

 ADF Code Corner

Oracle JDeveloper OTN Harvest 04 / 2011

Abstract:

The Oracle JDeveloper forum is in the Top 5 of the most

active forums on the Oracle Technology Network (OTN).

The number of questions and answers published on the

forum is steadily increasing with the growing interest in

and adoption of the Oracle Application Development

Framework (ADF).

The ADF Code Corner "Oracle JDeveloper OTN Harvest"

series is a monthly summary of selected topics posted on

the OTN Oracle JDeveloper forum. It is an effort to turn

knowledge exchange into an interesting read for

developers who enjoy harvesting little nuggets of wisdom.

twitter.com/adfcodecorner http://blogs.oracle.com/jdevotnharvest/

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
30-APR-2011

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

2

April 2011 Issue – Table of Contents

How and where to start learning ADF ... 4

Most popular mistake when reporting problems on OTN 4

Customizing the ADF BC Data Control Name 4

Populating select choice components from other DataControls 5

Run ADF Faces applications with IE 9 in IE 8 compatibility mode 9

Recommended number and size of Application Module(s) 13

About JSF fragments, ADF regions, declarative components … 14

How-to determine a task flow for the ID in dynamic region exists 15

Managed Properties: the forgotten JSF feature 16

Whitepaper: JavaScript in ADF Faces .. 17

Whitepaper: ADF application performance and scalability testing 18

Whitepaper Update: ADF Task Flow Design Fundamentals 18

How to access the WS SOAP message using WS DC 18

Passing parameters to managed bean methods using EL 21

How-to switch the application locale at runtime 24

How-to invoke the ADF select event from Java 25

ADF Security authentication providers ... 25

ADF tree binding vs. table binding .. 26

Using af:resource tag in page fragments .. 27

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

Oracle ADF Code Corner OTN Harvest is a monthly blog series that publishes how-to tips
and information around Oracle JDeveloper and Oracle ADF.

Disclaimer: ADF Code Corner OTN Harvest is a blogging effort according to the Oracle
blogging policies. It is not an official Oracle publication. All samples and code snippets are
provided "as is" with no guarantee for future upgrades or error correction. No support can be
given through Oracle customer support.

If you have questions, please post them to the Oracle OTN JDeveloper forum:
http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

3

Using multiple Data Controls in ADF applications? 27

Creating localized static list of values ... 27

Using parameterized translation strings in ADF Faces 33

Integrating ADF and Servlets ... 37

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

4

How and where to start learning ADF

Typically developers who join the Oracle JDeveloper and Oracle ADF community have a programming

background which may or may not be Java. So to answer the question of where and how to start learning

Oracle ADF is not straight forward as it depends on what you already know. In his blog, Shay Shmeltzer

outlined a trail of documents and samples that give you a path into ADF.

http://blogs.oracle.com/shay/2010/02/how_do_i_start_learning_oracle_adf_and_jdeveloper.html

If your programming background is not Java, don't worry if this looks like a lot to read up on and keep in

mind that Rome wasn't build in a day either. Try some of the Oracle by Example (OBE) tutorials in which

we step you through building an ADF application without assuming any Java knowledge on your side.

Two additions to Shay's 2010 list of materials are:

 Grant Ronald's "Quick Start Guide to Oracle Fusion Development" book. The book is written
to be the lowest entry level to application development with Oracle ADF.
http://www.mhprofessional.com/product.php?cat=112&isbn=0071744290

 ADF Insider Essentials: A video tutorial series that show you some common development tasks

and how to conquer:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfinsideressentials-

337133.html

Most popular mistake when reporting problems on OTN

The topic of "how to ask good questions on a forum" is well covered in blogs and articles. One mistake I

quite often find when monitoring the Oracle JDeveloper forum on OTN is complexity that prevents us,

meaning everyone who is willing to help, to understand or reproduce the problem.

Customizing the ADF BC Data Control Name

When creating an ADF Business Component service and exposing it to ADF, then the Application

Module Name is exposed as the Data Control name in the ADF Data Controls panel.

Names that are exposed on the Data Controls panel are a contract defined between the business service

developer and the application developer. Those names should be descriptive for intuitive and error free

http://blogs.oracle.com/shay/2010/02/how_do_i_start_learning_oracle_adf_and_jdeveloper.html
http://www.mhprofessional.com/product.php?cat=112&isbn=0071744290
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfinsideressentials-337133.html
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfinsideressentials-337133.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

5

use during application development. So instead of the technical Application Module name to be exposed

in the Data Controls panel, you want something better, as shown below

Select the Application Module in the Oracle JDeveloper Application Navigator and open the Structure

Window. In here, select the Application Module root node and open the Property Inspector. Change the

Data Control Name property and save the project. Hit the refresh icon on top of the Data Controls

panel to show the user friendly name.

Note: Data Control names are saved in the DataBindings.cpx file as the ID for the DataControls

configuration reference. To change the Data Controls name for an existing project, rename the ID in the

DataBindings.cpx file accordingly and search for all references of the old ID. This "user friendly"

naming for sure is easier to use for new developments.

Populating select choice components from other DataControls

Oracle ADF allows you to reference values from other Data Controls when working in a form. But how

do you populate list values of an af:selectOneChoice component with data queried form another

Data Control?

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

6

For simplicity reasons when creating the sample, I used two ADF Business Components Data Controls.

Of course, cross referencing Data Controls makes more sense if the Data Controls reference different

model technologies, for example when reading list values from a Web Service or an EJB / JPA model.

The two ADF Business Components Data Controls are read from different projects. Using different

projects is not a requirement for having two separate Data Controls, but help clarifying the use case to

show here.

First I created a table from a View Object contained in the Model project. The table is configured to be

editable and to support row selection.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

7

Note that the value of the af:inputText component that renders the LocationId attribute

references the table row variable.

