public class FindPanelBean {

 private RichTable employeesTable;

 private RichPopup findPopup;

 public FindPanelBean() {

 }

 /*

 * method called from the af:query component's query listener

 */

 public void onQuery(QueryEvent queryEvent) {

 //preserve default query behavior, accessing the ADF binding layer

 String mexpr = "#{bindings.ImplicitViewCriteriaQuery.processQuery}";

 processMethodExpression(mexpr, queryEvent, QueryEvent.class);

 //close dialog

 findPopup.hide();

 AdfFacesContext adfFacesContext =

 AdfFacesContext.getCurrentInstance();

 adfFacesContext.addPartialTarget(employeesTable);

 }

ADF CODE CORNER [ADF CODE CORNER:]

8

 /*

 * simplified method for invoking an EL for a single argument and

 * argument class

 */

 public Object processMethodExpression(String methodExpression,

 Object event,

 Class eventClass)

 {

 return processMethodExpression(methodExpression,

 new Object[] {event},

 new Class[] { eventClass });

 }

/*

 * method that executes a method expression

 */

 private Object processMethodExpression(String methodExpression,

 Object[] parameters,

 Class[] expectedParamTypes) {

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 Application app = fctx.getApplication();

 ExpressionFactory exprFactory = app.getExpressionFactory();

 MethodExpression methodExpr =

 exprFactory.createMethodExpression(elctx, methodExpression,

 Object.class,

 expectedParamTypes);

 return methodExpr.invoke(elctx, parameters);

 }

 /*

 * ***************************

 * JSF Component Bindings

 * ***************************

 */

 public void setEmployeesTable(RichTable employeesTable) {

 this.employeesTable = employeesTable;

 }

 public RichTable getEmployeesTable() {

 return employeesTable;

 }

 public void setFindPopup(RichPopup findPopup) {

 this.findPopup = findPopup;

 }

ADF CODE CORNER [ADF CODE CORNER:]

9

 public RichPopup getFindPopup() {

 return findPopup;

 }

 }

Download the Sample

The Sample can be downloaded from sample 67 at ADF Code Corner:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

To run the sample, configure the application database connect information to point to a database with the

HR schema installed, select the BrowseEmployees.jspx page and choose the Run option.

In the page, press the Find button to launch the query dialog. Enter a search filter condition and press the

Search button. The table is re-queried and the popup closed after this.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER [ADF CODE CORNER:]

10

RELATED DOCOMENTATION

