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Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle [ Developer: http:/ [ forums.oracle.com/ fornms/ forum.jspaZfornmID=83

Introduction

The use case in this sample is a create-new row situation that is handled by a dialog. Users can
either create an commit a newly created row or cancel it, in which case the new row changes
need to be undone and removed. Another popular use case is a cofirmation dialog in which users
press the Ok button to commit a previous change or use the Cancel button to roll it back.

Running the Oracle JDeveloper 11.1.1.4 workspace that you can download as sample #77 from
the ADF Code Corner website, an ADF Faces page shows that allows you to create a new row
for the HR Departments table. In the opened af :dialog instance, you can edit the new row and
commit changes by pressing Ok or closing the dialog and undoing the row creation by pressing
the Cancel button.
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Set-up

The sample is based on the Oracle HR database schema and uses Oracle ADF Business Components as
the business setvice. Note that — except for how to perform the commit action — there is no difference
between using ADF Business Components, Enterprise JavaBeans, Web Services or JavaBeans as business
services. ADF Business Components was chosen as a business service only because it is "quick and easy"
to use.

The DepartmentsView view object, renamed to allDepartments, is added as a table to the page. A

command button is added to create a new table row and launch the dialog.
Building the sample

To edit new department rows, drag and drop the af : popup component from the Oracle JDeveloper
Component Palette and add the af:dialog tag as a child component. Ensure the dialog is configured to
show the Ok/Cancel button pait, which you do using the Property Inspector (ctrl+shift+I). Drag the
DepartmentsView view object instance from the Data Controls panel to the dialog and choose ADF
Form from the context menu. Confirm the form creation dialog without creating navigation buttons or a
submit button. The functionality of a submit button is handled by the af:dialog OK button.
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To create the Commit functionality, which is called from the af : dialog listener in response to users
pressing the OK button, you click the Bindings tab at the bottom of the visual page editor in Oracle
JDeveloper. This opens the binding dialog shown in the image below.

In the binding editor, press the green plus icon and choose the action option in the opened Insert Item
dialog to create a new action binding.
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In the Create Action Binding dialog, select the Data Control node and choose Commit from the list of

actions.

Note: If your Data Control is not ADF Business Components, then, in this step, you create a method
binding instead of an action binding and choose the method that performs the persist operation. For

example, in the EJB case this would be the #erge method.
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Switch back to the page Design view. From the Data Controls panel, drag the CreateInsert operation to
the page and drop it onto the existing command button. This configures the command button's Action
Listener property to reference an action in the ADF binding layer when the button is pressed.
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In the opened dialog, keep the current values for the button text and the disabled state.
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To make the af :dialog instance in the managed bean that handles the dialog action, you create a JSF
component binding. In the visual editor, select the dialog component and open the Property Inspector.
In the Property Inspector, choose the Binding property and use the down arrow icon to open the

Binding context menu. Press the Edit option to create or choose a managed bean to hold the dialog
instance reference.
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When you create a new managed bean, ensure the Create Class If It Does Not Exist check box is
selected.
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In the second dialog Edit Property: Binding, define a name for the af : dialog reference. In this
example, the property name is chosen as "popup".
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Note: To partially refresh the table in response to the dialog outcome, you should also create a JSF
component binding for the table. In this example, the JSF component binding for the table is created in
the same managed bean that handles the dialog event.

Next, select the Create New Row button on the page and double click it to create a method action
binding in the managed bean you created before. Because the command button has an ADF action
binding reference, it is required to select the Generate ADF Binding Code, which ensures that the
current functionality of the button doesn't change. The nice side-effect of this step is that it auto-
generates helper methods that we use to access the binding layer and perform actions on it.
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Select the af :dialog and use the down arrow icon on the DialogListener property to add the logic
that is executed when the user presses the Ok button in the dialog.




LD GOIDIANGOINNIEINE Handling the af:dialog OK and CANCEL buttons

Complete or Cancel Department Creation ﬂ E
Departmentld | #{...Departmentid.inputvalue} :
Depar #{...Depar inputValue} E
Managerld | #{...Managerid.inputValue} d
Locationld | #... Locationld.input\Value}
@Dlalog - Complete or Cancel Department Creation - Property Inspector
XOR A= 2 (8 o )@
— ~
Width: | H[% V] v
Height: | [V][% V] -
Margin: | ['][% '] w
Padding: | ['][% V] V
Border Color: | ['] ~
Border Style: | [vl o
Border Width: | H[px V] v
Qutline Color: | [v] ~
Qutline Style: | ['] o
Outline Width: | ['][px '] ~
w > Fview « > afidocument#dl « > af:form#fl « > afip
Source | Bindings |Preview IHistory “\ E Behavior
ing: IntegratedWeblogicServer -Log Modal: [<defau|t> (true)
[T ) Resize: [<defau|t> (off)
DialogListener: |
PartialTriggers: |
[ Advanced
Rindina: [