#{row.bindings.LocationId.inputValue}

If the DepartmentsView view object wasn't created as a table but a form, then the EL would reference an

attribute binding look as shown below

#{bindings.LocationId.inputValue}

I copied the value property EL to the clipboard so I can paste it back in later on. This is an important

step, so don't forget this.

I deleted the af:inputText component in the LocationId column, but made sure the af:column

component was kept.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

8

I then expanded the DepartmentsView View Object node that I used to build the table and dragged the

LocationId attribute into the LocationId table column. From the choice of rendering options, I chose

ADF Select One Choice component.

To retrieve the select item values from another Data Control, I set the list type to Dynamic List and

pressed the Add button next to the List Data Source list box.

I then chose the collection (View Object) in the other Data Control that provides the list values and

pressed OK.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

9

I then selected the af:selectOneChoice component in the LocationId column and opened the

Property Inspector. I pasted the expression string I kept in the clipboard into the Value property of the

af:selectOneChoice component so the list update is for the row in the table.

Note: Don't make it a general practice in your application development to spread dependent information

across Data Controls. Only do so if there is a reason. In my example, using two application modules as

independent Data Controls will create two database connection. Using two separate Data Controls always

makes sense, as mentioned, when business services are implemented with different technologies.

Run ADF Faces applications with IE 9 in IE 8 compatibility mode

MS Internet Explorer 9 is production and developers and users eagerly pick this browser version up for

their production environment. Oracle JDeveloper 11.1.1.4 has been released before Internet Explorer 9

and, for this reason is not supported with this version of IE. Developers who don't want to wait for the

next JDeveloper 11g patch set to support IE 9, or developers who don't want to upgrade their application

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

10

infrastructure to a new version of Oracle Fusion Middleware and Oracle JDeveloper 11g, however may

consider running Internet Explorer 9 in IE8 or E7 compatibility or emulation mode.

http://blogs.msdn.com/b/ie/archive/2010/06/16/ie-s-compatibility-features-for-site-developers.aspx

http://expression.microsoft.com/en-us/dd835379.aspx

Since IE 8, Microsoft supports a meta tag that, if added to the document header, enforces the browsers to

behave like a previous version

<meta http-equiv="X-UA-Compatible" content="|" />

For example, to force a browser to behave like IE 7, you use

<meta http-equiv="X-UA-Compatible" content="IE=7" />

To add the X-UA-Compatible meta tag from your JavaServer Faces application in a way that does not

require you to change the source of your pages, you use a PhaseListener that you define in the faces-

config.xml file.

The example below checks the user browser version for IE9. If IE9 is detected, the browser will be

forced to run the application in IE 8 compatibility mode. If the browser is a previous version of IE, or if

the browser is a different type, then nothing happens. Also note that the browser check is only performed

once so that you don't need to worry about performance.

Example faces-config.xml file:

<?xml version="1.0" encoding="windows-1252"?>

<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">

 <application>

 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>

 </application>

 <lifecycle>

 <phase-listener>adf.sample.view.IECompatibilityPhaseListener</phase-listener>

 </lifecycle>

</faces-config>

Example PhaseListener:

import javax.faces.context.ExternalContext;

import javax.faces.context.FacesContext;

import javax.faces.event.PhaseEvent;

import javax.faces.event.PhaseId;

import javax.faces.event.PhaseListener;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import org.apache.myfaces.trinidad.context.Agent;

import org.apache.myfaces.trinidad.context.RequestContext;

public class IECompatibilityPhaseListener implements PhaseListener {

http://blogs.msdn.com/b/ie/archive/2010/06/16/ie-s-compatibility-features-for-site-developers.aspx
http://expression.microsoft.com/en-us/dd835379.aspx

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

11

 //defining unique session keys to test browser checking and version

 //for user sessions

 private final String BROWSER_CHECK_KEY =

 "____$browser-compatibility-checked-key$____";

 private final String IS_IE9_CHECK_KEY =

 "____$IS-IE9-check-key$____";

 public IECompatibilityPhaseListener() {

 super();

 }

 public void afterPhase(PhaseEvent phaseEvent) {

 //check if browser is IE 9 in RestoreView phase if this

 //hasn't been checked before

 if(phaseEvent.getPhaseId() == PhaseId.RESTORE_VIEW

 && !this.isBrowserChecked()){

 //which browser does the user use

 RequestContext trinidadContext =

 RequestContext.getCurrentInstance();

 Agent agent = trinidadContext.getAgent();

 String browserName = agent.getAgentName();

 String browserVersion = agent.getAgentVersion();

 //is it IE

 if(browserName.toLowerCase().indexOf("ie") > -1){

 if (browserVersion.equalsIgnoreCase("9.0")){

 this.setIsIE9(true);

 }

 else{

 this.setIsIE9(false);

 }

 }

 else{

 this.setIsIE9(false);

 }

 //browser has been checked

 this.setBrowserChecked(true);

 }

 }

 public void beforePhase(PhaseEvent phaseEvent) {

 //check render response

 if(phaseEvent.getPhaseId() == PhaseId.RENDER_RESPONSE

 && this.isIsIE9()){

 FacesContext fctx = FacesContext.getCurrentInstance();

 ExternalContext ectx = fctx.getExternalContext();

 HttpServletResponse response =

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

12

 (HttpServletResponse) ectx.getResponse();

 response.addHeader("X-UA-Compatible", "IE=8");

 }

 }

 public PhaseId getPhaseId() {

 return PhaseId.ANY_PHASE;

 }

 private void setIsIE9(boolean isIE9) {

 setBooleanSessionKeyValue(IS_IE9_CHECK_KEY, isIE9);

 }

 private boolean isIsIE9() {

 return getBooleanSessionKeyValue(IS_IE9_CHECK_KEY);

