

 ADF Code Corner

97. How-to defer train-stop navigation for custom

form validation or other developer interaction

Abstract:

ADF developers can declaratively define a bounded task

fow to expose a train model for users to navigate between

views. As power comes with complexity, there is a lot you

can do with trains if you go beyond drag-and-drop in ADF.

This article explains how user train stop selections can be

intercepted, followed or suppressed by the developer. The

sample provided with this article displays a popup dialog

for the user to confirms he/she wants to navigate off the

current view. If the user presses cancel, no navigation is

performed.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
21-FEB-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

2

Introduction
The train component and the associated train model in bounded task flows is a powerful feature

in ADF that can be tailored and customized for different kind of cases beyond simple view to view

navigation. In this article, the user train stop selection to naigate to another view is intercepted for

the developer to object and cancel or continue with the navigation.

The screenshots below are taking from the sample built for this code corner article. In this

sample, when a user clicks on a train stop icon to perform navigation …

… instead of navigating to the view associated with the train stop, a popup is displayed. The

popup, for example, could be shown if custom validation fails for a view or if data needs to be be

committed.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

3

If the user OKs the dialog, navigation is performed according to the train navigation rule. If the

user cancels the navigation, the current view is not left.

Implementing the solution

Implicit named navigation cases are used in ADF when navigating between views in a bounded task flow

using the train model. To intercept the navigation request, which is triggered by the user clicking onto a

train stop in an af:train component or on a train button in a af:trainButtonBar component, you need to

customize the train nodeStamp facet, adding a custom command item that routes all train stop actions to

a managed bean first.

But, let's go step-by-step. The sample has four views displayed in a train. Each view is based on a page

template that contains a popup component.

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

4

Using a page template is a convenient and time saving option to add a popup dialog to views without

coding the popup into each view. In JDeveloper 11g R2, page templates can be nested, which allows you

to reference functional templates – like this containing a popup to share – with page layout templates.

Each view contains an af:train component that in its nodeStamp facet has a commanNavigationItem

component defined. Using a commanNavigationItem in the nodeStamp allows developers to change

the default train rendering and behavior. The commanNavigationItem ActionListener property is set

up to point to a managed bean method. Each view and train stop references the same managed bean

method.

The managed bean method's responsibility is

 To determine the train stop the user clicked on

 Show the popup dialog (or if the use case is to conditionally show the popup, to determine the

condition)

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

5

The commanNavigationItem has an f:attribute component added to keep track of which train stop the

user clicked on. The f:attribute item adds a custom attribute to the ADF Faces component that can be

accessed in the managed bean. The #{trainNode} reference is of type TaskFlowTrainStopModel

and exposes the train stop navigation case by its getOutcome() method.

The commanNavigationItem instance is accessible from the managed bean method using the

ActionEvent object that is passed to it.

Two managed beans are used in this sample. The TrainHandlerBean is defined in request scope and is

referenced from the commanNavigationItem in the af:train component on the views and the af:popup

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

6

component in the template. The TrainHandlerBeanHelper is configured in viewScope and holds the

reference to the outcome value of the train stop clicked by the user. The TrainHandlerBeanHelper is

configured as a managed property in the TrainHandlerBean definition. Both beans are configured in the

bounded task flow metadata.

Shown below is the managed bean configuration for the TrainHandlerBean. As you can see, the

TrainHandlerBeanHelper bean is referenced as a managed property, which is required for the popup

listener that notifies the managed bean about the dialog close by the user to get access to the user selected

train node.

The two managed bean code listings are shown below. I commented the code source so you know what

each method therein does and from where it is accessed.

TrainHandlerBean (request scope)

The TrainHandlerBean implements all of the logic. It saves the user selected train stop node's outcome

value (the implicit navigation case) in the TrainHandlerBeanHelper so the information persists beyond

the request. The bean also opens the popup dialog by searching within the ADF region container for the

af:popup instance.

When the popup is closed by the user pressing Ok or Cancel, the managed bean is called again. If the

selected outcome is Ok, then the bean queues an action event on the ADF region to navigate to the next

view.

