

 ADF Code Corner

Oracle JDeveloper OTN Harvest 08 / 2011

Abstract:

The Oracle JDeveloper forum is in the Top 5 of the most

active forums on the Oracle Technology Network (OTN).

The number of questions and answers published on the

forum is steadily increasing with the growing interest in

and adoption of the Oracle Application Development

Framework (ADF).

The ADF Code Corner "Oracle JDeveloper OTN Harvest"

series is a monthly summary of selected topics posted on

the OTN Oracle JDeveloper forum. It is an effort to turn

knowledge exchange into an interesting read for

developers who enjoy harvesting little nuggets of wisdom.

twitter.com/adfcodecorner http://blogs.oracle.com/jdevotnharvest/

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
30-August-2011

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

2

August 2011 Issue – Table of Contents

New OTN Harvest Feature: OTN Harvest Spotlight 3

How to learn and where to start learning ADF 3

Disabling keyboard input on af:inputDate ... 3

Technology Scope in 11g R1 vs. Features in 11g R2 4

How to tell which JDeveloper extensions are installed 5

row.attributeName vs. row.bindings.attributeName 7

Suggested skin editor workflow .. 7

Integrated Skin Editor ... 7

Stand-alone Skin Editor .. 8

Stretching af:inputComboboxListOfValues lists in a table 9

Getting database connect information in ADF 12

Highlighting new and uncommitted data changes in a table 13

Reading UI component settings from a properties file 14

Disabling the browser form auto-complete 17

Optimized Groovy data access to view objects 18

ADF Faces web crawler support... 18

How-to hide or show components in printable pages........................ 20

Drag-and-drop: Getting Started .. 22

OTN Harvest Spotlight - Chris Muir .. 23

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

Oracle ADF Code Corner OTN Harvest is a monthly blog series that publishes how-to tips
and information around Oracle JDeveloper and Oracle ADF.

Disclaimer: ADF Code Corner OTN Harvest is a blogging effort according to the Oracle
blogging policies. It is not an official Oracle publication. All samples and code snippets are
provided "as is" with no guarantee for future upgrades or error correction. No support can be
given through Oracle customer support.

If you have questions, please post them to the Oracle OTN JDeveloper forum:
http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

3

New OTN Harvest Feature: OTN Harvest Spotlight
The ADF community is growing at an exponential rate. New developers joining the community will find

that they are joining a family of like-minded ADF practitioners, many whom personally know each other

and are motivated to help others where they can. To make it easier for new developers to find their way

around the ADF community, a new feature column, the OTN Harvest Spotlight starts this month.

The OTN Harvest Spotlight introduces members of the ADF community, allowing us all to learn about

individuals in the community, their company background, experiences, tips, tricks and the motivation

behind their work in the ADF community.

While the intention is not to focus on the most prominent community members, the first featured column

spotlights Chris Muir, Oracle ACE director and the founder and driving force behind the ADF Enterprise

Methodology Group (EMG). Read about Chris Muir in the first OTN Harvest Spotlight published at the

end of this issue.

How to learn and where to start learning ADF

A frequent question on the OTN forum for Oracle JDeveloper and ADF is "how do I learn ADF". Shay

Shmeltzer from the Oracle Product Management team did publish a comprehensive summary on his blog

in 2010, which you can read from

http://blogs.oracle.com/shay/entry/how_do_i_start_learning_oracle_adf_and_jdeveloper

Disabling keyboard input on af:inputDate

Setting the ReadOnly property on an af:inputDate component to true does not only make the input

field read-only but also hides the calendar icon.

If the use case is to force users to always select an input date from the popup calendar and to prevent

keyboard input, as show in the image above, you can use a JavaScript based solution as shown below:

<af:resource>

 function disableEntry(evt){

 evt.cancel();

 }

 </af:resource>

…

http://blogs.oracle.com/shay/entry/how_do_i_start_learning_oracle_adf_and_jdeveloper

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

4

<af:inputDate label="Label 1" id="id1" readOnly="false"

 contentStyle="background-color:lightgray;">

 <af:clientListener method="disableEntry" type="keyDown"/>

</af:inputDate>

The contentStyle attribute sets the af:inputDate field background color to light gray to indicate a

read-only field.

Note: If the read-only setting is for all instances af:inputDate then, instead if using the contentStyle

attribute, you use skinning af|inputDate::content{background-color:lightgray;}

Technology Scope in 11g R1 vs. Features in 11g R2

The Technology Scope feature of Oracle JDeveloper 11g R1 has been renamed and restructured to

Features in Oracle JDeveloper 11g R2. In Oracle JDeveloper 11g R1 (11.1.1.x), the Technology Scope

settings of a project determines the library and project configuration. You access the Technology Scope

setting with a mouse double click on the project node, or by choosing Project Properties in the right

mouse context menu of a project.