 }

 private void setBrowserChecked(boolean browserChecked) {

 setBooleanSessionKeyValue(BROWSER_CHECK_KEY, new

 Boolean(browserChecked));

 }

 private boolean isBrowserChecked() {

 return getBooleanSessionKeyValue(BROWSER_CHECK_KEY);

 }

 private boolean getBooleanSessionKeyValue(String _key){

 FacesContext fctx = FacesContext.getCurrentInstance();

 ExternalContext ectx = fctx.getExternalContext();

 //get user session

 HttpSession userSession = (HttpSession) ectx.getSession(true);

 Object browserCheckObject = userSession.getAttribute(_key);

 if(browserCheckObject == null){

 return false;

 }

 else{

 return ((Boolean) browserCheckObject).booleanValue();

 }

 }

 private void setBooleanSessionKeyValue(String _key, Object _value){

 FacesContext fctx = FacesContext.getCurrentInstance();

 ExternalContext ectx = fctx.getExternalContext();

 //get user session

 HttpSession userSession = (HttpSession) ectx.getSession(true);

 userSession.setAttribute(_key,_value);

 }

}

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

13

The nice thing about using a PhaseListener is that once you are on an Oracle JDeveloper and ADF

version that supports IE9, you remove the PhaseListener configuration from your application. This is

much easier to do than changing the application page sources.

Does this blog post mean Internet Explorer 9 is supported in Oracle JDeveloper 11.1.1.4 when running in

IE 8 compatibility mode? No, it doesn't! However, chances are good that issues you experience in Oracle

JDeveloper 11.1.1.4 using IE9 don't show in IE8 or IE7 compatibility mode.

If you still experience problems, even though you run IE9 in compatibility mode, you first need to verify

this problem to exist in native IE8 before filing a bug.

Note: Thanks to Andrejus Baranovskis for testing this on IE9

Recommended number and size of Application Module(s)

Application Modules in Oracle ADF Business Components expose the data model, the View Object

instances that application developers work with when building ADF applications using ADF Business

Components as the business service choice. A frequent question is about the ideal number and size of

Application Modules to ensure good performance. The answer to this question is that it depends on your

application and the requirements you have. Remember that there are different types of Application

Modules:

 Root Application Modules

 Nested Application Modules

 Shared Application Modules

Root application modules manage the transaction and therefore require their own database connection.

The more root Application Modules an application uses, the more database connections – multiplied by

the number of users using the application – are open at a given time. Shared Application Modules are

good for sharing data queries, for example to populate list-of-values with data that is not individual to a

specific user session and that does not change frequently. Using shared Application Module is like using a

singleton in Java. Nested Application Modules share the database connection and transaction with the

parent Application Module and are good to tailor the data model to a specific need or use case, making it

easy for application developers to split the work in teams and understand functional boundaries.

So the question is not how many Application Modules you have but how many root Application Modules

you use. The recommendation is to go with a minimum number of root application modules (a single one

at best) and break down your application into uses of nested application modules. This break down could

be by a one-to-one relation to use cases you identified for your application or more coarse grain logical

units of work. The guidance to give therefore is to use many nested Application Modules to modularize

large business services into manageable units representing a single use case or a logical unit of work, but

to go with the a minimum of root application modules.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcservices.htm#sthref844

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcservices.htm#sm0229

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcservices.htm#sthref844
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcservices.htm#sm0229

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

14

About JSF fragments, ADF regions, declarative components …

Starting application development with Oracle ADF and ADF Faces, some concepts may be hard to grasp

at the beginning. Using Oracle ADF and ADF Faces, the following terminologies are used in the context

of reuse of components and processes

 JSF fragments

JSF page fragments are page definitions that run embedded in another JSF page. Fragments are

like page includes in JavaServer Pages, with the difference that in Oracle ADF Faces they are

usually used in the context of ADF regions or dynamic declarative components. You can also

reference page fragments directly from a JSP includes tag added to a JavaServer Faces

document (JSPX). However, in this case, and only if a page fragment has ADF bound content,

you need to make sure the content of the page fragments ADF binding file (PageDef) is copied

to the PageDef file of the parent page. Otherwise ADF queried data will not show.

 ADF regions

ADF regions consist of an ADF Faces af:region tag, an ADF bounded task flow and page

fragments. Page fragments that are used in a bounded task flow don't need to copy their ADF

binding references to the parent container, which is a huge difference between JSP includes and

ADF regions. ADF regions define an interactive area on a view, a JSF document or another JSF

page fragment, that developers use to show a single view or a complete, multi-step, process.

ADF regions can be statically or dynamically defined. In either way they require a PageDef file

and a bounded task flow to reference. ADF regions help building desktop like web applications

in which users stay for long on a single page while working on a business task.

 Declarative components

Declarative components allow developers to build a composite component out of existing ADF

Faces components. Declarative components exist in two flavors: library driven and dynamic

declarative components (ddc). The tag library driven components are declaratively built from the

File | New menu option. In the JSF view option you find a declarative component menu option

that steps you through building your own ADF F aces component from existing ADF Faces

components. You use tag library driven declarative components to build custom components

with behavior, like a tool bar or a custom file-upload handler. The goal of building declarative

components is to build re-usable components that simplify development and administration by

avoiding duplicate page codes. Dynamic declarative components (DDC) are used within the

scope of the web application they are defined in and cannot be re-used across applications. Their

main usage is to build reusable layout artifacts or page area components. For example, a custom

tab canvas is what you would build using DDC components.

