

 ADF Code Corner

93. Put a different Look to your Train Stops

Abstract:

Creating sequential train models for navigation in bounded

task flows is easy to achieve. To display a train model in a

view, developers usually use the ADF Faces af:train

or af:trainButtonBar component that show the train

stops as iconic bullets on a horizontal line or as command

buttons for next and previous navhigation. To customize

the default train rendering, developers could use skinning

in ADF Faces, e.g. to change the icons used for the train

stops.

However, with creativity – and if yo are not shy of manual

configuration – you can display trains with a custom layout

component, like tabs. This article shows how to display

train stop within a different look.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
13-DEC-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Put a different Look to your Train Stops

 2

Introduction
To create a train model for bounded task flows in ADF, you either select the train model option

when creating the bounded task flow, or after the fact – set its Train property in the Behavior

section of the Property Inspector to true.If then you enable view activities as a train stop, which

you do by setting the TrainStop property of a view activity to true, the train model navigation

shows in the task flow visual diagrammer as shown below.

Dragging an af:train or af:trainButtonBar component to a view automatically configures

itself to the train model exposed on the ADF controller context object. A runtime the train stops

show as in the image below if the af:train component is used,

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER Put a different Look to your Train Stops

 3

With a few changes, which are in the focus of this blog article, you can change the default train

rendering to a custom layout like shown below, in which each train stop is displayed as a tab.

ADF CODE CORNER Put a different Look to your Train Stops

 4

Note that using the tab layout, all the train features like sequential navigation and train stop skip

behavior are reflected. It really is only the display of the stops that looks different – or shall I say

great?

With a simple change in the configuration, the same train can render its stops as a choice …

… or, a button bar

ADF CODE CORNER Put a different Look to your Train Stops

 5

The Bounded Task Flow

Train models can be automatically created for bounded task flows. So the pre-requisite put on this article

is that the task flow you work with is bounded.

Train models can be displayed for bounded task flows that use stand-alone pages (JSPX documents or

Facelets) and task flows executing as part of a page or view (ADF region). A task flow that is displayed in

a region launched by the Dynamic Tab Shell template for example, may look much better if the train

model stops are rendered using tabs.

The sample workspace that you can download at the end of this article exposes the bounded task flows in

an ADF region added to a page.

Note: The views in the sample bounded task flow are all based on the same view object row, Employee,

to simulate a form entry wizard. Because all forms on the views "speak" to the same row in the Data

Control it is necessary to defer validation until the end.

For this, on the PageDef files associated with the views in the bounded task flow in this sample, the

SkipValidation property is set to true to suppress validation until when validation should be enforced.

Because the ADF binding layer does not support partial submit of Data Controls, you need to defer

validation this way until all form fields are entered.

ADF CODE CORNER Put a different Look to your Train Stops

 6

Building the custom train components

To display the train stop navigation exposed by the bounded Task Flow train model, the sample uses the

ADF Faces af:navigationPane component. The af:navigationPane component supports the

Trinidad MenuModel, which is also implemented by the Train Model.

Using the hint property of the af:navigationPane component, the rendering of the train stop

display can be configured as tabs, list, choice and button bar as shown in the image below.

The page source of the af:navigationPane component is added to the page fragments in the

bounded task flow, which also could be done as part of a page template.

<af:navigationPane hint="tabs"

 value="#{controllerContext.currentViewPort.taskFlowContext.trainModel}"

 var="trainNode" id="np1">

 <f:facet name="nodeStamp">

 <af:commandNavigationItem text="#{trainNode.textAndAccessKey}" id="cni1"

 visited="#{trainNode.visited}" disabled="#{trainNode.disabled}"

 action="#{trainNode.action}" selected="#{trainStopBean.currentTab}"/>

 </f:facet>

</af:navigationPane>

As shown in the page source above, all command item settings are directly read from the train model,

which for each stop populates the trainNode temporary variable upon train rendering. The only setting

that could not be read directly from the train model, which however is required when the train stops are

rendered as tabs, is the selected property. For this, the sample uses a managed bean in none scope (as it

does not keep any state).

The managed bean is configured in the metadata configuration file of the bounded task flow so when the

task flow is deployed separately, the managed bean configuration is not getting lost

public class TrainStopManagedBean {

 public TrainStopManagedBean() {

 super();

 }

 public boolean isCurrentTab() {

 //get access to the JSF context classes

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 Application app = fctx.getApplication();

 ExpressionFactory expressionFactory = app.getExpressionFactory();

 //trainNode is the name of the variable attribute defined in

 //af:navigationPane

ADF CODE CORNER Put a different Look to your Train Stops

 7

 ValueExpression ve = expressionFactory.createValueExpression

 (elctx,"#{trainNode}", Object.class);

 //get the rendered stop's viewActivity

 TaskFlowTrainStopModel renderedTrainNode =

 (TaskFlowTrainStopModel)ve.getValue(elctx);

 //get current train stop to compare it with the current "rendered"

 //train stop

 ControllerContext controllerContext =

 ControllerContext.getInstance();

 ViewPortContext currentViewPortCtx =

 controllerContext.getCurrentViewPort();

 TaskFlowContext taskFlowCtx =

 currentViewPortCtx.getTaskFlowContext();

 TaskFlowTrainModel taskFlowTrainModel =

 taskFlowCtx.getTaskFlowTrainModel();

 //the train stop that is rendered in the train bar

 String renderedActivityId = renderedTrainNode.getLocalActivityId();

 //the train's current stop: the state

 TaskFlowTrainStopModel currentStop =

 taskFlowTrainModel.getCurrentStop();

 if (renderedActivityId.equalsIgnoreCase(

 currentStop.getLocalActivityId())) {

 return true;

 }

 return false;

 }

}

Note: To define the train stop label, you need to use the Structure Window in Oracle JDeveloper as

shown below

ADF CODE CORNER Put a different Look to your Train Stops

 8

To add labels to your train stops. Select the view activity and open the Structure Window. Select the

activity -> train stop node with the right mouse button and choose Insert Inside train-stop from the

menu, Choose Display Name and from the sub-menu and provide a label.

Sample Download

The sample workspace is for Oracle JDeveloper 11.1.2.1. The solution however works with 11.1.1.x

released of Oracle JDeveloper 11g as well. You can download the workspace as sample 93 from

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

The database connections needs to be configured to point to a local HR schema of an Oracle XE,

standard or enterprise database

RELATED DOCOMENTATION

 Navigation Pane

http://docs.oracle.com/cd/E21764_01/apirefs.1111/e12419/tagdoc/af_navigationPane.html

 Oracle Magazine: Trains "All Aboard"

http://www.oracle.com/technetwork/issue-archive/2011/11-sep/o51adf-452576.html

 Programmatically navigating trains

http://www.oracle.com/technetwork/issue-archive/2011/11-sep/o51adf-452576.html

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://docs.oracle.com/cd/E21764_01/apirefs.1111/e12419/tagdoc/af_navigationPane.html
http://www.oracle.com/technetwork/issue-archive/2011/11-sep/o51adf-452576.html
http://www.oracle.com/technetwork/issue-archive/2011/11-sep/o51adf-452576.html