You use the Technology Scope to select ADF or Java EE technologies for a project. Oracle JDeveloper

makes sure that the required JAR files are added to the project class path and meta-data components, for

example, web.xml or adfc-config.xml, are created and added to the project.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

5

In Oracle JDeveloper 11g R2 (11.1.2.x), the Technology Scope feature has been renamed and restructured

to Features. The functionality is the same, and the access path similar: You access the Features setting

with a mouse double click on the project node, or by choosing Project Properties in the right mouse

context menu of a project. To change the Features configuration, you need to click the green plus icon,

which then shows a dialog similar to the one in Oracle JDeveloper 11g R1.

How to tell which JDeveloper extensions are installed

In Oracle JDeveloper 11g R1 (11.1.1.x), extensions can be added, which you usually do with Help |

Check for Updates, viewed and disabled, which you do by selecting Tools | Preferences | Extensions

from the Oracle JDeveloper menu menu.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

6

For example, you may want to disable extensions for technologies you don't use in your application

development to improve the IDE performance after a re-start.

In Oracle JDeveloper 11g R2, the extensions view has been moved and renamed. You now find them in

the Tools | Features menu

Note that in Oracle JDeveloper 11g R2, extensions are loaded lazily, which means that you don't get the

same IDE performance benefit from disabling extensions.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

7

row.attributeName vs. row.bindings.attributeName

ADF uses two different types of EL to reference the binding layer in af:tree, af:treeTable and

af:table components. For example, if a table is read-only, using af:outputText to render the table

column values, the cell values are referenced as #{row.attributeName}. For editable tables, the EL is

#{row.bindings.attributeName.inputValue}. Using #{row.attributeName}, the value object is read-only

and of type String, whereas Using #{row.bindings.attributeName.inputValue}, the object is updateable

and of type FacesCtrlAttrsBinding, an internal class that extends JUCtrlAttrsBinding,

which implements AttributeBinding. So whenever table cell values are updateable, or if other

attribute information should be accessed, the EL used is #{row.bindings.attributeName.inputValue}.

Another example is #{node.attributeName}, which is used as a value reference in read-only tree

components. "node" and "row" are EL variables defined on the tree or table component variable

property.

Suggested skin editor workflow

Following the work flow outlined below helps you to create a custom skin for your AD Faces application

using the integrated or stand alone skin editor.

Integrated Skin Editor

The integrated skin editor is good to use for projects that are migrated or newly created in Oracle

JDeveloper 11g R2.

1. Create a skin project. Skins are reusable components and as such should be created in their own

project or workspace.

2. Create a new skin by extending an existing skin. Oracle ADF Faces provides simplified default

skins, like fusionFx-simple-v2.desktop, that are specifically designed to be extended by custom skins.

Note that Fx-simple-v2 is not available for releases before Oracle JDeveloper 11g R2. If you are on

an 11.1.1.x version of Oracle JDeveloper, use the stand-alone editor. The stand-alone editor helps

with which default skins are available for the target version you build the skin for.

3. Analyze the application for the components to skin. Identify the components in a page that you

want to skin and map them to skin selectors using the ADF Faces skin editor.

4. Identify global alias selectors to skin first. Alias selectors are the 20% of work that color 80% of

the components in an application.

5. Define custom :alias definitions: Custom :alias definitions simplify maintenance of style definitions

used on multiple components. Custom :alias definitions are applied using the –tr-rule-ref selector,

6. Generate images and icons. Use the ADF Faces skin editor to generate custom colored versions of

ADF Faces component images and icons.

7. Edit the skin CSS file using the skin editor. Use the skin editor to discover skin selectors for the

components and behavior you want to skin and apply the changes using the Properties Inspector.

8. Deploy the skin in an ADF library. Skins can and should be reused. For this, create an ADF library

deployment profile from the skin project and deploy the skin in a JAR file.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

8

9. Frequently test your custom skin in a browser. Reference the skin JAR file from the

ViewController project of the target application. Set the custom skin family name in the skin-family

element of the target application trinidad-config.xml file.

10. Deploy the skin as a shared library to WebLogic server. Optionally, if a custom skin is shared

across applications, deploy the skin ADF library JAR file as a shared library to Oracle WebLogic

server and edit the applications' weblogic-application.xml file to reference it.

Stand-alone Skin Editor

The stand-alone skin editor allows you to build custom skins for projects build with Oracle JDeveloper

11.1.2, 11.1.1.5 and 11.1.1.4. If you build sins for JDeveloper versions prior to 11.1.1.4, just make sure you

either don't extend an existing skin or extend one that exists in the target JDeveloper version. Note that

the FusionFx simple skin is not available for all version of JDeveloper.

You could extend the "fusion" skin instead, which however is more difficult to skin as it isn't reduced to

using global alias selectors as the simple skins do.

