

 ADF Code Corner

68. Solving the known range change event problem

in ADF contextual events

Abstract:

 Contextual events is an ADF binding feature that provides

a public-subscribe communication channel for regions to

interact with other regions or the parent view they reside

in. Contextual events are usually invoked in response to a

user action on a component,but may also be invoked from

Java. Bug 10045872 reports a problem with row change

events published as contextual events in response to

users selecting a table row different from the current.

While waiting for the bug fix, which may not be before

Oracle JDeveloper 11.1.1.6, I describe the work around

that also explains some apsects of contextual events.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
16-JAN-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER [ADF CODE CORNER:]

2

Introduction
The native fnctionality to invoke a contextual event in response to a row currency change in a

table is defined on the ADF tree binding. Bug 10045872 reports a known issue with the default

implementation, which prevents the event to be propagated to interested listeners. In this blog

article I explain a work around that provides the same functionality for events invoked from the

af:table component SelectionListener property.

To summarize the work around, you

 Create an eventBinding in the PageDef file of the ADF view that hosts the table for

which you want to publish the row change event

 Set the eventBinding Listener property to the Apache Trinidad SelectionListener class

 Define a custom payload to pass the selected rowKey or a similar information to pass to

the contextual event handling method

 Override the af:table SelectListener property value with a reference to a managed bean

method handling the selection event

 In the managed bean method, first process the default ADF selection behavior, which is

to set the selected row to be current in the ADF iterator

 Write some Java in the managed bean to invoke the eventBinding in response to a user

changing the table row selection

The image below shows the sample application that you can download as Sample 68 from the

ADF Code Corner website

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER [ADF CODE CORNER:]

3

The departments table is located in the parent page. The detail table resides in a bounded task

flow that is added as an ADF region to the parent view. The parent view and the detail view in the

ADF region don't share the same binding file – PageDef.xml – so that communication needs to

established using ADF region interaction. Contextual events is most generic and powerful option

for establishing region interaction and can be used to notify the detail about the parent data row

change.

Changing the selected row in the departments table sends an event to the ADF region with the

information – the payload – about the new row key or, in this case, the new primary key to use for

querying the detail data.

ADF CODE CORNER [ADF CODE CORNER:]

4

Note: The View Objects used in the example are independent. If the ADF region is not meant to

be reusable and the business service is ADF Business Components, then the same functionality

can be implemented using dependent View Objects and partial refresh, in which case the Data

Control performs the refresh. However, this is another topic that is not in the subject of this article.

About the sample setup

The ADF Business Components model used in the sample consists of two independent View Objects as

shown below. The allEmployees View Object instance has a View Criteria assigned that filters the table

by the department Id.

The BrowseDepartments.jspx page owns the departments table based on the allDepartments View

Object. Further, the ViewController project contains

 A bounded task flow that holds the page fragment with the allEmployees View Object table.

The default task flow activity is a method call activity that executes the ExecuteWithParams

operation of the Employees View Object, passing the department Id of the parent table to the

binding variable.

 A Java class to handle the contextual event in the PageDef file of the page fragment holding the

employees table. The Java class is ContextualEventHandler.java and contains a single public

method that accepts a single argument: the department Id. The ContextualEventHandler.java

class is exposed through a JavaBean Data Control so the contained method can be configured as

a method binding in the Pagedef file of the detail page fragment.

 A Java class ShowEmployeesBean.java is configured as a managed bean in the employees-btf-

definition.xml and referenced from the employees table. The managed bean contains the setter

/ getter methods for the af:table component binding. The ContextualEventHandler.java class

references the managed bean to pass the department id of the new selected parent table row to

the bind variable, re-execute the iterator query and refresh the table.

ADF CODE CORNER [ADF CODE CORNER:]

5

Handling the table row change as a contextual event

Contextual events use the ADF binding layer as a channel. To expose the event handler method in ADF,

you need to expose it in a Data Control. In the example, ContextualEventHandler.java is exposed in a

JavaBean Data Control. For this, I selected the ContextualEventHandler.java class and chose Create

Data Control from the context menu (as shown in the image below)

ADF CODE CORNER [ADF CODE CORNER:]

6

Note: The event handler is not specific for the work around. It is only needed in this sample to illustrate

the work around.

In the ShowEmployees.jsff page fragment, I pressed the Bindings tab to create a method binding that

exposes the public event handler method.

Pressing the green plus icon opens the ADF binding editor to create a method binding. Note that the

PageDef file also has an operation binding entry for the ExecuteWithParams operation exposed on the

Employees View Object.

This operation binding is called from the ContextualEventHandler.java class method to set the

department Id to the bind variable and execute the iterator query

In the Create Action Binding dialog, I selected the ContextualEventHandler Data Control entry and

the contained method in the Operations list.

