

 ADF Code Corner

89. How-to conditionally switch model driven LOV in

ADF forms and tables

Abstract:

In Oracle ADF Business Components, developers can

define model driven list of values for consistent data lists

and UI rendering at runtime. In addition, model driven list-

of-values can be configured to be dependent so they

present a master-detail relationship of the list data.

A not so well known feature of model driven list-of-values

is that the LOV definition can be switched at runtime,

which usually is triggered by data in a related view object

attribute.

This articles shows an example of a list of values that

changes its data list from credit card types to currencies

dependent on the selected payment mode, which can be

CREDIT or CASH.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
10-AUG-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

2

Introduction
Some use cases require a list of values to show different list data based on an external condition.

In the example created for this article, the condition is the value of the PaymentId attribute, which,

if set to 1, means a customer pays cash, and, if set to 2, that a customer pays with credit card.

Dependent on the type of payment chosen for an order, the list of values shows a list of accepted

currencies or a list of accepted credit cards to choose from. The database schema used in this

sample is ADF Summit, which you can download from here:

http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/SummitADF/SummitADFV1_0_08072011.zip

The ADF Summit schema can be installed on the Oracle XE and enterprise database.

The image below shows an order table with a list-of-values defined for the PaymentType column.

The LOV data, as explained before, depends on the value of the PaymentId column. This means

that the data – currencies or credit cards – displayed in the LOV changes on a row-by-row basis.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/SummitADF/SummitADFV1_0_08072011.zip
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

3

The image above shows the list-of-values for a PaymentId value of 2 (credit card). The image

below shows the same LOV for a PaymentId value of 1 (cash). Instead of showing the payment id

values, I could have used a single select one choice, which I did not for clarity reasons.

In the following, this article explains how the use case of varying data lists can be implemented

declaratively using model driven list-of-values, which I think is a great proof point for how ADF

simplifies web development, as the same use case would require many lines of code to be written

in other programming languages or frameworks.

The Oracle JDeveloper 11.1.1.4 example workspace used in this article can be downloaded as

sample 089 from the ADF Code Corner website:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Database

The default ADF Summit database schema needs to be patched for this used article, for two tables,

S_CREDIT_CARDS and S_CURRENCIES to be added. The S_ORD table that holds orders also needs

to be enhanced with an additional PAYMENT_DETAIL column.

The sample download contains a SQL script that you can run against the SUMMIT_ADF schema to

create these changes. The script is in the SUMMIT_ADF_SCHEMA-PATCH folder of the sample

workspace.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

4

The image below shows the ADF Summit schema with the patch script installed.

The ADF Summit S_PAYMENT_TYPE table knows of two values, CASH and CREDIT for which we

need to create list of values for an ADF Business Components view object.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

5

ADF BC Model

As shown in the image below, an ADF Business Components model needs to be created for the three

tables S_ORD, S_CURRENCIES and S_CREDIT_CARDS. Only the S_ORD view object is later

exposed to application developers. The other two entity objects and view objects are used internally to

populate the LOV.

The ADF Business Component model is built choosing New | Business Tier | ADF Business

Components | Business Components from Tables from the context menu that opened by a right

mouse click onto the Model project for an application that was created using the Fusion Web Application

(ADF) template. In the opened wizard, a database connection needs to be defined to access the ADF

Summit schema - summit_adf.

After creating the entities, which is shown in the image above, view objects are created for each entity.

The application module then is edited to only expose the S_ORD view object. The view object instance in

the example also was renamed to AllSummitOrders.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

6

To create the model driven LOVs, the SOrdView view object is opened in the ADF Business

Components editor, which is done by a double click on the view object definition in the JDeveloper

Application Navigator.

The image above shows how the order attributes in a generated view object can be changed using the Set

Source Order button.

In the example, reordering is used to show the PaymentTypeId and the PaymentDetail columns next

to each other.

To create the list-of-values, the PaymentDetail attribute is selected and the green plus icon that is next to

the List of Values: PaymentDetail label pressed. To define the model driven list the green plus icon

next to List Data Source is pressed in the Create List of Values dialog.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

7

In the list of available view objects the SCurrenciesView is selected and moved to the list of selected

View Accessors. This is how model driven list-of-values are created.

Next, as shown in the image below, the PaymentDetail attribute is mapped to the Iso attribute of the

currencies view object. This ensures the currency ISO value of the selected list value is copied to the

PaymentDetail attribute at runtime.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

8

It is important to note that the List of Values Name is chosen to be CASH to match with the payment

type name for payment type Id 1. This way we don't need to further transform the payment type value to

the name of a matching LOV.

Next, a second LOV needs to be created for the same attribute – PaymentDetail – but this time for the

CREDIT payment type.

In both cases, the LOV is built as Input Text with List of Values. Note that you cannot have two

different list types.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

9

The List of Values Name is set to CREDIT and the PaymentDetail attribute is mapped to the Id

value of the CreditCard view object. This time, at runtime, when selecting a value of the LOV, the

payment detail attribute is updated with the abbreviation of a credit card.

The S_ORD table only has a FK reference to the S_PAYMENT_TYPE table ID column. To switch

between the different LOV data lists, we need a discriminator column to return a value CASH or

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

10

CREDIT. This can be achieved easily with a transient attribute in the View Object as shown in the image

below.

The transient attribute is named PaymentTypeIdTranslated and uses a Groovy expression to return a

value of "CASH" for PaymentTypeId 1 and "CREDIT" for PaymentTypeId 2.