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

7

package adf.sample;

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.MethodExpression;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.event.ActionEvent;

import javax.faces.event.PhaseId;

import oracle.adf.controller.TaskFlowTrainStopModel;

import oracle.adf.view.rich.component.rich.RichPopup;

import oracle.adf.view.rich.component.rich.fragment.RichPageTemplate;

import oracle.adf.view.rich.component.rich.fragment.RichRegion;

import

oracle.adf.view.rich.component.rich.nav.RichCommandNavigationItem;

import oracle.adf.view.rich.event.DialogEvent;

public class TrainHandlerBean {

 /**

 * Managed bean property reference to a helper bean in view scope

 */

 private TrainHandlerBeanHelper trainHandlerBeanHelper = null;

 public TrainHandlerBean() {

 }

 /**

 * Action method that is referenced from the train stop command

 * action to defer train navigation and allow developers to

 * interact with the user. In this sample a popup dialog is opened

 * for the user to confirm train navigation.

 *

 * The use case for deferred trains top navigation includes manual

 * complex field validation, to check for

 * uncommitted data, e.g.

 * ControllerContext.getInstance().getCurrentViewPort()

 * .isDataDirty() , etc.

 *

 * @param actionEvent

 */

 public void onTrainStopSelect(ActionEvent actionEvent) {

 RichCommandNavigationItem rni =

 (RichCommandNavigationItem)actionEvent.getSource();

 TaskFlowTrainStopModel selectedTrainStop =

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

8

 (TaskFlowTrainStopModel)rni.getAttributes()

 .get("trainStopNode");

 String outcome = selectedTrainStop.getOutcome();

 trainHandlerBeanHelper.setSelectedTrainStopOutcome(outcome);

 /*

 * ADD YOUR DEFERRED ACTION. FOR EXAMPLE, LAUNCH POPUP. TO

 * CONTINUE THE TRAIN NAVIGATION, CALL

 * queueTrainStopEventToRegion(...)

 */

 //launch popup. Start search from af:region. The af:region and

 //the af:pageTemplate tags are

 //naming container. This has an impact to the runtime ID of the

 //popup component. So to find popup component just by its ID

 //"pt_p1", we enter the region container, then the template to

 //then call findComponent("pt_p1")

 RichRegion adfRegion = this.findRichRegionContainer(rni);

 //in this sample, the popup component is in a template. Page

 //Fragments can only have a single

 //root component (everything else is flagged as an error) so

 //that the template must be the first children in the region

 RichPageTemplate regionTrainstopPopupTemplate = null;

 regionTrainstopPopupTemplate =

 (RichPageTemplate) adfRegion.getChildren().get(0);

 UIComponent component =

 regionTrainstopPopupTemplate.findComponent("pt_p1");

 if(component != null){

 RichPopup richPopup = (RichPopup) component;

 //align popup to screen center

 RichPopup.PopupHints hints = new RichPopup.PopupHints();

 richPopup.show(hints);

 }

 else{

 //TODO change to use logger

 System.out.println("The popup instance with ID pt_p1 could

 not be found");

 }

 }

 /**

 * Method that finds the af:region container for a bounded task

 * flow exposed in a region. Don't use this method outside of ADF

 * regions.

 * @param uiComponent Component within the region that is the

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

9

 * starting point for the search

 * @return The RichRegion instance as UIComponent

 */

private RichRegion findRichRegionContainer(UIComponent uiComponent)

{

 UIComponent currentComponent = uiComponent;

 while(!(currentComponent instanceof RichRegion)){

 //task flows in a region always have a RichRegion container

 //sonewhere.

 currentComponent = currentComponent.getParent();

 }

 return (RichRegion) currentComponent;

}

 /**

 * In this sample the popup contains a dialog with OK, Cancel

 * button.

 * When OK is clicked, the train stop navigation should progress. If

 * not, the train stop should not continue and remain on the current

 * page

 *

 * @param dialogEvent

 */

 public void onDialogAction(DialogEvent dialogEvent) {

 //only if user confirmed navigation to the next train stop,

 //perform navigation. Otherwise ignore request and remain

 //on current train stop view

 if (dialogEvent.getOutcome() == DialogEvent.Outcome.ok) {

 //perform saved train stop navigation

 queueTrainStopEventToRegion("#{viewScope.TrainHandlerBeanHelper

 .getSelectedTrainStopOutcome}",

 dialogEvent.getComponent());

 }

 }

 /**

 * Wrapper method around the RichRegion queueActionEventInRegion

 * API.

