

 ADF Code Corner

78. How-to programmatically expand trees and tree

table components upon initial rendering and later

Abstract:

Initially expanding the ADF Faces tree and tree table

components is a frequently asked requirements that I

cover in sample #20, #21 and #61 on ADF Code Corner.

This article is a different approach to sample #21 and

allows developers to initially expand ADF bound trees and

tree tables down to a defined level of depth. In addition,

this solution works for ADF Faces views in JSPX pages

and JSFF page fragments as it does not use a phase

listener but a managed bean to determine the the tree and

tree table disclosed keys.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
06-APR-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to programmatically expand trees and tree table
components upon initial rendering and later

2

Introduction
The images below show the sample at runtime. Based on a default value provided for the tree

and tree table level to which nodes should be automatically expanded, the tree and tree table

renders in expanded mode. Later, using the select one choice component on top of the view in

combination with the Refresh button, users can change the disclose state dynamically.

The same settings applied to a tree component is shown in the image below.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to programmatically expand trees and tree table
components upon initial rendering and later

3

Changing the node level for disclosure then re-renders the tree.

ADF CODE CORNER
How-to programmatically expand trees and tree table
components upon initial rendering and later

4

The sample code is provided as an Oracle JDeveloper 11.1.1.4 works pace and can be

downloaded as sample #78 from the ADF Code Corner website.

About the sample

The key to this solution is a managed bean that is configured in view scope so its internal variable state

survives subsequent requests. The bean must be configured in the task flow definition file that holds the

view that shows the tree or tree table component with the functionality introduced in this article. The

managed bean exposes two methods:

 A method that returns an instance of RowKeySetImpl individually for the tree and the tree

table component

 A method that can be called to set the depth of node levels until where the tree and tree table

component should be expanded (disclosed)

The tree and tree table components have their DiscloseRowKeys property configured to point to the

managed bean method that returns the instance of RowKeySetImpl.

ADF CODE CORNER
How-to programmatically expand trees and tree table
components upon initial rendering and later

5

The content of the RowKeySetImpl instance is a collection of keyPath, which are lists containing the

primary key paths to a node in the tree or tree table hierarchy. For ADF bound components, the keypath

is accessible from the JUCtrlHierNodeBinding class that represents individual hierarchical nodes in

the ADF binding. For the remainder of this article I expect the reader to understand how to build ADF

bound trees and tree tables in Oracle ADF.

Note: Just in case, how to build ADF bound trees and tree tables is briefly covered in ADF Code Corner

sample #50. Read page 5 onwards

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/50-synchromize-form-

treeselection-169192.pdf

Managed bean Code

Below is the managed bean code that uses a recursive method call to parse the tree hierarchy. The

example uses the tree component Id "t1" and the tree table component Id "tt1" to lookup the component

instances on the ADF Faces view. The lookup code can be improved as explained in sample #58 on ADF

Code Corner:

http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-

optimizedadffacescomponentsearch-175858.pdf

import java.util.ArrayList;

import java.util.List;

import javax.faces.component.UIViewRoot;

import javax.faces.context.FacesContext;

import oracle.adf.view.rich.component.rich.data.RichTree;

import oracle.adf.view.rich.component.rich.data.RichTreeTable;

import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.CollectionModel;

import org.apache.myfaces.trinidad.model.RowKeySetImpl;

public class TreeTableHelperBean {

 //disclose state for tree tables

 private RowKeySetImpl newDisclosedTreeTableKeys = null;

 //disclose state for tree

 private RowKeySetImpl newDisclosedTreeKeys = null;

//allows you to configure the depth of the tree table

private int expandTreeToLevelLevel = 1;

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/50-synchromize-form-treeselection-169192.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/50-synchromize-form-treeselection-169192.pdf
http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-optimizedadffacescomponentsearch-175858.pdf
http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-optimizedadffacescomponentsearch-175858.pdf

ADF CODE CORNER
How-to programmatically expand trees and tree table
components upon initial rendering and later

6

 public TreeTableHelperBean() {

 super();

 }

 public void setNewDisclosedTreeTableKeys(

 RowKeySetImpl newDisclosedKeys) {

 this.newDisclosedTreeTableKeys = newDisclosedKeys;

 }

 public RowKeySetImpl getNewDisclosedTreeTableKeys() {

 if (newDisclosedTreeTableKeys == null) {

 newDisclosedTreeTableKeys = new RowKeySetImpl();

 FacesContext fctx = FacesContext.getCurrentInstance();

 UIViewRoot root = fctx.getViewRoot();

 //lookup the tree table component by its component ID

 RichTreeTable treeTable =

 (RichTreeTable)root.findComponent("tt1");

 //if tree table is found

 if (treeTable != null) {

 //get the collection model to access the ADF binding layer for

 //the tree binding used

 CollectionModel model = (CollectionModel)treeTable.getValue();