 Page templates

Page templates are layout definitions that you use as a starter when building new pages to enforce

consistent page layouts throughout applications and enterprises. Best practices are to build a page

template using the ADF Faces Quick start templates. You cannot nest page templates, but you

can use page templates on parent and child views (page fragments). A page template is the page

level equivalent to a DDC component.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

15

 ADF Library

ADF libraries are special Oracle ADF archive files that you use to reuse bounded task flows

(regions), page templates and declarative components. They are standard JAR files with extra

information in the archive manifest file that allows you to import the library files into the Oracle

JDeveloper Resource Palette for declarative reuse.

When designing an application you best start planning reuse of components and page segments. If you

have an application wide look and feel that you can define as page template(s) then do this first. If you can

identify areas within pages that you may need more often on other pages as well, without the pages to be

identical from their layout, you use dynamic declarative components. For functionality like global toolbars

or common and composite user interface logic, you build tag library based declarative components, which

then can be used across applications too. An ADF region is an interactive and optionally also data centric

page are that you use to show complete business processes in place. ADF regions are a friend for building

rich Internet application interfaces and business centric web desktops. ADF libraries are the vehicle to

deploy your reusable work.

Read more:

DDC

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_declarativeCompone

nt.html

Reuse

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_components.htm#BABC

HHHJ

Fragments, Templates, Declarative Components

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_reuse.htm#CHDDECDG

How-to determine a task flow for the ID in dynamic region exists

When working with ADF dynamic regions, developers switch between task flows by changing the internal

state of a property in the managed bean referenced from the ADF Region binding.

To read more about ADF regions, read up on this:

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/taskflows_regions.htm#CHDJHACA

Unless there is a separate method in the managed bean to set the task flow ID for each task flow could be

displayed in the region, there is no guarantee that the task flow ID that is passed to the bean matches an

existing task flow. A requirement on OTN thus was to tell beforehand if a task flow exist for the task flow

id specified at runtime. Unfortunately there is no public API available for this, so that the answer to this

requirement is to use an internal packaged framework class that Chris Muir documented in a blog post:

http://chrismuir.sys-con.com/node/1606250

Using a method documented by Chris, you can get to the information you need for the use case discussed

in this section.

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_declarativeComponent.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_declarativeComponent.html
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_components.htm#BABCHHHJ
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_components.htm#BABCHHHJ
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_reuse.htm#CHDDECDG
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/taskflows_regions.htm#CHDJHACA
http://chrismuir.sys-con.com/node/1606250

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

16

MetadataService metadataService = MetadataService.getInstance();

TaskFlowDefinition taskFlowDefinition =

 metadataService.getTaskFlowDefinition(taskFlowId);

Note that starting Oracle JDeveloper 11.1.1.4, the attempt of importing internal packaged classes in

customer applications is handled by a new audit rule. The audit rule prevents the class that imports the

internal packaged library from compiling. So to continue using internal packaged libraries, you need to

disable the audit rule as explained here:

http://blogs.oracle.com/jdevotnharvest/2011/03/internal_package_import_errors_and_how_to_switch

_them_off.html

Best practices when dealing with ADF internal framework packages

Oracle is aware of that there may be a need for developers to use internally packaged classes if there is no

acceptable other way, or public API to use. However, internally packaged classes and APIs may change

without notice, for example for Oracle to implement enhancement requests. When working with internal

classes therefore it is recommended that you

 File an enhancement request for Oracle to provide a public API for the internal API you want to

use

 Create an abstraction layer, a utility class or managed bean that you use to access the internal

class, instead of directly accessing the "forbidden" internal API in your application code.

 Change the internal class access in the abstraction layer to a public class once your enhancement

request is implemented.

Note: I filed ER 12345520 for the use case explained in this section. The current status of it is that a fix is

provided in the next major release of Oracle JDeveloper

Managed Properties: the forgotten JSF feature

As it is common practice to resolve expression in Java using a ValueExpression, the use of managed

properties seems to be forgotten. If a managed bean requires access to another managed bean in the same

or a larger scope, then instead of code like this …

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

ExpressionFactory exprFactory =

 fctx.getApplication().getExpressionFactory();

ValueExpression ve = null;

ve = exprFactory.createValueExpression(

 elctx,

 "#{managedBeanB}",

 Object.class);

ManagedBeanB managedBeanB = (ManagedBeanB) ve.getValue(elctx);

… you can use a managed bean property. For example if ManagedBeanA has needs access to

ManagedBeanB, then it will have the following property and methods created

http://blogs.oracle.com/jdevotnharvest/2011/03/internal_package_import_errors_and_how_to_switch_them_off.html
http://blogs.oracle.com/jdevotnharvest/2011/03/internal_package_import_errors_and_how_to_switch_them_off.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

17

ManagedBeanB managedBeanBvar = null;

…

public void setManagedBeanBvar(ManagedBeanB managedBeanB) {

 this.managedBeanBvar = managedBeanB;

 }

 public ManagedBeanB getManagedBeanBvar() {

 return managedBeanBvar;

}

The managed bean configuration for ManagedBeanA in adfc-config.xml, faces-config.xml or

bounded task flow definitions then looks as shown below

<managed-bean id="__7">

 <managed-bean-name id="__6">managedBeanA</managed-bean-name>

 <managed-bean-class id="__5">sample.ManagedBeanA</managed-bean-class>

 <managed-bean-scope id="__8">request</managed-bean-scope>

 <managed-property id="__16">

 <property-name id="__17">managedBeanBvar</property-name>

 <property-class>sample.ManagedBeanB</property-class>

 <value id="__18">#{viewScope.managedBeanB}</value>

 </managed-property>

</managed-bean>

<managed-bean id="__11">

 <managed-bean-name id="__10">managedBeanB</managed-bean-name>

 <managed-bean-class id="__12">sample.ManagedBeanB</managed-bean-class>

 <managed-bean-scope id="__9">view</managed-bean-scope>

</managed-bean>

The above configuration ensures that ManagedBeanB is instantiated when ManagedBeanA is

instantiated so that it is accessible from code in ManagedBeanA through the managedBeanBvar variable.