Provide a meaningful name for the Method and make sure it is created in the same managed bean that
you created to hold the af :dialog component binding reference.
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As shown below, the dialog handler method has access to the DialogEvent object, from which you
determine the Outcome. The Outcome that can be handled on the server includes ok, no and yes.
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public woid onDialoghction(DialogEwvent dialogEwvent) {
futcome outcome = dialogEwent.getiutcomel)

if(outcone == Dutcome.b{

@ cancet Outcome

; ) class Class
2sign | History ﬁ no Outcome
e #°] ok Outcome
—— | E%, valueOf{String) Outcorite
=%, valusOf(Class<T> String) T

=9, valuesi) Outcomel]

@)% yes Outcome
Regular Items: Press "Cirl-Space” for Smart Items | QuickDoc [

To quote the ADF Faces tag documentation for the af : dialog component:

When using the dialog type button confignrations, action ontcomes of type "ok, "yes", "no" and "cancel” can be

intercepted on the client with a "dialog"" type listener.

Only "ok, "yes" and "no"" events will be propagated to the server. The ESC key, "cancel” button and close icon quenes a
client dialog event with a "cancel”" ountcome. Dialog events with a "cancel’" ontcome will not be sent to the server. Propagation
of dialog events to the server can be blocked, as with any RCE event, by calling cancel () on the |S event object. Use the
af-clientListener with a type of dialogq to listen for a dialog client event.

This means that though the dialog Ok action can be handled on the server, the Cancel action cannot.
However, for the use case demoed in the sample, we need to get the cancel event notification in a

managed bean on the server.

The solution to this requirement is to listen for the cancel event using the af:clientListener
component and JavaScript on the client.

The server notification then is handled by the af : serverListener component, which invokes a
managed bean method on the server.

SHLLL I PULY GGy

entName.inputWalue}

ﬁ(ﬂmpnnent Palette
‘d.input'alue] ‘
£ ! < IADF Faces v]
d.inputValue}
LU ©
E OK Cancel | ADF Faces
1+ 4 [» Commaon Components
[+ Layout
 Dperations

|i| Attribute Drag Source
&| Attribute Drop Target
&% Auto Suggest Behavior
&| Calendar Drop Target
=3 Client Attribute

¥ Client Listener

&| Collection Drop Target

Drag the ClientListener component from the Oracle JDeveloper Component palette into the dialog. In
the opened Insert Client Listener dialog, set the Method attribute to the name of the JavaScript method
to call when the dialog cancel action is invoked. The Type attribute must be set to dialog.
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The JavaScript function determines the type of dialog action. If the dialog event is Cancel, then a server
listener is used to queue a custom event that gets propagated to the server. To add the server listener, drag
and drop the Server Listener component entry from the Component Palette to the af:dialog.
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Select the af : serverListener entry in the Oracle JDeveloper Structure window and open the

Property Inspector. Set the Type property to a name that later is used to identify this server listener
instance. In the example, we called it DialogCancelHandlerEvent. The Method property is bound to a

managed bean that accepts a single argument of type ClientEvent.
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You can create the managed bean method using the Edit option in the context menu that opens when

pressing the down arrow icon next to the Method property field.
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To add the JavaScript function to the page, drag the Resource component from the Component palette
onto the page and ensure it becomes a direct child of the af : document component.
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<af:document>
<afiresource type="javascript">
function onDialogCancel (evt) {
var outcome = evt.getOutcome()
if (outcome == AdfDialogEvent.OUTCOME CANCEL) {
//call server
var eventSource = evt.getSource();
var immediate = true;
AdfCustomEvent.queue (
eventSource,
"DialogCancelHandlerEvent",
{},immediate) ;

evt.cancel () ;

}

< /afiresource>

Note that the custom event that is queues on the server listener instance is set to be immediate to bypass

any form update for the cancel action.

The event object that is passed into the JavaScript function is AdfDialogEvent. The JavaScript
documentation is accessible online from otn.oracle.com. The image below shows an example for the

AdfDialogEvent event
[=] AdfDialogEvent

ORACLE JavaScript API Reference for Oracle ADF Faces

Overview Package Tree Deprecated Index Help

PREV NEXT FRAMES HNO FRAMES All Classes

SUMMARY: FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

oracle.adf.view.js.event

Class AdfDialogEvent

org.ecmascript.cbject.Cbject

+-—oracle.adf.view.j=.base.idfCbiesct

+-—ogracle.adf.view.]s.event.AdfBaseEvent

+-—oracle.adf.view.j=.event.LdfPhasedEvent

+-—oracle.adf.view.]s.event.AdfComponentEvent

+-—oracle.adf.view.js.event.AdfDialogEvent
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Managed Bean code