The work flow to follow for the stand alone editor is comparable to using the integrated editor

1. Create a skin project. Skins are reusable components and as such should be created in their own

project or workspace. Never open a JDeveloper 11.1.1.x project directly in the stand alone skin editor

as it is JDeveloper 11.1.2 based and thus will migrate the project to JDeveloper 11.1.2 and JSF 2.0.

2. Create a new skin by extending an existing skin. Oracle ADF Faces provides simplified default

skins, like fusionFx-simple-v2.desktop, that are specifically designed to be extended by custom skins.

When creating a new skin project, select the target version of Oracle JDeveloper you build the skin

for, which then automatically updates the list of available default skins for this platform.

3. Analyze the application for the components to skin. Identify the components in a page that you

want to skin and map them to skin selectors using the ADF Faces skin editor.

4. Identify global alias selectors to skin first. Alias selectors are the 20% of work that color 80% of

the components in an application.

5. Define custom :alias definitions: Custom :alias definitions simplify maintenance of style definitions

used on multiple components. Custom :alias definitions are applied using the –tr-rule-ref selector,

6. Generate images and icons. Use the ADF Faces skin editor to generate custom colored versions of

ADF Faces component images and icons.

7. Edit the skin CSS file using the skin editor. Use the skin editor to discover skin selectors for the

components and behavior you want to skin and apply the changes using the Properties Inspector.

8. Deploy the skin in an ADF library. Skins can and should be reused. For this, create an ADF library

deployment profile from the skin project and deploy the skin in a JAR file.

9. Frequently test your custom skin in a browser. Reference the skin JAR file from the

ViewController project of the target application. Set the custom skin family name in the skin-family

element of the target application trinidad-config.xml file.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

9

10. Deploy the skin as a shared library to WebLogic server. Optionally, if a custom skin is shared

across applications, deploy the skin ADF library JAR file as a shared library to Oracle WebLogic

server and edit the applications' weblogic-application.xml file to reference it.

Note: In its November / December 2011 edition, Oracle Magazine publishes an article where I

provide more information and hands-on related information for you to try.

Stretching af:inputComboboxListOfValues lists in a table

The default behavior of the af:inputComboboxListOfValues component select list is to

take the size of the column it updates when added to a table. At runtime, the list then shows like

in the image below

Note that in the image above, the af:inputComboboxListOfValues list is cropped to the

size of the table column the component resides in. If the list content doesn't fit into this view,

vertical and horizontal scrollbars are shown. Though this nicely aligns the list with the column, it

is not liked by everyone, which is why you may want to stretch the list to its maximum size so it

looks like in the image shown below

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

10

You achieve this stretching through 1) skinning and 2) an alternative option explained later in

this section.

1) Skinning

http://download.oracle.com/docs/cd/E21764_01/web.1111/b31973/af_skin.htm#BAJFEFCJ

The steps are as follows:

1. Create trinidad-skins.xml file in the WEB-INF directory of the CiewController project's

web folder (public-html). The trinidad-skins.xml configuration file is the skin registry in

ADF Faces and is not there by default. Oracle JDeveloper 11.1.1.x (11g R1) releases you

create this file manually. In JDeveloper 11.1.2 (11g R2) this file can be created for you

using the integrated skin editor (New | Web Tier | JSF | ADF skin)

<?xml version="1.0" encoding="ISO-8859-1"?>

<skins xmlns="http://myfaces.apache.org/trinidad/skin">

 <skin>

 <id>your-skin-name.desktop</id>

 <family> your-skin-name </family>

 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>

 <style-sheet-name>

 css/skins/ your-skin-name.css

 </style-sheet-name>

 <extends>fusion.desktop</extends>

 </skin>

</skins>

2. Configure trinidad-config.xml file to reference the custom skin name, "your-skin-name"

in the example above, in the <skin-family> name element. This is not required in Oracle

JDeveloper 11.1.2 if you use the skin editor to create the skin.

3. Create a CSS file, a text file with the extension CSS to contain the skin definition. The

location of the CSS file should be in a folder structure under public_html, e.g. css/skins

in this sample. Note that this is done for you in JDeveloper 11.1.2 using the integrated

skin editor.

Skins are used to change the look and feel of ADF Faces components but also to change the

behavior of some of the components.

http://download.oracle.com/docs/cd/E21764_01/web.1111/b31973/af_skin.htm#BAJFEFCJ

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

11

In this example, the inputComboboxListOfValues list should be stretched so all value are

visible without horizontal scrolling. Add the following selector to the CSS file

af|inputComboboxListOfValues{

 -tr-stretch-dropdown-table:true;

}

Note that you can also define how many values are displayed vertically before ascrollbar is

shown. By default this value is set to 19, but it can be changed like shown below

af|inputComboboxListOfValues{

 -tr-stretch-dropdown-table:true;

 -tr-dropdown-number-of-rows: 30;

}

If in addition you want to increase the vertical space for each row in the list, e.g. from 16 px