 * @param outcomeEL The EL to access a managed bean that returns

 * the navigation string to to follow. This can be an outcome for a

 * navigation case, or as in this sample, the implicit navigation

 * case used in trains

 *

 * @param searchComponentInRegion To queue the action, we need a

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

10

 * handle to the RichRegion component. Providing us with a

 * component residing in a region is all that is

 * needed to search the af:region container

 */

 private void queueTrainStopEventToRegion(String outcomeEL,

 UIComponent searchComponentInRegion) {

 //This sample assumes bounded task flows to be exposed in an

 //af:region. So it is safe to assume a parent component to be of

 //type RichRegion. Let's find it to queue the train stop

 //outcome event for navigation.

 RichRegion adfRegion = null;

 adfRegion =

 this.findRichRegionContainer(searchComponentInRegion);

 FacesContext fctx = FacesContext.getCurrentInstance();

 ExpressionFactory expressionFactory =

 fctx.getApplication().getExpressionFactory();

 ELContext elctx = fctx.getELContext();

 MethodExpression methodExpression =

 expressionFactory.createMethodExpression(elctx,

 outcomeEL,

 String.class,

 new Class[] { });

 //queue action in region

 adfRegion.queueActionEventInRegion(

 methodExpression, null, null, false, 0, 0,

 PhaseId.INVOKE_APPLICATION);

 }

 /**

 * Managed bean property reference to a managed bean in view scope

 * @param trainHandlerBeanHelper Managed bean inserted as a managed

 * property reference

 */

 public void setTrainHandlerBeanHelper(

 TrainHandlerBeanHelper trainHandlerBeanHelper) {

 this.trainHandlerBeanHelper = trainHandlerBeanHelper;

 }

 public TrainHandlerBeanHelper getTrainHandlerBeanHelper() {

 return trainHandlerBeanHelper;

 }

}

TrainHandlerBeanHelper (view scope)

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

11

This managed bean is just a helper class that saves the selected train node outcome value for later

navigation when the user confirms the popup dialog with Ok.

package adf.sample;

public class TrainHandlerBeanHelper {

 private String selectedTrainStopOutcome = null;

 public TrainHandlerBeanHelper() {

 super();

 }

 public void setSelectedTrainStopOutcome(

 String selectedTrainStopOutcome) {

 this.selectedTrainStopOutcome = selectedTrainStopOutcome;

 }

 public String getSelectedTrainStopOutcome() {

 return selectedTrainStopOutcome;

 }

}

Sample Download

The Oracle JDeveloper 11.1.2.1 sample workspace is available as sample 97 from ADF Code Corner.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Though the sample is developed with JDeveloper 11g R2, the solution also works with previous versions

of Oracle JDeveloper 11g.

RELATED DOCOMENTATION

 Oracle Magazine article about trains

http://www.oracle.com/technetwork/issue-archive/2011/11-sep/o51adf-452576.html

 Trains in the ADF product documentation

http://docs.oracle.com/cd/E16162_01/web.1112/e16182/taskflows_complex.htm#CJHFBFIE

 Related ADF Code Corner articles

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/93-differentuifortrainstops-

1413952.pdf

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/82-programmatically-

navigate-trains-396873.pdf

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/80-dyn-sequential-config-

train-387002.pdf

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.oracle.com/technetwork/issue-archive/2011/11-sep/o51adf-452576.html
http://docs.oracle.com/cd/E16162_01/web.1112/e16182/taskflows_complex.htm#CJHFBFIE
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/93-differentuifortrainstops-1413952.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/93-differentuifortrainstops-1413952.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/82-programmatically-navigate-trains-396873.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/82-programmatically-navigate-trains-396873.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/80-dyn-sequential-config-train-387002.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/80-dyn-sequential-config-train-387002.pdf

ADF CODE CORNER
How-to defer train-stop navigation for custom form
validation or other developer interaction

12