All sample code used by this example is saved in the same managed bean. The commented code listing is

shown below.
import javax.faces.context.FacesContext;

import oracle.adf.model.BindingContext;

import oracle.adf.model.binding.DCIteratorBinding;

import oracle.adf.share.ADFContext;

import oracle.adf.view.rich.component.rich.RichPopup;
import oracle.adf.view.rich.component.rich.data.RichTable;
import oracle.adf.view.rich.context.AdfFacesContext;
import oracle.adf.view.rich.event.DialogEvent;

import oracle.adf.view.rich.event.DialogEvent.Outcome;

import oracle.adf.view.rich.render.ClientEvent;

import oracle.binding.BindingContainer;
import oracle.binding.OperationBinding;

import oracle.jbo.Row;
import oracle.jbo.server.ViewRowImpl;

public class CreateDepartmentPageHelper {

//0ld "current row" value is saved in view scope in case the row
//creation is cancelled, in which case this row needs to become
//current again

final String OLD CURR KEY VIEWSCOPE ATTR = " oldCurrentRowKey ";

private RichPopup popup;
private RichTable departmentsTable;
public CreateDepartmentPageHelper () {}

public void setPopup (RichPopup popup) {
this.popup = popup;
}

public RichPopup getPopup () {
return popup;

}

//system generated method when you create a managed bean method for
//a component that has an ADF binding referenced in its action
//listener
public BindingContainer getBindings () {

return BindingContext.getCurrent () .getCurrentBindingsEntry();

//command action that create a new row in the departments table and
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//then opens an edit dialog for commit/cancel

public String cbl action() {
BindingContainer bindings = getBindings();
//get current row and save its rowKey in view scope for later use
DCIteratorBinding dciter =
(DCIteratorBinding) bindings.get ("allDepartmentsIterator");
Row oldCcurrentRow = dciter.getCurrentRow() ;
//ADFContext is a convenient way to access all kinds of memory
//scopes. If you like to be persistent in your ADF coding then this
//1is what you want to use
ADFContext adfCtx = ADFContext.getCurrent()
adfCtx.getViewScope () .put (OLD CURR KEY VIEWSCOPE ATTR,
oldCcurrentRow.getKey () .toStringFormat (true)) ;
//perform row create
OperationBinding operationBinding =
bindings.getOperationBinding ("CreateInsert");
Object result = operationBinding.execute();
if (!operationBinding.getErrors () .isEmpty()) {
return null;
}
//access the popup dialog and bring it up. The reference is
//through a JSF component binding reference using the popup
//"binding" property
RichPopup popup = this.getPopup();
RichPopup.PopupHints hints = new RichPopup.PopupHints();
//empty hints renders dialog in center of screen
popup.show (hints) ;
return null;
}
public void onDialogAction (DialogEvent dialogEvent) ({
Outcome outcome = dialogEvent.getOutcome () ;
//the dialog event only propagates yes, no, ok actions to the
//server. The cancel outcome is only available on the browser
//client. If there is a need to handle the cancel even then you
//need to use a clientlListener and JavaScript as we do on this

//example
if (outcome == Outcome.ok) {
//commit
BindingContainer bindings = getBindings() ;

OperationBinding operationBinding =
bindings.getOperationBinding ("Commit") ;
Object result = operationBinding.execute();
if ('operationBinding.getErrors() .isEmpty()) {
//handle errors if any
/]

return;
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}
AdfFacesContext.getCurrentInstance () .addPartialTarget (
this.getDepartmentsTable());

public void setDepartmentsTable (RichTable departmentsTable) {
this.departmentsTable = departmentsTable;
}
public RichTable getDepartmentsTable () {
return departmentsTable;

//method that is called from the serverListener on the client. The
//server listener is used to queue a custom event and pass information
//from the client to the server using JavaScript. It's actually doing
//this Ajax thing that everyone wants to do using the XmlHTTPRequest
//object

public void onDialogCancel (ClientEvent clientEvent) {
BindingContainer bindings = getBindings();
RichPopup popup = this.getPopup();
popup.hide () ;

//the cancel operation is executed with immediate=true to bypass the
//model update. Therefore we manually delete the new row from the
//iterator
DCIteratorBinding dciter =
(DCIteratorBinding) bindings.get ("allDepartmentsIterator");

Row currentRow = dciter.getCurrentRow () ;
dciter.removeCurrentRow () ;
//set current row back to original row
ADFContext adfCtx = ADFContext.getCurrent();
String oldCurrentRowKey =

(String) adfCtx.getViewScope () .get (OLD CURR KEY VIEWSCOPE ATTR);
dciter.setCurrentRowWithKey (oldCurrentRowKey) ;
AdfFacesContext.getCurrentInstance () .addPartialTarget (

this.getDepartmentsTable()) ;

FacesContext fctx = FacesContext.getCurrentInstance();
//we don't want to continue with the remainder of the lifecycle and
//thus skip the rest
fctx.renderResponse() ;
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Download

You can download the sample workspace explained in this article as sample #77 from the ADF Code
Corner website

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

To run it, ensure you have a database with the HR schema available. Change the database configuration to
access your database and run the contained JSPX page. You can edit and Ok the dialog or directly press

Cancel. Pressing Ok will commit the change to your database. Cancel will undo the changes and remove
the row.

RELATED DOCOMENTATION

O | afidialog tag documentation

http://download.oracle.com/docs/cd/E17904 01/apirefs.1111/e12419 /tagdoc/af dialog.html
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