ADF CODE CORNER [ADF CODE CORNER:]

7

The method argument departmentIdPayLoad is exposed on the method binding but does not need to

have a value defined in this dialog. The value is provided by mapping the producer event, the table select

event, to the handled event, updateTableForDepartmentId.

When dragging the bounded task flow as an ADF region to the parent view, the PageDef file of the

parent view will have a task flow binding added, a requirement for using contextual events.

The departments table has a SelectionListener defined that uses Expression Language to synchronize

the current row in the table with the iterator in the ADF binding (PageDef). To preserve the default

ADF CODE CORNER [ADF CODE CORNER:]

8

behavior, this EL command must be called before invoking the contextual event to propagate the

selection change event. So I copied the existing EL value to the clipboard and …

… pressed the arrow icon on the right. In the opened context menu I chose the Edit option to create a

managed bean method to handle the SelectEvent.

The selection handler in the downloadable sample is defined in the onQueryDepartments method of

the DepartmentsBean. When a user selects a table row, a select event is fired and passed to the managed

bean.

ADF CODE CORNER [ADF CODE CORNER:]

9

The code lines above ensure the default behavior, to synchronize the selected table row with the current

row in the binding layer.

Note: The complete source code is listed below

In the BrowseDepartments.jspx page, I clicked the Bindings tab to create a new eventBinding.

Event bindings in ADF are created for no-ADF bound component events. They are EL And Java

accessible and defined under the bindings node in the PageDef file.

The eventBinding needs to be further configured with a unique id and a Listener that matches the

QueryListener.

ADF CODE CORNER [ADF CODE CORNER:]

10

The id is used in Java to look up the event binding from the managed bean. The Listener type,

org.apache.mayfaces.trinidad.event.SelectLisener, is used to queue the table row

selection event.

The eventBinding is only a container and needs to get two more elements added: events and event, as

shown in the image below. The events node name is the name used when mapping the producer event

(the Select Event) to the event handler.

Finally, the events element is used to define the payload that should be passed to the event handler as an

argument. In the example, I pass the selected table row's department id as an argument. For this I created

ADF CODE CORNER [ADF CODE CORNER:]

11

an attribute binding for the Departments View DepartmentId attribute. The binding layer takes care of

the synchronization with the iterator that is bound to the departments table.

Important: Expression binding in the PageDef file use "$" to eagerly resolve the expression. Custom

payload references in contextual events must use eager fetching of the EL value. Otherwise the

expression itself is passed as string.

To this time, I created a producer method in the managed bean referenced from the departments table in

the BrowseDepartments.jspx file, as well as the event handler exposed in the JavaBean Data Control. In

the next step, I map the two in the PageDef file of the BrowseDepartments.jspx file.

To access the event mapping dialog, I clicked the Bindings tab on the BrowseDepartments.jspx page.

ADF CODE CORNER [ADF CODE CORNER:]

12

In the binding editor, the Contextual Events tab gives access to the event mapping editor, which is in

the Subscriber tab of the contextual event dialog.

Pressing the green plus icon opens the dialog to map the producer event with the event handler.

Search buttons are available in the dialog to query the producer event (Event) and the event handler

(Handler).

ADF CODE CORNER [ADF CODE CORNER:]

13

The producer event in this sample is the name of the eventBinding binding. The event binding is

invoked from Java when the SelectListener is invoked in response to users selecting a new table row.

The Parameters tab defined the mapping of the payLoad object to the method arguments defined in the

event handler method. In the sample, the only argument is the departmentId. The custom payload on

ADF CODE CORNER [ADF CODE CORNER:]

14

the events binding is defined to point to the DepartmentId attribute value, so no further mapping is

required.

Note: The payload object is always referenced by the ${payLoad} EL reference. Also note the uppercase

L in "payload", which is important for contextual events to pass the argument object.

The image above shows the completed SelectionEvent method in the managed bean. After setting

the selected table row to become the current row in the binding layer of the BrowseDepartments.jspx

page, it calls the eventBinding producer entry to invoke the contextual event. The QueryEvent that is

passed into the managed bean method is provided as the argument to the eventBinding listener.

Source Code

The DepartmentsBean code contains the actual work around for bug 10045872 in that it invokes the

eventBinding to produce the contextual event propagated to the ADF region containing the employees

table.

The ContextualEventHandler class contains the event handler to update the detail based on the

selection in the department table.