(default) to 25 px, you use

af|inputComboboxListOfValues{

 -tr-stretch-dropdown-table:true;

 -tr-dropdown-number-of-rows: 30;

 -tr-dropdown-row-height:25;

}

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

12

2) Alternative Solution:

Another option to show the af|inputComboboxListOfValues list extended is to use a default skin

family, or extend from a default skin family, with an "FX" in the name. For example, JDeveloper 11.1.1.4

ha the "fusionFX" skin that contains the settings explained above (only the stretchable behavior)

To choose this string, double click the ViewController project to bring up its property dialog. Select the

ADF View entry and in here select the "fusionFX" skin, or any other skin with "FX" in the name (later

versions of JDeveloper 11g R1 have more choice available). This will configure the fusionFX skin in the

skin-config.xml file.

Getting database connect information in ADF

To get the database connect information of an ADF BC model in ADF, expose the Java method below in

on the ApplicationModule Impl class.

public String getDatabaseInformation(){

 DBTransaction dbTransaction = (DBTransaction) this.getTransaction();

 //statement is only created, not send to the RDBMS

 PreparedStatement prepStatement =

 dbTransaction.createPreparedStatement("select * from dual", 0);

 try {

 String dbSchema =

 prepStatement.getConnection().getMetaData().getUserName();

 String connectURL =

 prepStatement.getConnection().getMetaData().getURL();

 //returns schema_name@host:port:sid

 return dbSchema + connectURL.substring(connectURL.indexOf("@")-1);

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return null;

 }

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

13

Expose this method on the AM client interface if you need this to be accessible from the ADF client, fro

example a method binding in a PageDef file or a managed bean.

Highlighting new and uncommitted data changes in a table

A common requirement is to visually indicate data rows in a table that have been changed but not yet

committed by users. The ADF Unleashed blog, run by the Oracle JDeveloper and ADF QA team, has a

clever solution for this, which I want to further explore here. The image below shows an ADF Faces table

with new rows created by the user (yellow background), as well as rows that contain uncommitted data

changes (orange background).

You would think that the code behind this is complex, which it is not as this can be achieved with a single

line of EL added to the InlineStyle property of the af:column component.

<af:table …>

 <af:column headerText="#{bindings.DepartmentsView11.hints.DepartmentId.label}" …

 inlineStyle="#{row.row.entities[0].entityState == 0?'background-color:yellow;' :

 row.row.entities[0].entityState == 2? 'background-color:orange' :' '}">

 <af:inputText value="…" … >

 …

 </af:inputText>

 </af:column

 <af:column headerText="#{bindings.DepartmentsView11.hints.DepartmentName.label}"

 inlineStyle="#{row.row.entities[0].entityState == 0?'background-color:yellow;' :

 row.row.entities[0].entityState == 2? 'background-color:orange' :' '}">

 <af:inputText value="…" … >

 …

 </af:inputText>

http://blogs.oracle.com/adf/
http://blogs.oracle.com/adf/entry/highlighting_new_rows_in_adf

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

14

 </af:column

 …

</table>

For the table to repaint upon row creation or data update, make sure you use partialSubmit=true on the

command component that created the new row, or submitted the data change, and that you set the table

PartialTriggers property to point to the command component Id value. If you use autoSubmit="true"

to submit data changes, then set the PartialTriggers property of the table to point to this component's id.

How to use skinning instead of the InlineStyle property? If you use skinning for coloring your

application, which also is what we recommend, you would need to change the code as shown next:

<af:column headerText="#{bindings.DepartmentsView11.hints.DepartmentName.label}"

 sytleClass="#{row.row.entities[0].entityState == 0?'backgrYellow' :

 row.row.entities[0].entityState == 2? 'backgrOrange' :''}">

 <af:inputText value="…" … >

 …

 </af:inputText>

 </af:column

The skin definition file (CSS) would then have an entry like this

---- START CSS file content ----

 .backgrYellow{background-color:yellow}

 .backgrOrange{background-color:orange}

---- END CSS file content ----

Or, if, for better readability, you prefer keeping color settings with the components in the ADF skin file,

you could use

---- START CSS file content ----

 af|column::data-cell.backgrYellow {background-color:yellow}

 af|column::data-cell.backgrOrange{background-color:orange}

---- END CSS file content ----

Reading UI component settings from a properties file

I never question a use case if it allows me to show new tricks in Oracle ADF – so for this one only focus

on the solution to the problem reported on OTN.

The question on OTN was if it is possible to define the minimum and maximum attribute values of an

af:inputNumberSlider from a properties file or resource bundle. Properties files return strings,

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

15

while the input slider settings expect a numeric value. A solution to the problem is to write a managed

bean that exposes setter/getter methods for the minimum and maximum attribute to reference using EL.

The getter methods then could be used to lookup the resource bundle and read and convert the values for

the slider to use. This however seems to be more code than needed and instead a generic managed bean

could be used that just does the transformation for the two.