So why would you want to use managed properties if you could use a ValueExpression to access a

managed bean? There is no simple answer to this other than better readability and ease of maintenance as

everything that is put in code is compiled and harder to read and change from the outside.

Whitepaper: JavaScript in ADF Faces

JavaScript stay on top of Oracle ADF customer's interest and often is requested for when it comes to

integration with 3rd party applications or enhancing ADF Faces component default functionality. ADF

Faces provides a client side JavaScript framework that allows developers to integrate JavaScript in their

ADF applications with no need to worry about lifecycle synchronization or browser differences. Though

released in January 2011 already, the JavaScript whitepaper I wrote gives you an introduction and some

advanced tips for using JavaScript in ADF Faces.

http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-302460.pdf

http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-302460.pdf

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

18

In addition, ADF Code Corner sample #71 shows how to use JavaScript to communicate between ADF

Faces and a Java Applet on the client. This sample can be modified easily to work with other client side

products.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/71-adf-to-applet-communication-

307672.pdf

However, don't worship JavaScript for the sake of it. If there is a solution in Java or JavaServer Faces, for

example to integrate with Web Services, then avoid using JavaScript.

Whitepaper: ADF application performance and scalability testing

Stress and performance testing is a question that frequently shows on OTN. This March, Stewart Wilson

from Oracle published a whitepaper "Techniques for Testing Performance/Scalability and Stress-Testing

ADF Applications" on OTN that I recommend reading:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfloadstresstesting-354067.pdf

"This paper examines some tools and techniques for testing the scalability of ADF Faces applications, based on Oracle

internal experience."

Whitepaper Update: ADF Task Flow Design Fundamentals

Duncan Mills published an update version of the ADF Task Flow Design Fundamental whitepaper that

outlines proven practices when working with task flows.

http://www.oracle.com/technetwork/developer-tools/jdev/adf-task-flow-design-132904.pdf

How to access the WS SOAP message using WS DC

A frequent requirement is to access the SOAP message of a service to e.g. set SOAP header information

required by a service for passing license keys or authentication information. In Java, the SOAPMessage

class gives you access to the SoapPart, SOAPEnvenlope, SOAPBody and the SOAPHeader using

code like shown below:

SOAPPart sp = soapMessage.getSOAPPart();

SOAPEnvelope se = soapMessage.getEnvelope();

SOAPBody sb = soapMessage.getBody();

SOAPHeader sh = soapMessage.getHeader();

See: http://download.oracle.com/javaee/1.4/api/javax/xml/soap/SOAPMessage.html

To access incoming and outgoing SOAP messages when using the Oracle ADF WS Data Control, you

need to override the default SOAP provider that is configured in the DataControls.dcx file of the

WS Data Control project.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/71-adf-to-applet-communication-307672.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/71-adf-to-applet-communication-307672.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfloadstresstesting-354067.pdf
http://www.oracle.com/technetwork/developer-tools/jdev/adf-task-flow-design-132904.pdf
http://download.oracle.com/javaee/1.4/api/javax/xml/soap/SOAPMessage.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

19

By default, the provider is configured as

<Source>

 <definition xmlns=http://xmlns.oracle.com/adfm/adapter/webservice

 name="PojoWsDC" version="1.0"

provider=

 "oracle.adfinternal.model.adapter.webservice.provider.soap.SOAPProvider"

…

To change the provider class, extend the default SOAPProvider provider class as shown below

public class CustomSOAProvider extends SOAPProvider {

 public CustomSOAProvider() {

 super();

 }

 //expose protected method to public

 public void handleRequest(SOAPMessage soapMessage) throws AdapterException

 {

 super.handleRequest(soapMessage);

 }

 //Expose protetcted method to public

 public void handleResponse(SOAPMessage soapMessage) throws AdapterException

 {

 super.handleResponse(soapMessage);

 }

}

http://xmlns.oracle.com/adfm/adapter/webservice

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

20

Change the DataControls.dcx configuration to use your custom provider, for example

<Source>

 <definition xmlns=http://xmlns.oracle.com/adfm/adapter/webservice

 name="PojoWsDC" version="1.0"

 provider="adf.sample.wsdc.CustomSOAProvider"

…

You can access the custom SOAP provider from a managed bean, which also allows you to expose its

functionality to Expression Language. Before you can access the custom SOAP provider from a managed

bean, you need to know the name of the Data Control that is used to access the Web Service. The name

of the Data Control is defined in the DataControls.cpx file where it can be looked up. The file is

located in the ViewController project.

The Data Control name can also be looked up in the Data Controls palette. This however requires that

the name indicates that it accesses a Web Service Data Control, as otherwise it will be hard to tell.

You use the following code to access the custom SOAP provider from Java in a managed bean:

http://xmlns.oracle.com/adfm/adapter/webservice

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

21

BindingContext bctx = BindingContext.getCurrent();

DataControl dc = bctx.findDataControl("PojoWsDC");

WSDataControl wsdc = (WSDataControl) dc.getDataProvider();

CustomSOAProvider customSoapProvider =

 (CustomSOAProvider) wsdc.getProvider();

If you are using JDeveloper 11.1.1.4 or later, because the SOAPProvider class is in an ADF internal

package, you need to be aware of the ADF internal Java class audit rule and how to switch it off:

http://blogs.oracle.com/jdevotnharvest/2011/03/internal_package_import_errors_and_how_to_switch_them_off.html

But why do you need to create a custom SOAPProvider extending the default provider?

The default SOAPProvider class has the handleRequest and handleResponse methods

defined as protected for security reasons. To make these methods available for the ViewController to use,

you need to expose them as public methods, which is what the custom SOAPProvider class primarily is for.