 JUCtrlHierBinding treeBinding =

 (JUCtrlHierBinding)model.getWrappedData();

 JUCtrlHierNodeBinding nodeBinding =

 treeBinding.getRootNodeBinding();

 expandAllNodes(nodeBinding, newDisclosedTreeTableKeys, 0,

 expandTreeToLevelLevel);

 }

 }

 return newDisclosedTreeTableKeys;

 }

 public void setNewDisclosedTreeKeys(

 RowKeySetImpl newDisclosedTreeKeys) {

 this.newDisclosedTreeKeys = newDisclosedTreeKeys;

 }

 public RowKeySetImpl getNewDisclosedTreeKeys() {

 if (newDisclosedTreeKeys == null) {

 newDisclosedTreeKeys = new RowKeySetImpl();

 FacesContext fctx = FacesContext.getCurrentInstance();

 UIViewRoot root = fctx.getViewRoot();

 //lookup thetree component by its component ID

 RichTree tree = (RichTree)root.findComponent("t1");

 //if tree is found

ADF CODE CORNER
How-to programmatically expand trees and tree table
components upon initial rendering and later

7

 if (tree != null) {

 //get the collection model to access the ADF binding

 //layer for the tree binding used. Note that for this

 //sample the bindings used by the tree is different from

 //the binding used for the tree table

 CollectionModel model = (CollectionModel)tree.getValue();

 JUCtrlHierBinding treeBinding =

 (JUCtrlHierBinding)model.getWrappedData();

 JUCtrlHierNodeBinding nodeBinding =

 treeBinding.getRootNodeBinding();

 expandAllNodes(nodeBinding, newDisclosedTreeKeys, 0,

 expandTreeToLevelLevel);

 }

 }

 return newDisclosedTreeKeys;

 }

 /*

 * Method that allows you to dynamically set the maximum level

 * until where the tree or tree table is disclosed. Note that

 * to use this from a rendered page, you need an additional method

 * that clears the current disclosed row keys

 */

 public void setExpandTreeToLevelLevel(int expandTreeToLevelLevel) {

 this.expandTreeToLevelLevel = expandTreeToLevelLevel;

 }

 public int getExpandTreeToLevelLevel() {

 return expandTreeToLevelLevel;

 }

 /**

 * Recursive method to expand nodes to a pre-defined level

 *

 * @param nodeBinding the JUCtrlHierNodeBinding representing

 * the current node

 * @param disclosedKeys the RowKeySetImpl instance that holds

 * the keys to disclose

 * @param currentExpandLevel the current depth of the tree node

 * @param maxExpandLevel the max. number of levels to expand nodes

 * for

 */

ADF CODE CORNER
How-to programmatically expand trees and tree table
components upon initial rendering and later

8

 private void expandAllNodes(JUCtrlHierNodeBinding nodeBinding,

 RowKeySetImpl disclosedKeys,

 int currentExpandLevel,

 int maxExpandLevel) {

 if (currentExpandLevel <= maxExpandLevel) {

 List<JUCtrlHierNodeBinding> childNodes =

 (List<JUCtrlHierNodeBinding>)nodeBinding.getChildren();

 ArrayList newKeys = new ArrayList();

 if (childNodes != null) {

 for (JUCtrlHierNodeBinding _node : childNodes) {

 newKeys.add(_node.getKeyPath());

 expandAllNodes(_node, disclosedKeys,

 currentExpandLevel + 1, maxExpandLevel);

 }

 }

 disclosedKeys.addAll(newKeys);

 }

 }

 //handle the case of the Refresh button being pressed. Reset the

 //tree and tree table disclosure state

 public String onRefresh() {

 FacesContext fctx = FacesContext.getCurrentInstance();

 UIViewRoot root = fctx.getViewRoot();

 AdfFacesContext adfFacesContext =

 AdfFacesContext.getCurrentInstance();

 //clear disclosed RowKeys

 newDisclosedTreeTableKeys =null;

 //PPR tree table

 RichTreeTable treeTable =

 (RichTreeTable)root.findComponent("tt1");

 getNewDisclosedTreeTableKeys();

 adfFacesContext.addPartialTarget(treeTable);

 //reset tree keys

 newDisclosedTreeKeys = null;

 RichTree tree = (RichTree)root.findComponent("t1");

 getNewDisclosedTreeKeys();

 adfFacesContext.addPartialTarget(tree);

 return null;

 }

}

ADF CODE CORNER
How-to programmatically expand trees and tree table
components upon initial rendering and later

9

Download

The sample workspace can be downloaded from the ADF Code Corner website where it is sample #78.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

You need to configure the database connection and point it to the HR schema of your local database

(Oracle XE or enterprise edition both have the schema installed). The workspace is of Oracle JDeveloper

11.1.1.4, though the code is expected to be backward compatible.

RELATED DOCOMENTATION

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