Managed beans can be created from java.util.HashMap or classes that extend HashMap. In the

latter case, overriding the HashMap get(key) method allows you to take the key as an input

parameter but to treat it as a string value that should be transformed into a numeric value.

public class NumberFormatter extends HashMap {

 @SuppressWarnings("compatibility:7833863967783853944")

 private static final long serialVersionUID = 1L;

 @Override

 public Object get(Object key) {

 String strValue = (String) key;

 try {

 Long value = Long.parseLong(strValue);

 return value;

 } catch (NumberFormatException e) {

 e.printStackTrace();

 }

 return new Long(0);

 }

}

This class needs to be configured as a managed bean in a scope no longer than request (as it doesn't keep

state and also is not used on all pages, which would justify a long scope to be used). You configure the

bean in the task flow definition file that contains the page or page fragment referencing it.

In this example, the managed bean name is chosen to be formatLong.

You create the properties file the easiest by selecting the label property of the input number slider

component, unless you already have one created. Just select Select Text Resource from the context

menu that opens when clicking the arrow icon next to the label attribute.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

16

Create a key entry for the properties file as shown below:

This will automatically create a properties file if it doesn't exist yet. Open the properties file, which is

located in the default package structure of the ViewController project, in JDeveloper and, for example,

add the following keys:

NumberSlider_MAX = 55

NumberSlider_MIN = 5

Save the properties file and reference these keys from the af:inputNumberSlider configuration on

the page, as shown below:

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

17

<af:inputNumberSlider label="#{viewcontrollerBundle.SELECT_A_VALUE}" id="ins1"

 maximum="#{formatLong[viewcontrollerBundle.NumberSlider_MAX]}"

 minimum="#{formatLong[viewcontrollerBundle.NumberSlider_MIN]}"

 minimumIncrement="5" majorIncrement="20"

 minorIncrement="-10"/>

</af:form>

At runtime the slider shows the values specified in the resource bundle as shown in the image below.

Note the use of the formatLong managed bean reference, which, as an argument takes the resource

properties access to the MIN and MAX keys defined in the resource bundle. The nice thing with this

solution is that it is generic for numeric value conversion of String to Long.

Disabling the browser form auto-complete

As often, somebody's heaven is another one's hell. The browser auto-complete functionality is one

example for this.

In Oracle ADF Faces, there is no property that switches auto complete-off for input field components or

the af:form component. Thanks to the ADF Faces client side architecture switching off this browser

functionality is easy to achieve:

<af:form>

 …

 <af:clientListener type="mouseOver"

 method="suppressAutoComplete"/>

</af:form>

The mouse over event is issued one time when you enter a form. Given that you can only have a single

form on a page, this means it fires one time for the page.

The JavaScript function referenced by the af:clientListener element is shown below

function suppressAutoComplete(evt){

 var domElement =

 AdfRichUIPeer.getDomContentElementForComponent(evt.getSource());

 domElement.setAttribute("autocomplete", "off");

 }

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

18

If you put this into a JS library that you reference from the af:resource tag then all you need to

remember is add the af:clientListener tag to the af:form tag.

Optimized Groovy data access to view objects

In a recent ADF Insider Essentials recording about model driven LOV switching in Oracle ADF Business

Components (see ADF BC Model Driven LOV Switcher recording) I used a Groovy string to populate a

transient attribute with content from another view object. For this I exposed a public method on the

lookup view object, which, though it works, may not be the only and probably not the best way to do it.

Grant Ronald from the PM team felt inspired to investigate in better practice for this part of the sample

and came up with a good one for dependent view objects. Grant blogged about his findings under the title

of "Using Groovy to read values from a different view object" at:

http://blogs.oracle.com/grantronald/entry/using_groovy_to_read_values

In the ADF Insider example, a view object for orders, S_ORD, accessed another view object holding

values for payment types, S_PAYMENT_TYPES. Instead of using a public method, which may be okay

if the view objects aren't related, Grant created and used an Accessor between the two view object, as in

fact the ID column of the S_PAYMENT_TYPES table is referenced as a foreign key in the S_ORD table.

Grant explains his finding by the EMPLOYEES and JOBS table of the HR schema. Here's what Grant

wrote and explained about his approach:

"Lets assume, that when you create a new employee their default role is AC_MGR (account manager) and their default

salary should be the minimun salary for an accout manager. In this case, we'll actually read the minimum salary into the

EmployeesVO.Salary field from the JobsVO.Min_Salary field.

1. First create default ADF BC based on Employees and Jobs

2. In the EmployeesVO add a view accessor to JobsVO (and call it JobsView). This "links up" the

EmployeesVO to the JobsVO

3. Set the default EmployeesVO.JobId to AC_MGR

4. Set the default EmployeesVO.Salary to JobsView.findByKey(key(JobId),1)[0].MinSalary

So what does this Groovy expression do? It "walks" to the JobsVO using the JobsView accessor and then calls findByKey

using the JobId. This returns an array and since we know JobId is unique we can just get the first entry's MinSalary."