Note: I filed an ER for a public access to the SOAPProvider class.

Passing parameters to managed bean methods using EL

No, you cannot pass arguments to a managed bean method using Expression Language. But you can

work around this limitation. To make required arguments available to a managed bean method, you either

use in memory attributes, the ADF binding layer or a setter/getter method on a managed bean that sets

an internal variable.

Sample setup: The managed bean method onCallManagedBean used in the following is referenced

from a command button action property. The page also contains an ADF bound table that I use to access

the department name of the current selected row to pass it as an argument to the managed bean method.

Option 1: Call a managed bean method to set properties

In this use case, the managed bean itself has a property department defined, which value can be set through

a pair of setter/getter methods.

To pass the department name of the selected table row to the managed bean in the sample below, I

created an attribute binding for DepartmentName.

Then, in an af:setPropertyListener, I referenced the department name attribute binding using

Expression Language, to pass its value to the managed bean property department. The department

property is a private variable in the managed bean that is exposed by a public setter/getter method pair.

http://blogs.oracle.com/jdevotnharvest/2011/03/internal_package_import_errors_and_how_to_switch_them_off.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

22

The managed bean code is shown below:

 String department = "";

public DepartmentsBean() {}

public String onCallManagedBean() {

 System.out.println("The Department Name is "+department);

 return null;

}

public void setDepartment(String department) {

 this.department = department;

}

public String getDepartment() {

 return department;

}

Option 2: Use memory attributes to pass arguments to a managed bean

Option 2 is similar to Option 1, except for that it does not use a property in the managed bean to hold the

argument required by the invoked method, but a memory attribute.

The recommendation when using memory attributes is to go with the shortest scope so that whatever

data is stored in memory gets cleared out at earliest opportunity. In the use case of passing an argument to

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

23

a managed bean method, request scope is good enough to use. For most of the requirements for passing

data in ADF Faces, you don't need to go larger than request scope or view scope.

(!) Note that the prefix "requestScope" is only needed when writing directly into a memory scope. If you

access a managed bean in the same scope then this prefix should not be used. Managed beans are only

referenced with a scope prefix if they are defined in backingBeanScope, viewScope or pageFlowScope as

these are custom ADFc scopes. For servlet scopes like request, session and application, using a prefix will

cause NPE for when you access a managed bean that hasn't been instantiated before. So for all regular

servlet scopes, don't use a prefix when accessing managed beans.

When clicking the command button, the department name that is read from the binding layer is copied

into the departmentNameTmpmemory attribute. To access this property in a managed bean, assuming you

use ADF, the ADFContext object is used.

 public String onCallManagedBean() {

 String department = "";

 ADFContext adfContext = ADFContext.getCurrent();

 Map requestScope = adfContext.getRequestScope();

 department = (String) requestScope.get("departmentNameTmp");

 System.out.println("The Department Name is "+department);

 return null;

 }

If you are not in an ADF environment, then the request scope Map is accessible from the

FacesContext | ExternalContext in JavaServer Faces

Option 3: Access the ADF binding layer to obtain the required information

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

24

If the data used by the managed bean method comes from the ADF binding, as in this sample, then you

can also directly access the binding layer without copying the values temporarily somewhere else. The two

option explained earlier are good to use if the arguments to be passed to a managed bean method don't

come from the binding layer but from somewhere else.

 public String onCallManagedBean() {

 String department = "";

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 AttributeBinding departmentNameBinding =

 (AttributeBinding) bindings.get("DepartmentName");

 department = (String) departmentNameBinding.getInputValue();

 System.out.println("The Department Name is "+department);

 return null;

 }

The managed bean code accesses the ADF binding layer through the BindingContext class that is a

runtime representation of the DataBindings.cpx file. It looks up the current binding container to

access the value binding defined for the DepartmentName.

In summary: Expression Language in JavaServer Faces 1.2 does not support passing arguments to

methods in a managed bean. Not a big deal though as you can pass the required information using

memory attributes, managed bean properties of the ADF binding layer.

How-to switch the application locale at runtime

The application user language is set by the local browser language settings. Both, ADF and JavaServer

Faces look up the local browser settings to find translated source strings.

To learn how to handle internationalization in ADF, read chapter 21 of the Oracle Fusion Middleware

Web User Interface Developer's Guide for Oracle Application Development Framework. This chapter

also contains information about how to change the language at runtime, overriding the locale definition

read from the user browser setting.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_global.htm#CIHIJJDG

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_global.htm#CIHIJJDG

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

25

How-to invoke the ADF select event from Java

This question truly is an evergreen! When you create an ADF table or tree, Oracle JDeveloper generates

an expression similar to #{bindings.treeBindingName.makeCurrent} for the component

SelectionListener property.

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_table.html

To override one of the default listener settings, preserving its functionality, you can call the default ADF

expression from Java, as shown below

public void handleTableSelection(SelectionEvent selectEvent){

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 ExpressionFactory expressionFactory =

 fctx.getApplication().getExpressionFactory();

 MethodExpression methodExpression = null;

 methodExpression = expressionFactory.createMethodExpression (

 elctx,

 "#{bindings.treeBindingName.makeCurrent}",

 Object.class,

 new Class[]{SelectionEvent.class});

 methodExpression.invoke(elctx, new Object[]{selectEvent});

}

Similar code can be used for all sorts of component events, for example the table query listener, that are

pre-configured in ADF.

For the table selection listener use case, you can also write a generic solution that does not contain the

expression string in it. An example for a generic table listener is documented as sample #23 on ADF

Code Corner:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/23-generic-table-selection-listener-

169162.pdf

A generic listener has no dependency to the binding layer, making it suitable for reusable in a shared

library. Though writing a generic listener is more work (and not always possible) investigating into it may

produce an advantage because of increased reuse.