DepartmentsBean

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.MethodExpression;

import javax.faces.application.Application;

import javax.faces.context.FacesContext;

import oracle.adf.model.BindingContext;

import oracle.binding.BindingContainer;

ADF CODE CORNER [ADF CODE CORNER:]

15

import oracle.jbo.uicli.binding.JUEventBinding;

import org.apache.myfaces.trinidad.event.SelectionEvent;

import org.apache.myfaces.trinidad.event.SelectionListener;

public class DepartmentsBean {

 public DepartmentsBean() {

 }

 public void onQueryDepartments(SelectionEvent selectionEvent) {

 //preserve default Selection Event behavior

 String mexpr =

 "#{bindings.allDepartments.collectionModel.makeCurrent}";

 processMethodExpression(mexpr, selectionEvent,

 SelectionEvent.class);

 //invoke the ContextualEvent. Access the binding layer through

 //the BindingContext

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 //access the eventBinding that is mapped as the event producer

 JUEventBinding tableSelectionEvent =

 (JUEventBinding)bindings.get("TableSelectionEvent");

 //get the selection listener defoned on the event binding

 SelectionListener eventBindingListener =

 (SelectionListener) tableSelectionEvent.getListener();

 //invoke the event producer

 eventBindingListener.processSelection(selectionEvent);

 }

 /*

 * simplified method for invoking an EL for a single argument and

 * argument class

 */

 public Object processMethodExpression(String methodExpression,

 Object event,

 Class eventClass) {

 return processMethodExpression(methodExpression,

 new Object[] { event },

 new Class[] { eventClass });

 }

 /*

 * method that executes a method expression

 */

 private Object processMethodExpression(String methodExpression,

ADF CODE CORNER [ADF CODE CORNER:]

16

 Object[] parameters,

 Class[] expectedParamTypes) {

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 Application app = fctx.getApplication();

 ExpressionFactory exprFactory = app.getExpressionFactory();

 MethodExpression methodExpr =

 exprFactory.createMethodExpression(elctx,

 methodExpression,

 Object.class,

 expectedParamTypes);

 return methodExpr.invoke(elctx, parameters);

 }

}

Event handler method

import adf.sample.view.ShowEmployeesBean;

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.ValueExpression;

import javax.faces.application.Application;

import javax.faces.context.FacesContext;

import oracle.adf.model.binding.DCBindingContainer;

import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.binding.OperationBinding;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import org.apache.myfaces.trinidad.model.CollectionModel;

public class ContextualEventHandler {

 public ContextualEventHandler() {

 super();

 }

 public void updateTableForDepartmentId(String departmentIdPayLoad){

 FacesContext fctx = FacesContext.getCurrentInstance();

 Application app = fctx.getApplication();

 ELContext elctx = fctx.getELContext();

 ExpressionFactory expressionFactory =

 app.getExpressionFactory();

 //access the managed bean defined in the bounded task flow for

 //the employees table

 ValueExpression showEmployeeBeanAccess =

 expressionFactory.createValueExpression(elctx,

ADF CODE CORNER [ADF CODE CORNER:]

17

 "#{backingBeanScope.showEmployeesBean}",

 Object.class);

 //cast it to the bean instance

 ShowEmployeesBean employeesBean =

 (ShowEmployeesBean) showEmployeeBeanAccess.getValue(elctx);

 //get access to the table component

 RichTable table = employeesBean.getEmployeestable();

 //get access to the binding layer used by the table

 CollectionModel model = (CollectionModel) table.getValue();

 //access the tree binding used by the table

 JUCtrlHierBinding employeesTableBinding =

 (JUCtrlHierBinding) model.getWrappedData();

 //access the binding container

 DCBindingContainer dcbindings =

 employeesTableBinding.getBindingContainer();

 //access the EcecuteWithParams method exposed in the binding

 //layer to re-query the table data based on the contextual event

 //payLoad

 OperationBinding operationBinding =

 dcbindings.getOperationBinding("ExecuteWithParams");

 operationBinding.getParamsMap().put("departmentIdVar",

 departmentIdPayLoad);

 operationBinding.execute();

 //refresh the table without re-loading the bounded task flow

 AdfFacesContext.getCurrentInstance().addPartialTarget(table);

 }

}

Download and run the Sample

You can download the Oracle JDeveloper 11g (11.1.1.3) workspaces from the ADF Code Corner website.

It is published as sample 68.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Configure the application database connect information to point to a HR schema in a local database

before running the application.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER [ADF CODE CORNER:]

18

Credits

I like to give credits to Jan Vervecken and John Stegeman, who first reported the problem with the default

row change event to the Oracle JDeveloper forum on OTN.

RELATED DOCOMENTATION

 Contextual events in ADF product documentation

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/web_adv.htm#CACJBFGI

 Oracle Fusion Developer Guide – McGraw Hill Oracle Press, Frank Nimphius, Lynn Munsinger

http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/web_adv.htm#CACJBFGI
http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