In summary: to err' is human, not to learn from it is worse practice. We are not going to re-record the

sample published on ADF Insider, but like you to consider Grant's solution for dependent view objects.

Another solution could be to create a View Object that combines data from the S_ORD table and the

S_PAYMENT_TYPES table, in which case no Groovy is required at all. However, it is interesting to see

what Groovy can do for you in a single line of code.

ADF Faces web crawler support

Web crawler support, also known as search engine optimization (SEO), has been added to ADF Faces in

Oracle JDeveloper 11.1.1.5 (PS4) and Oracle JDeveloper 11g R2 (11.1.2).

http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/ADF_Insider_Essentials/lov-switcher/lov-switcher.html
http://blogs.oracle.com/grantronald/entry/using_groovy_to_read_values

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

19

"Search engine optimization (SEO) is the process of improving the visibility of a website or a web page in search engines via

the "natural" or un-paid ("organic" or "algorithmic") search results."

- Wikipedia, http://en.wikipedia.org/wiki/Search_engine_optimization

The difference between ADF Faces pages queried by a user and a web crawler is that the agent is different

in that browsers know how to render and display dynamic JavaScript, whereas a crawler cannot.

To index a page, crawlers need static links pointing to wherever site navigation goes to next. In addition,

the ADF Faces window and controller token prevented pages from being indexed successfully. This has

been fixed for Oracle JDeveloper 11.1.1.5 and 11.1.2 The documentation for this new feature is in the

Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development

Framework for the two releases:

http://st-doc.us.oracle.com/review/rsb/html/B31973_09/ad_output.htm#CHDEIGJB (11.1.1.5)

http://download.oracle.com/docs/cd/E16162_01/web.1112/e16181/ad_output.htm#CHDEIGJB (11.1.2)

As documented, you can also use EL to "tune" pages for web indexing. A documentated sample shows

how to enrich an ADF Faces page with a "goLink" to indicate navigation to another site.

<c:if test="#{requestContext.agent.type == 'webcrawler'}">

 <af:goLink text="This Link is rendered only for web crawlers"

 destination="http://www.newPage.com"/>

</c:if>

Note that there is nothing developers need to configure or do for the search engine optimization to work.

The image below shows what browsers display when running the Oracle Fusion Order Demo in Oracle

JDeveloper 11.1.2.

http://st-doc.us.oracle.com/review/rsb/html/B31973_09/ad_output.htm#CHDEIGJB
http://download.oracle.com/docs/cd/E16162_01/web.1112/e16181/ad_output.htm#CHDEIGJB

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

20

The image next is created from a screen print produced with the Lynx tool which is part of the Cygwin

software you can download from http://cygwin.com/ . Configuring the Lynx user agent header property

as "Mozilla/5.0 (compatible; Googlebot/2.1) " makes the tool simulating access through the Google web

crawler (http://www.google.com/bot.html).

The content shown in the image above is not the only information web crawlers have available as they

also have access to the response headers and the page markup, so they understand what links are. What

they don't see is the JavaScript used and the CSS.

Note Though the Cygwin tool is good for testing, it does not replace a real test. If there is content shown

in Cygwin Lynx that you don't expect or expect differently for your application, please verify otherwise

first before reporting bugs. Keep in mind that ADF Faces supports search engines, not their simulation

tools.

How-to hide or show components in printable pages

 Not all web pages are suitable for printing, which means they contain components that either should not

print, print different or should be replaces by other content. ADF Faces allows you to print pages using

the af:showPrintableBehavior tag, which you add as a child to a command component.

http://download.oracle.com/docs/cd/E21764_01/apirefs.1111/e12419/tagdoc/af_showPrintablePageBehavior.html

http://cygwin.com/
http://www.google.com/bot.html
http://download.oracle.com/docs/cd/E21764_01/apirefs.1111/e12419/tagdoc/af_showPrintablePageBehavior.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

21

For example, the image below shows a table with 10 columns of the Employees table of the Oracle HR

schema.

The printable page however should only have 5 columns in the print, as shown in the image below:

The ADF Faces context object exposes an outputMode property that you can use to determine whether

or not a page is rendered in printable mode.

In the example, the following EL is used on the Rendered properties of the columns that should be

hidden in printable pages:

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

22

<af:column sortProperty="PhoneNumber" sortable="false"

 headerText="…" id="c5"

 rendered="#{adfFacesContext.outputMode != 'printable'}">

 <af:outputText value="…" id="ot11"/>

</af:column>

Similar, components can be added to the printable page. An af:switcher component could be used to

change complete sections of a page for the printable output.