Another example of the table select use case, which uses the ADFUtils library for simplified EL access is

documented here:

http://www.adftips.com/2010/11/adf-ui-selectionlistener-example-for.html

ADF Security authentication providers

ADF Security delegates authentication to the Java EE container, which in Oracle Fusion Middleware is

Oracle WebLogic Server. At design time however, you use jazn-data.xml in ADF Security to create

users and user groups for testing. At runtime in Oracle JDeveloper, the users and groups are deployed to

the integrated WebLogic Server and configured in the integrated LDAP provider.

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_table.html
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/23-generic-table-selection-listener-169162.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/23-generic-table-selection-listener-169162.pdf
http://www.adftips.com/2010/11/adf-ui-selectionlistener-example-for.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

26

In a production environment however, you may want to configure authentication to be checked against a

3rd party LDAP server, the database or SAML. WebLogic Server authentication can be configured to use

one or many of the authentication providers listed below

 Oracle Internet Directory

 Oracle Virtual Directory

 iPlanet

 Active Directory

 Open LDAP

 Novell

 generic LDAP

 RDBM SQL

 WebLogic Server integrated LDAP

 Windows NT

 SAML

In addition, if you don't find the identity provider of your choice in this list, you can write a custom JAAS

Login Module and configure it as an authentication provider in WebLogic Server.

So in summary, while at design time, ADF Security authenticates against the integrated LDAP server in

WebLogic Server using users and groups defined in the application jazn-data.xml file, at runtime you

can use a variety of LDAP servers, RDBMS and other identity management systems to hold enterprise

users and groups.

To learn more about authentication providers in WebLogic Server and how to configure them, see the

"Configuring Authentication Providers" chapter, which is part of the Oracle FMW documentation library

on OTN

http://download.oracle.com/docs/cd/E17904_01/web.1111/e13707/atn.htm

ADF tree binding vs. table binding

In Oracle JDeveloper 11g, the ADF Faces tree, tree table and table components are bound to the ADF

tree binding in the pageDef file. Looking at the choice of ADF bindings there also exists a specific table

binding, leading to the question of what this is good for and why it is not used for binding tables. Since

Oracle JDeveloper 11g, the tree, tree table and table components are bound to the ADF tree binding, or,

at runtime, to the FacesCtrlHierBinding class. In Oracle JDeveloper releases before 11g, the table

used a specific table binding, which still exists for backward compatibility reasons. The bottom line is that

the table binding in Oracle JDeveloper 11g is a legacy binding that you should not use outside of migrated

ADF 10.1.x style applications.

http://download.oracle.com/docs/cd/E17904_01/web.1111/e13707/atn.htm

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

27

Using af:resource tag in page fragments

The af:resource tag is an ADF Faces tag that allows developers to add or reference JavaScript and

CSS resources from a page. Given that ADF Faces uses the skinning framework for applying CSS, the use

of the af:resource tag to reference or add JavaScript is more common.

The tag documentation mistakenly states that the af:resource tag should be a direct child of the

af:document tag, which excluded its use in page fragments, which appeared limiting for developers

that use JavaScript in ADF regions. So far the recommendation was to use the trh:script tag instead,

which then added another tag library dependency to the project.

So the official stance thus is that you can use af:resource in page fragments as well. The JavaScript

sources then load when the page fragment loads.

Using multiple Data Controls in ADF applications?

Especially when working with ADF Business Components you may only a single Data Control being used

when working within an application. Because the ADF Business Components Data Control is used a lot

in written collateral, guided how-to and samples, as well as video recordings, it neglects the fact that you

can of course work with multiple Data Controls in an ADF application.

There is no restriction other than developer wisdom in the number of Data Controls to use within a

project. Data Controls can also be of different types and, if needed be used to pass data from one

business service to another based on user interaction. If you need to look up and access a Data Control

from Java, you can do so by calling BindingContext.getCurrent() to obtain a handle to the

runtime object that represents the DataBindings.cpx design time file. On the binding context you

then call findDataControl(String)to access the data control, where the "String" argument is the

ID the data control has in the DataBinings.cpx configuration.

When creating new bindings declaratively in the PageDef file of a page or a view, you can select from a list

of available Data Controls defined in the DataBinings.cpx file.

Note however, that not all Data Controls need to be defined in the DataBinings.cpx file, as they can

also be imported as part of an ADF Library.

Creating localized static list of values

Using ADF Business Components and model drivel list-of-values, it is easy to create localized static list of

values. In the example below, the LocationId attribute is populated by a list of values that by default

shows English labels.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

28

Changing the browser locale from English to German and re-running the page …

Then shows the same list of values with German labels, which you can tell easily by the Chinese capital

city name being "Beijing" in English, while in German it is "Peking".

The list-of-values in this sample is created as a static View Object. To create the view object, choose New

from the context menu while pointing to the ADF BC model project.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

29

Select the ADF Business Components node and choose View Object. Press Ok.

In the Create View Object dialog, define a name for the view object and select the Rows populated at

design time (Static List) option.

Define at least two attributes, one for the list value and one for the display label.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

30

For each attribute, define the attribute data type and, important (!), ensure one of the attributes has the

Key Attribute select box checked.

In the next dialog, provide the static data values for the view object attributes.

When you are done with the data edits, finish the dialog for Oracle JDeveloper to produce the view

object. Note that the view object does not need to be part of an Application Module if you only want to

use it as a data source for a list of values.

As part of the view object creation, a ".properties" file is created that contains the static values you

defined for the view object attributes. To create a translation, copy the ModelBundle.properties file

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

31

content and create a new file in the same directory that you name ModelBundle_<lang>.properties, for

example: ModelBundle_de.properties.

Note: you can always add more static data. In this case however, you only copy and paste the new values

and labels to the localization files.

