

 ADF Code Corner

95. How-to Navigate to Printable Pages

Abstract:

Commonly, you build printable pages in ADF Faces using

the af:showPrintablePageBehavior tag added to a

command component. Pressing the command component

will show a printable version of the page in an external

browser dialog. It’s the recommended way of doing this

and a purely declarative implementation. What however if

you don't want an browser dialog to show the printable

page and instead prefer navigating to it in the same

browser window? This is what this blog article covers.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
26-JAN-2012

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER [ADF CODE CORNER:]

 2

Introduction
The difference between editable pages rendered in ADF Faces default mode and pages rendered

in printable mode is that printable pages lack all navigational components and scrolling so that all

contents can be printed. To explain the solution, I use a simple use case of an ADF bound table.

The page shows a Print button that when pressed navigates to the same page in a printable page

layout. Navigation however doesn't need to be to the same page for printing. It can also be to a

specifically designed ADF Faces page you use e.g to show an invoice at the end of a shopping

process. Showing pages in printable mode just ensures that the page is optimized by not showing

command components or input fields. In addition, you may want to fine tune pages for printing, for

example, showing a company logo.

The printable page shown below is optimized so that it shows a HTML link to navigate back to the

editable page, restoring any state on this page, and so the selected table row highlighting is

removed.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER [ADF CODE CORNER:]

 3

The basic implementation

The trinidad-config.xml file is in in the application WEB-INF directory of every ADF Faces

application and can be configured with an outcome element. The outcome element if missing in the

trinidad-config.xml file, which is the default, by default is set to editable pages ("default"). Other

value options for the outcome element are printable and email. As the value of the outcome element

can be set using Expression Language it can be set dynamically.

<output-mode>#{PrintableBehavior.outcomeMode}</output-mode>

In the code sample above, the outcome parameter values in the trinidad-config.xml file is read

from a managed bean in request scope. The nice thing about using a managed bean in request scope is

that after a print request where the outcome is set to printable it immediately is set back to default so

that upon navigating back to the calling page or any other ADF Faces page, the mode is back to edit.

In the sample I built for this article, I used two managed beans in request scope. One managed bean is

referenced from the page to set the outcome mode to printable and to hide or show the return link you

see on the printable page. Also, the table selected row indicator is removed from the printable page. The

second managed bean only holds the outcome state referenced from the trinidad-config.xml file.

The managed beans are configured in the adfc-config.xml file shown below

 <managed-bean id="__5">

 <managed-bean-name>PrintPageBean</managed-bean-name>

 <managed-bean-class>

 adf.sample.view.PrintPageBean

 </managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 <managed-property id="__7">

 <property-name>printableBehavior</property-name>

 <property-class>

 adf.sample.view.PrintableBehaviorBean

 </property-class>

 <value>#{PrintableBehavior}</value>

ADF CODE CORNER [ADF CODE CORNER:]

 4

 </managed-property>

 </managed-bean>

 <managed-bean id="__6">

 <managed-bean-name>PrintableBehavior</managed-bean-name>

 <managed-bean-class>

 adf.sample.view.PrintableBehaviorBean

 </managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

</managed-bean>

Note the managed property that is configured on the PrintPageBean managed bean. The managed

property makes the PrintableBehavior bean available to the PrintPageBean so that on pressing

the print button, the outcome mode can be changed to printable. The PrintableBehaviorBean

managed bean code is shown below. It is referenced from the outcome element in the trinidad-

config.xml file:

<output-mode>#{PrintableBehavior.outcomeMode}</output-mode>

PrintableBehaviorBean

public class PrintableBehaviorBean {

 String outcomeMode = "default";

 public PrintableBehaviorBean() {

 super();

 }

 public void setOutcomeMode(String outcomeMode) {

 this.outcomeMode = outcomeMode;

 }

 public String getOutcomeMode() {

 return outcomeMode;

 }

}

The other bean is referenced from the ADF Faces page (though it is not a backing bean) and has a bit

more code in it.

PrintPageBean

public class PrintPageBean {

 //managed property to hold the PrintableBehaviorBean reference

 PrintableBehaviorBean printableBehavior = null;

 String printablePageReturnURL = null;

 public PrintPageBean() {

 }

//referenced by the print button

 public String onPrint() {

 printableBehavior.setOutcomeMode("printable");

ADF CODE CORNER [ADF CODE CORNER:]

 5

 //"print" is the navigation case I created to the

 //printable page

 return "print";

 }

 public void setPrintableBehavior(

 PrintableBehaviorBean printableBehavior) {

 this.printableBehavior = printableBehavior;

 }

 public PrintableBehaviorBean getPrintableBehavior() {

 return printableBehavior;

 }

 public void setPrintablePageReturnURL(

 String printablePagereturnURL) {

 this.printablePageReturnURL = printablePagereturnURL;

 }

 //generates the HTML link on the printable page

 //to return to the calling page

 public String getPrintablePageReturnURL() {

 String viewId = "/printablePage";

 ControllerContext controllerCtx = null;

 controllerCtx = ControllerContext.getInstance();

 String activityURL =

 controllerCtx.getGlobalViewActivityURL(viewId);

 return "<a href=\""+activityURL+"\+

 ">RETURN to Editable Page";

 }

}

Some more

As mentioned, the table row selection is not shown in the printable page, for which I needed to set the

table rowSelection property from single to none for printable pages. The following EL does the trick

<af:table …

 rowSelection="#{adfFacesContext.outputMode == 'printable' ?

 'none' : 'single'}">

Similar, the return link is supposed to only show on the printable page:

<af:outputText

 escape="false"

 value="#{PrintPageBean.printablePageReturnURL}"

ADF CODE CORNER [ADF CODE CORNER:]

 6

 rendered="#{adfFacesContext.outputMode == 'printable'}"

 id="gl1"/>

Setting the escape property to false ensures the HTML markup returned by the PrintPageBean is

rendered on the page. The rendered property too uses EL to ensure it only renders when the page is

displayed in printable mode.

Hope you get the idea how you can add/hide images from printable output this way. The output mode is

also Java accessible using AdfFacesContext.getCurrentInstance().getOutputMode().

Sample Download

You can download the simple testcase as sample 95 from the ADF Code Corner website. The sample is

built with JDeveloper 11g R2 (11.1.2.1). However, the code showed and explained in this document will

work in JDeveloper 11g R1 too. The sample requires you to configure the database connection to a HR

schema of a local database.

RELATED DOCOMENTATION