See also:

http://download.oracle.com/docs/cd/E16162_01/web.1112/e16181/ad_output.htm#CHDIDBAB

Drag-and-drop: Getting Started

Drag and drop is a framework feature in ADF Faces that allows developers to identify components as a

drag source and other components as a drop target. The framework then notifies a drop handler, or in the

case of an attribute drag and drop use case, updates the attribute

For JDeveloper 11g R2, a tutorial helps you to get started with drag and drop. The tutorial explains the

use cases in which a drag and drop operation updates the component input value and where the drop

operation invokes a drop event that developers then listen for to perform more complex operations in

response to the drag and drop action.

Developing drag and drop into ADF Faces UIs hasn't changed between R1 and R2 of Oracle JDeveloper

11g, so you can also try this with JDeveloper 11.1.1.x releases. If you use JDeveloper 11g R1 to walk

through this tutorial, then you cannot use annotations in a POJO to mark it as a managed bean. In this

case, and when using the ADF Controller task flow, you need to create the managed bean in faces-

config.xml or the unbounded or bounded task flow definition.

http://download.oracle.com/docs/cd/E18941_01/tutorials/jdtut_11r2_41/jdtut_11r2_41.html

http://download.oracle.com/docs/cd/E16162_01/web.1112/e16181/ad_output.htm#CHDIDBAB
http://download.oracle.com/docs/cd/E18941_01/tutorials/jdtut_11r2_41/jdtut_11r2_41.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

23

ADF Code Corner

OTN Harvest Spotlight
- Chris Muir

Chris Muir is an Oracle ACE Director, the founder of the ADF Enterprise

Methodology Group (EMG)1 and an ADF technical lead for SAGE Computing

Services in Perth Western Australia.

"The ADF EMG is where ADF users get down and dirty in discussing their FMW

experiences." – Chris Muir

ACC: What is your current role?

CM: ADF technical architect, consultant and trainer for SAGE Computing Services in Perth

Western Australia

ACC: What is your IT background?

CM: Phew, let's try and summarize 16 years in computing: I started my career as a C++ coder so

many years ago working on real-time SCADA based systems for trains.

Like a lot of IT development I learned a lot as a graduate out of university, but also like a lot of

IT development the project was canned after 4 years for being too ambitious and complicated.

A key lesson learned was the importance of getting developers to talk to the real people who

will use the system, rather than working from some abstract and outdated requirements &

design documents.

From there I moved into Oracle development having touched upon it as university. Over a

number of years I used all of the traditional Oracle development tools, SQL, PLSQL, Oracle

Forms & Reports, Oracle Discoverer, Oracle Designer and even 100% generation (and have the

scars to prove it).

In the last decade I've been privileged enough to work for SAGE Computing Services, a small

and passionate set of Oracle developers under Oracle ACE Penny Cookson. Over the last 5 or

so years, I've had the chance to jump from traditional Oracle development to Java, JDeveloper

and ADF, returning to my C++ inspired roots. I started using Oracle JDeveloper 9.0.4 and

have used every version since.

1 http://groups.google.com/group/adf-methodology/about

http://groups.google.com/group/adf-methodology/about
http://groups.google.com/group/adf-methodology/about
http://groups.google.com/group/adf-methodology/about

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

24

ACC: How do you currently use Oracle JDeveloper and ADF?

CM: My current role is split between 3 main tasks, that as an ADF technical lead for an 11g client, as

a consultant to other organizations looking to adopt ADF, and as a trainer teaching week long

ADF courses. It's a nice mix, I enjoy teaching and introducing beginners to the power of ADF,

but I also get the chance to get my hands dirty in writing real solutions using the tool too. As is

often said, the best teachers are also practitioners.

ACC: So far, what has been your biggest challenge in building Java EE application with

Oracle ADF?

CM: I must admit when I started out with Oracle JDeveloper several years ago, the real struggle was

trying to understand Struts and UIX, the technologies of choice in JDeveloper at the time (up

to JDeveloper 10.1.2).

Luckily Oracle had seen and contributed to JavaServer Faces, and the introduction of JSF in

Oracle JDeveloper 10.1.3 was a watershed moment for me, because JEE development became

hugely easier to understand and develop with. Since that time as Oracle has extended and

augmented JSF with their own feature set, particularly with the introduction of ADF Faces RC

and the extended controller with Task Flows in 11g, the product is just going from strength to

strength in providing a rich and productive development environment.

ACC: Which feature of ADF was the greatest benefit to your project?

CM: For our current client's project it's a combination of two technologies together. The ADF UI

Shell (aka. Dynamic Tabs Template) has allowed us, with the combination of Task Flows and

their multi-transaction-per-session support, to build a sophisticated application for our current

users. The web world is mostly simplistic in the features it supplies users, but for business

applications and their educated and experienced users this isn't enough. They need a rich UI

and the support for getting multiple things done at once, which the UI Shell & Task Flows have

provided us.