Open the View Object editor for the view object that should have the localized list of values assigned.

Select the Attributes category, choose an attribute and press green plus icon next to the List of Values

header.

Next to the List Data Source select list in the Create List Value dialog, press the New button to bring

up the View Accessors dialog. Select the static View Object instance and click Ok to close the dialog.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

32

Back in the Create List of Values dialog, you select the List Attribute, which is the attribute that should

be used to update the target view object. Click on the UI hints tab to select the other attribute of your

static View Object to show as the list label. You don't need to change anything else because the default list

of values component setting is the select one choice.

Open the faces-config.xml file in the ViewController project and select the Application category.

Here, edit the default locale, as well as any additional Supported Locale. In this sample, German (de-de)

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

33

is added as a supported locale, which means that all users see the English version except for those that

have their browsers configured with the German locale.

Using parameterized translation strings in ADF Faces

To define translatable labels and messages in ADF Faces that don't reference the ADF binding layer to

obtain the translated string values from the model, you use a resource bundle in the view layer project.

For example, to create a translatable title string for a Panel Header component with parameterized

values, as shown below, …

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

34

… you do as follows:

Select the component's message property, like Text in the Panel Collection sample. From the context

menu, select the Select Text Resource option.

In the Select Text Resource dialog, start typing the message that you want to show as the translated

component string. It automatically derives unique key from the entry, which then is used later to identify

the string for re-use on other pages.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

35

If your message needs to include dynamic data, add positional parameters in the form of {n}, like {0} in

the sample string shown above.

The expression references a page variable viewControllerBundle, which is added to the page the first

time you create or reference a resource bundle string.

<c:set var="viewcontrollerBundle"

 value="#{adfBundle['adf.sample.adfbc.view.ViewControllerBundle']}"/>

The EL string referencing this bundle looks similar to:

#{viewcontrollerBundle.THE_LIST_BELOW_SHOWS_EMPLOYEES}

If the translated message only contains static data, then following the declarative approach would be all

you need to do.

In the example however, the Panel Header component title should also display the department name,

which changes when a user navigates the list of departments. So this information needs to be passed in

dynamically, which is what the {0} parameter is for.

To pass positional parameter values to the translation text defined in a message bundle, regular JavaServer

Faces components use nested child f:param tags. ADF Faces however doesn't support the f:param

tag as a component child and instead uses special EL expressions, af:format, af:format2.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

36

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/toc.htm

The numeric suffix e.g. in af:format2, af:format3 indicate the number of parameters to be passed

into the message. The tag usage pattern is that the first argument indicates the message key.

Other arguments are added separated by commas and provide the values for positional or named message

parameters.

In the example, to make the Panel Header component refresh when users navigate the department list,

the PartialTriggers property of it needs to be configured to point to the navigation buttons.

After finding and selecting the command buttons and pressing OK, the PartialTriggers property is setup

for the sample to work.

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/toc.htm

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

37

What's left is to create translated copies of the resource bundle file that Oracle JDeveloper created. The

bundle file is in a Properties format by default, but can be changed to Java or XLIFF formats. The image

below shows a German version of the original bundle.

The faces-config.xml JavaServer Faces configuration to support multiple application languages is

explained in the previous section "Creating localized static list of values" and, therefore, is missing in this

section.

Read more about internationalization of ADF Faces applications in chapter 21 " Internationalizing and

Localizing Pages" of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle

Application Development Framework

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_global.htm#CHDGCAFI

Note: If internationalization is you concern, I recommend chapter 18 of the "Oracle Fusion Developer

Guide - Building Rich Internet Applications with Oracle ADF Business Components and Oracle ADF

Faces" book published by McGraw Hill http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

Also note: When writing this OTN Harvest entry, I recognized two product issues that I filed bugs for:

 A documentation bug to better document the af:format tags

 An IDE rendering issue in the visual editor when the af:format tag is added

Integrating ADF and Servlets

Back to his technical roots, Duncan Mills found time again for blogging. In his first post he documents a

sample of how to share the ADF context with a Servlet.

http://blogs.oracle.com/groundside/2011/04/integrating_adf_and_servlets.html

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_global.htm#CHDGCAFI
http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543
http://blogs.oracle.com/groundside/2011/04/integrating_adf_and_servlets.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2011

38

The idea is to make ADF application resources accessible to a servlet, which though not being a page, can

have access to the Data Control and the Oracle ADF binding if you know how.

"This code demonstrates how a Servlet within an application can share the same data control context (frame) as the

underlying UI pages and Task Flows within that application. This approach is useful when you are creating integrated

applications where servlets are leveraged to add functionality to the application such as AJAX calls or email generation."

As Duncan mentions in his blog, the question also came up a while ago on the OTN forum, though in a

different context. For those who are only interested in how the ADF integration works for Servlets, here's

a brief summary

 You manually edit the DataBindings.cpx file and map the Servlet path to the same pageDef

as the required ADF content

 You then edit the web.xml file to register the Servlet with the ADF Binding filter

 The "calling" page (or taskflow) will temporarily store the current Data Control Frame name on

the session

 The Servlet retrieves the data control frame name and use that to access the binding that is

required in the correct context

To download Duncan's sample, follow the link below and authenticate with your OTN account.

https://www.samplecode.oracle.com/tracker/tracking/linkid/prpl1004/remcurreport/true/template/Vie

wIssue.vm/id/S734/nbrresults/13

RELATED DOCOMENTATION

https://www.samplecode.oracle.com/tracker/tracking/linkid/prpl1004/remcurreport/true/template/ViewIssue.vm/id/S734/nbrresults/13
https://www.samplecode.oracle.com/tracker/tracking/linkid/prpl1004/remcurreport/true/template/ViewIssue.vm/id/S734/nbrresults/13