Note that the view attribute's Value Type property must be set to Expression for Groovy strings to be

executed at runtime.

What if you need this expression to be more generic – feeling groovy ?

The image above has the value strings CASH and CREDIT hard-coded, which is not optimal. To define

the Groovy string more generic, we want to read the translated payment type from a method exposed on

a view object created for the S_PAYMENT_TYPE table in the ADF Summit schema.

Note: If you are okay with the hard-coded values, then you may skip the following section and continue

with "What we've done so far " on page 12.

The SPaymentTypeView view object is also created using the ADF Business Components from

Table entry in the Oracle JDeveloper New Gallery.

The SPaymentTypeView view object is opened in the ADF Business Components editor by a double

click on its entry in the Application Navigator. A Java implementation class is created for the view object

by selecting the Java menu option in the view object editor and pressing the pencil icon next to the Java

Classes label.

The dialog shown in the image below is displayed to create the SPaymentTypeViewImpl class.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

11

In the view object implementation class, a single public method is defined that, when invoked, queries the

SPaymentTypeView RowSet for the PaymentType name matching the ID passed as an argument.

The PaymentTypeIdTranslated value expression (Groovy) is then changed to query the public method

on the "allPaymentTypes" View Object, which is the instance of the SPaymentTypeView view object

configured in the Data Model of the Application Module.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

12

 //query type name from ID

 public String getPaymentTypeTranslated(Long id){

 this.getRowSet().first();

 Row rw = null;

 rw = this.getRow(new Key(new Object[]{id}));

 return (String) rw.getAttribute("PaymentType");

 }

What we've done so far:

 Create a View Object for the S_ORD table entity

 Create two LOV for the PaymentDetail attribute

 Create a transient attribute to hold the values CASH, CREDIT based on the PaymentTypeId

attribute value

 Create a public method to translate the PaymentTypeId to its type name. A groovy string is used

to update the PaymentTypeIdTranslated transient attribute

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

13

In a last step, the PaymentTypeIdTranslated attribute is configured as the value of the List of Values

Switcher property. This defines the PaymentTypeIdTranslated as the discriminator that – at runtime -

decides which list data is displayed in the LOV.

To test the LOV switcher, select the AppModule object in the Application Navigator and choose Run

from the context menu.

In the ADF BC tester, you can now test the LOV, which, dependent on the PaymentTypeId attribute

value, shows credit card or currencies values. The list-of-values data also changes when you change the

PaymentTypeId from a value of 1 to 2.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

14

ADF Faces View

We did the obligatory short program, now it is time for free skating.

The real work has been done in the model already and the ADF Faces UI defined next is only needed to

show how to display the LOV switcher in a web environment.

To create an ADF form, we drag the AllSummitOrders collection onto the JSF page and choose ADF

Form from the context menu.

The PaymentTypeIdTranslated attribute is internal detail information and not needed to display in the

form. It can be deleted from the view as shown in the image below.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

15

The PaymentTypeId field in the form needs to have its AutoSubmit property set to true. This ensures

that a change of the payment Id type is immediately saved in the model so that the list-of-values data list

can switch accordingly.

Next, we change the ChangeEventPolicy, on the AllSummitOrdersIterator in the PageDef file of the

JSPX document from PPR to None.

ChangeEventPolicy set to PPR fires a partial refresh on each change of the row currency, which we don't

need for this sample. The PageDef file can be accessed from the Bindings tab shown at the bottom of

the JSPX document in the visual page editor. The image below shows the PageDef view.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

16

Now it is time for a first test of list-of-value switching in an ADF Faces web environment. Select the

JSPX document in the JDeveloper Application Navigator and choose run from the context menu.

When the page comes up in a browser, navigate the ADF form data and click the LOV button for

different PaymentTypeId values to see the change in the list data shown in the two images below.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

17

The same LOV switch works in ADF tables too. Drag the AllSummitOrders collection to the JSF page

and choose Table | ADF Table from the context menu.

Again, the PaymentTypeIdTranslated attribute can be deleted from the display as this is not needed in

the table.

Note: Make sure the ADF table is configured for single row selection after dragging the collection onto

the page. For this set the Row Selection property shown in the image above from None to Single Row.

Set the AutoSubmit property of the af:inputText component in the PaymentTypeId column to

true.

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

18

Run the JSPX document to test the LOV for different table rows.

Conclusion

Model driven LOVs in AD Business Components can be configured to conditionally show different sets

of data. This article explained how to change the LOV data lists dependent on whether the payment type

is CASH or CREDIT. The database schema used in this sample is ADF Summit. You can download the

ADF Summit sample and schema scripts from

ADF CODE CORNER
How-to conditionally switch model driven LOV in ADF
forms and tables

19

http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/SummitADF/SummitADFV1_0_08072011.zip

You can download the Oracle JDeveloper 11.1.1.4 sample workspace from ADF Code Corner website

where it is sample 89

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Make sure you run the SQL script contained in the SUMMIT_ADF_SCHEMA-PATCH folder to add the

credit cards table and currencies table used in this sample. Configure the database connect information in

the sample to point to a database of yours that has the ADF Summit schema installed.

RELATED DOCOMENTATION

 ADF Summit application and schema

http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/SummitADF/SummitADFV1_0_

08072011.zip

http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/SummitADF/SummitADFV1_0_08072011.zip
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/SummitADF/SummitADFV1_0_08072011.zip
http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/SummitADF/SummitADFV1_0_08072011.zip