ACC: Away from the on line help, what have been your most valuable sources of ADF

knowledge?

CM: When I started out with JDeveloper, the OTN forum for Oracle JDeveloper was invaluable for

finding solutions to my problems. Oracle Product Managers have shown great dedication to

supporting and posting to the forum over the years. In the mid-term the detailed blogs of other

ADF experts have been a great source of information and still to this day I carefully scan every

ADF blog I know about for new and interesting information.

In recent years one of the biggest problems is there's nearly too much information available

now, blogs, books, tweets, Oracle manuals and the ADF EMG, it is becoming hard to filter it

all. However I'm ever grateful to everyone out there who chooses to share their experiences

and expertise on the internet for others to benefit, and through my blog I hope I contribute the

same in return. (Yeah yeah, I didn't mention the ADF EMG.... more on that soon).

ACC: Are you in any way actively involved in the ADF Community?

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

25

CM: My contributions to the ADF Community take three main forms:

Firstly I enjoy presenting at various user group events, and especially enjoy presenting on ADF

to anyone whose ear I can bend.

Secondly I blog about ADF and other Oracle related issues, though this doesn't get as much

time now as I like. I highly recommend anyone who has ambitions of a career in IT to present

and blog as often as they can.

Thirdly I contribute and moderate the ADF Enterprise Methodology Group (ADF EMG), a

group run and answered by some of the best ADF experts around the world in order to help

the wider ADF community about concepts of ADF best practices, methodologies, deployment

and other concepts beyond the how-do-I-get-this-to-work type questions on the OTN Forums

(the ADF EMG doesn't compete with the OTN Forums but supplements it).

There are other activities I participate in as an Oracle ACE Director, helping organize user

group conference streams, asking people to present and write papers, but that's less visible

though not to be dismissed in the amount of volunteer time freely given.

ACC: You are the founder of the ADF Enterprise Methodology (EMG) group. What has been

the motivation for this and what is the long term vision you have for this group to

become?

CM: The idea for ADF EMG sprung up because of 1 customer. After introducing and teaching a

skilled set of developers, I was surprised on returning 6 months later to see the organization had

made little headway. With some questions I realized it wasn't the developers or ADF at issue,

but rather the business was having a lot of trouble adjusting to the new way of doing things. As

an Oracle Forms shop, everything, how they wrote requirements, how they implemented

change control, their user expectations, their management expectations and more was still all

based on their previous technologies.

This made me realize adopting new technologies is more than using the technology at hand, a

cultural shift is required, the business of writing software needs to change, out with the old, in

with the new so to speak. But how to do that, I'm certainly just 1 guy with some limited

experience? So I thought it would be a valuable exercise to create an online group where many

experienced ADF experts could share their views on how to get ADF adopted into an

organization. From there some very kind and generous volunteers said they'd help out, we

formed the online group, and the rest is history as they say. While I might be the founder, the

key contributions are from the members and other volunteers today.

After 3-4 years the ADF EMG now sits on just under 700 members worldwide. We're holding

a whole day of ADF EMG presentations at this year's Oracle Open World (http://one-size-

doesnt-fit-all.blogspot.com/2011/07/year-of-adf-developer-at-oracle-open.html) and we even

have several other EMG groups including OBIEE, SOA-BMP and WebCenter.

The group grows from strength to strength each year and we encourage new members to join

and participate. Really, your career will benefit from it.

http://one-size-doesnt-fit-all.blogspot.com/2011/07/year-of-adf-developer-at-oracle-open.html
http://one-size-doesnt-fit-all.blogspot.com/2011/07/year-of-adf-developer-at-oracle-open.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

26

ACC: Are you attending OOW 2011 in San Francisco? If so, what are your planned activities

there and how could people meet you just to say 'hello'?

CM: As an Oracle ACE Director I'm privileged to be invited to attend and present at Oracle Open

World. Mind you as conferences go, each OOW year gets more and more hectic and this year

will be no exception.

What with organizing the ADF EMG presenters, presenting myself, rushing around to sessions

I want to see, I'm sure I'll be sleeping hard and long on the flight home to Perth. Yet the best

bit of OpenWorld has never been the presentations, but meeting and talking to like minded

developers, so I highly encourage attendees to come up and say hello. You might have to put

up with my horrible Aussie accent though.

ACC: ADF Genie grants you a wish, what would you ask for?

CM: Ha, that's one of our favorite questions from the ADF EMG new member survey. I guess my

reply will have to be in line with a prominent Oracle Product Manager's answer when he signed

up: "Don't tempt me".

ACC: Thanks Chris!

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
08 / 2011

27

RELATED DOCOMENTATION

 ADF EMG Group http://groups.google.com/group/adf-methodology/about

 ADF Insider Essentials

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfinsider-093342.html#a3

http://groups.google.com/group/adf-methodology/about
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfinsider-093342.html#a3

